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Abstract: Rice (Oryza sativa L.) is a widely consumed food source, and its geographical origin has
long been a subject of discussion. In our study, we collected 44 and 20 rice samples from different
regions of the Republic of Korea and China, respectively, of which 35 and 29 samples were of white
and brown rice, respectively. These samples were analyzed using nuclear magnetic resonance (NMR)
spectroscopy, followed by analyses with various data normalization and scaling methods. Then,
leave-one-out cross-validation (LOOCV) and external validation were employed to evaluate various
machine learning algorithms. Total area normalization, with unit variance and Pareto scaling for
white and brown rice samples, respectively, was determined as the best pre-processing method in
orthogonal partial least squares–discriminant analysis. Among the various tested algorithms, support
vector machine (SVM) was the best algorithm for predicting the geographical origin of white and
brown rice, with an accuracy of 0.99 and 0.96, respectively. In external validation, the SVM-based
prediction model for white and brown rice showed good performance, with an accuracy of 1.0. The
results of this study suggest the potential application of machine learning techniques based on NMR
data for the differentiation and prediction of diverse geographical origins of white and brown rice.

Keywords: rice; geographical origin; NMR spectroscopy; machine learning; prediction model

1. Introduction

Rice (Oryza sativa) is a primary food source for almost 50% of the global population
because of its high caloric content and various nutrients, such as minerals and vitamins [1].
Rice is an important crop in Asia and is widely consumed in various forms such as rice
flour, cooked rice, and rice cookies [2]. There are two significant subspecies of O. sativa,
indica and japonica, with an enormous number of varieties. Japonica is the most commonly
cultivated crop in East Asia, particularly in Korea, Japan, and China. Genotype and
environmental factors, such as rainfall intensity, soil, and temperature, heavily influence
rice metabolite profiles [3]. Rice fraud has been a serious global problem. However, the
assessment of botanical and geographical origin as well as cultivation methods of rice are
very important [4].

Metabolomics has been employed in the field of crops and agriculture research to
discriminate genetic and environmental differences, control crop quality, and determine
geographical origin [5–7]. Various analytical platforms, such as gas chromatography–mass
spectrometry, liquid chromatography/mass spectrometry, nuclear magnetic resonance (NMR)
spectroscopy, Fourier-transform infrared spectroscopy, and direct-infusion mass spectrometry,
have been employed to discriminate the geographical origin of crops and plants [8].
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Several studies have been conducted to determine the types or geographical origins of
rice samples to prevent adulteration and substitution, and to standardize their safety and
quality assurance. For example, various rice samples were distinguished by multi-element
fingerprinting using high-resolution inductively coupled plasma mass spectrometry (ICP-
MS) [1], elemental imaging using laser ablation ICP-MS [9], and 1H-NMR spectroscopy
coupled with principal component analysis (PCA) and discriminant analysis [10], and
1H-NMR spectroscopy coupled with partial least square–discriminant analysis (PLS-DA)
and independent component analysis [11]. Mass spectrometry coupled with the random
forest (RF) classification algorithm has also been reported to differentiate white rice samples
from China and Korea [12].

Recently, machine learning (ML) algorithms have been demonstrated to significantly
enhance the predictability and validity of prediction models for the geographical origin of
various crops and medicinal plants. 1H-NMR and inductively coupled plasma atomic emis-
sion spectroscopy/ICP-MS techniques coupled with ML algorithms have been applied to
discriminate the geographical origins of medicinal plants from Korea and China (Astragalus
membranaceus and Paeonia albiflora) [13]. The geographical origin of 237 samples of aspara-
gus (Asparagus officinalis L.) from six different countries (The Netherlands, Germany, Spain,
Poland, Greece, and Peru) was successfully distinguished using 1H-NMR spectroscopy
coupled with ML algorithms [14]. Ixeris denticulata samples from eight different origins
were differentiated using ultra-high performance liquid chromatography-quadrupole time-
of-flight mass spectrometry followed by ML algorithms [15]. Differences in soybean seed
vigor were evaluated using infrared spectroscopy and machine-learning techniques [16].

The total amount of rice imported into Korea in 2021 was 492,901 tons (accounting for
12.7% of domestic production), of which 40.8% was imported from China (196,322.2 tons of
brown rice, 5001.8 tons of polished rice). Most of the imported rice from China into Korea
was brown rice because of its advantages in storage and variety of utilization [17,18]. It is
important to distinguish the geographical origin of white and brown rice. The problem
of counterfeiting the origin of imported rice is leading to economic problems as well as
confusion in the domestic rice market. Over the past four years, the number of cases of illegal
distribution of imported rice in the Republic of Korea has been increasing every year with
about 425 cases, which gives local farmers a sense of relative deprivation and disrupts the
order of the healthy rice distribution market [19]. In addition, this has affected the increase in
the inventory of rice in conjunction with the overproduction of domestic rice, resulting in a
surge in the amount of sales loss for feed and inventory management costs [20]. However,
there have been no reports on the differentiation of the geographical origins of rice samples
(with two milling types) using 1H-NMR analysis coupled with ML techniques.

In this study, we collected white and brown rice samples from different regions of the
Republic of Korea (hereafter referred to as Korea) and China. We analyzed the data using
NMR spectroscopy coupled with various ML algorithms such as PCA, orthogonal PLS-DA
(OPLS-DA), random forest, decision tree, support vector machine (SVM), logistic regression,
and k-nearest neighbors. The main objective of our study was to explore the utilization of
NMR spectroscopy coupled with various ML algorithms to develop a convenient method
for predicting the geographical origin of rice.

2. Materials and Methods
2.1. Rice Sample Collection

Rice samples, collected from Korea (44 samples) and China (20 samples) with two types
of milling (white and brown rice) as shown in Supplementary Figure S1, were prepared
for NMR spectroscopy analysis. Brown rice is obtained by dehusking of paddy rice, and
white rice is obtained by removing the bran layer and the germ from the brown rice.
Korean rice samples were harvested in 2018 and collected by the National Institute of Crop
Science. The Korean rice samples were cultivated in Kangwon-do (Cheorwon, Chuncheon,
Hoengseong, and Yangyang), Gyeonggi-do (Suwon, Hwaseong, Paju, and Yeoncheon),
Chungcheongbuk-do (Chungju and Cheongju), Chungcheongnam-do (Asan and Seosan),
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Gyeongsangbuk-do (Sangju, Yecheon, and Gyeongju), Gyeongsangnam-do (Miryang and
Haman), Jeollabuk-do (Jeonju, Kimje, and Jinan), and Jeollanam-do (Kangjin and Haenam).
Chinese rice samples were harvested in 2018 and bought from online suppliers. These
samples were obtained from Heilongjiang, Henan, Liaoning, Jilin, Jiangsu, Shandong,
Shanxi, Hubei, and Sichuan provinces. The provinces, cities, and weather information for
the rice samples are summarized in Supplementary Table S1 and Figure S2.

2.2. Chemicals and Reagents

Deuterium oxide (D2O, 99.9% atom D) including 0.05% 3-(trimethylsilyl) propionic-
2,2,3,3-d4 acid sodium salt (TSP), deuterium oxide (D2O, 99.9% atom D), and monopotas-
sium phosphate (KH2PO4) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Sodium deuteroxide solution (NaOD, 99.5% atom D; 40% in D2O) was purchased from
Cambridge Isotope Laboratories, Inc. (Andover, MA, USA).

2.3. Pre-Preparation and Extraction of Rice

Pooled samples from each location were promptly frozen in liquid nitrogen, pulverized
using a blender, and stored in a deep freezer until NMR analysis. Then, 100 mg of rice
powder and 1.5 mL of 100% D2O (0.1 mM TSP) were transferred into a 2 mL centrifuge
tube (Eppendorf tube, Hamburg, Germany), vortexed for 1 min, and sonicated for 15 min.
Subsequently, the suspension was centrifuged at 17,000× g, 4 ◦C for 10 min. A buffer
solution of 90 mM KH2PO4 was prepared from D2O, and NaOD was used to adjust the pH
to 6.0. The clear supernatant was filtered using a 0.45 µm PVDF filter (Chemco Scientific,
Osaka, Japan), and 600 µL of the sample was transferred into a 5 mm NMR tube (Norell,
Landisville, NJ, USA).

2.4. Peak NMR Spectra Assignment

A 600-MHz Bruker Avance spectrometer (Bruker, Germany) was employed to analyze
rice samples at 25 ◦C to record all NMR spectra. For the 1H-NMR spectra, 64K data points
were obtained with a relaxation delay of 2.0 s and a spectral width of 10,775.9 Hz. A total of
128 scans and an acquisition time of 3.0 s were used. Water suppression was conducted to
exclude the region between δ = 4.7 and 5.0 using a pre-saturation pulse sequence (Bruker
1D noesygppr1d). For two-dimensional NMR spectra, 1H–1H correlation spectroscopy
(COSY) spectra were acquired under the following conditions: 32 scans, relaxation delay
of 2.0 s, and 7812.5 Hz (for white rice) and 6465.5 Hz (for brown rice) spectral widths.
1H–13C heteronuclear single quantum correlation (HSQC) spectra were obtained with
32 scans, 2.0 s relaxation delay, and spectral widths of 5122.9 Hz and 36,235.5 Hz in the
F1 and F2 dimensions, respectively (for white rice), and 6465.5 Hz and 36,150.3 Hz in the
F1 and F2 dimensions, respectively (for brown rice). Baseline correction and assignments
of all 1H–NMR spectra were performed using Chenomx NMR suite software (version 8.2,
Chenomx, Edmonton, AB, Canada). Metabolites were further identified based on the
HMDB database (http://www.hmdb.ca/) (accessed on 2 March 2022). Non-overlapping
peaks were used for peak assignment. MestReNova (version 6.0.4, Mestrelab Research,
Santiago de Compostela, Spain) was employed to measure the peak J values and identify
the peaks of the 1H–1H COSY and 1H–13C HSQC spectra.

2.5. NMR Data Pre-Processing and Measurement

Binning and normalization of the 1H–NMR spectral data were performed using the
Chenomx NMR suite software. Baseline-corrected NMR spectral data ranging from 0.08 to
10.00 ppm were segmented into a series of small bins (total 245) with widths of 0.04 ppm,
while excluding the water suppression region (4.70–4.86 ppm). The raw NMR spectral
data were normalized using total area and standardized area normalization techniques.
The total area normalization method was used to compute the relative intensities of the
binned spectral data by dividing the spectral data by the total area of all bins. In contrast,
in standardized area normalization, the relative intensities of the binned spectral data were

http://www.hmdb.ca/
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calculated by dividing the spectral data by the area of the reference peak. Subsequently, the
results of the binned datasets were converted to Microsoft Office Excel in a suitable format
to quantify each compound by its loading value, and the binning values of compounds with
numerous non-overlapping peaks were summed. All the pre-processed NMR spectral data
with peak values were converted into comma-separated value (CSV) files for ML analysis.

2.6. Statistical Analysis

After normalization of the NMR data, SIMCA-P+ software (version 13.0, Umetrics,
Umeå, Sweden) was used to perform multivariate statistical analysis. PCA and OPLS-DA
were performed using the SIMCA software. PCA is a clustering approach that minimizes
the dimensions of multivariate data, while retaining the majority of its variance without any
prerequisite information about the dataset, whereas the OPLS-DA model is a supervised
classification method [21]. The autofit function in the SIMCA program was used to choose
the number of components such that a significant number of principal components were
selected from the models.

Mean-centering was performed, unit variance (UV) and Pareto (Par) scaling were
applied in both PCA and OPLS-DA, and the outcomes were compared to determine the
best scaling method. The goodness-of-fit and predictability of the model were evaluated
using R2Y and Q2Y parameters. The R2Y and Q2Y values are expected to be close to 1. The
10-fold cross-validation and permutation test were performed to prevent the overfitting of
the model. Intercept values of R2Y and Q2Y below 0.4 and 0.05, respectively, were regarded
as valid models.

2.7. Development of Differentiation Models and ML Algorithms

Python is a scripting language widely used in data science [22]. Differentiation models
implicit in various ML algorithms were employed using the SciKit-Learn 0.24 software
package. The SciKit-Learn library is a Python module that makes ML accessible to everyone
and covers various supervised and unsupervised ML algorithms [23,24]. In metabolomics
research, different linear and nonlinear supervised ML methods can be employed, such as
OPLS-DA, logistic regression, SVM, k-nearest neighbors, decision tree, and RF. However,
OPLS-DA is accepted as the gold standard among supervised algorithms because it supplies
information related to contributing metabolites (variables) for group separation.

“GridSearchCV” is an algorithm in the SciKit-Learn library that selects optimal hy-
perparameters for each ML algorithm to identify the best differentiation model. A range
of hyperparameter values can be assigned to the algorithm as inputs. The algorithm then
builds models using each possible hyperparameter set from the ranges of the hyperparam-
eters and shows the best hyperparameter settings for the selected ML algorithm. It also
uses a CV method to find optimal hyperparameter values over k-fold CV [25].

Leave-one-out cross-validation (LOOCV) was used to evaluate the performance of
machine learning algorithms. Most often used cross-validation techniques are k-fold and
LOOCV. For larger datasets, k-fold is preferable to LOOCV. Data are split into K sets for
k-fold cross-validation, with one set serving as the validation set for each iteration. In
comparison, LOOCV is a special case of k-fold that employs test and training data from each
sample in the dataset. LOOCV chooses one sample from the data as a validation set so that
each sample can reflect the test data. However, utilizing several trained and testing models by
LOOCV estimates more reliable outcomes, thus it is suitable for small datasets [26,27].

In ML algorithms, true positives (TP) are the positive classes that the model correctly
classifies, and true negatives (TN) are the negative classes that are classified correctly by the
model. False positives (FP) are the classes that the model incorrectly classifies as positive,
and false negatives (FN) are the classes that are incorrectly classified as negative by the model [24].

To evaluate the ML algorithms, six evaluators compared the performance of the established
models, including accuracy, receiver operating characteristic (ROC)–area under the curve (AUC),
specificity, precision, recall, and F1_score. Accuracy measures the ratio of correctly predicted
samples to the total number of samples evaluated ((TP + TN)/(TP + FP + TN + FN)) [28]. Speci-
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ficity measures the fraction of negative patterns that are correctly classified (TN/(TN + FP)) [24].
Precision measures the positive patterns that are correctly predicted from the total predicted
patterns in a positive class (TP/(TP + FP)) [28]. Recall measures the fraction of positive patterns
that are correctly classified (TP/(TP + FN)) [24]. The F1_score is the harmonic mean of precision
and recall ((2 × precision × recall)/(precision + recall)) [29]. The AUC is widely used to determine
the predictability of an established model; a high AUC value represents the best performance of
the model [24].

3. Results and Discussion
3.1. Identification of Metabolites in Rice

The putatively assigned peaks for white and brown rice are presented in Table 1, and
the representative NMR spectrum for the metabolite extract is shown in Figure 1. We
obtained 105 and 87 1H-NMR spectra using three experimental replicates from white rice
(Korea, 30 and China, 5) and brown rice (Korea, 14 and China, 15) samples, respectively.

Twenty-four metabolites, including 12 amino acids, 5 organic acids, 3 sugars, 1 alcohol,
and 3 others, were identified in the rice samples using a one-dimensional NMR technique.
Among the 12 amino acids, isoleucine, leucine, methionine, threonine, and valine were
identified as essential amino acids. Acetate, malate, fumarate, glycolate, and succinate were
found to be the organic acids. Sugars found in the rice samples included glucose, maltose, and
sucrose. Two-dimensional NMR spectroscopy (COSY, HSQC) was performed to support the
identification of various metabolites by one-dimensional NMR (Supplementary Figures S3 and S4).

Like other agricultural crops, metabolic profiles of rice are influenced by genotype
and various environmental factors, such as rainfall, temperature, and soil [3,30]. This study
considered the average rainfall and temperature in the regions from which the white and
brown rice samples from Korea and China were collected. Supplementary Table S1 shows
the average rainfall and temperatures of all regions. Supplementary Figure S2A,B show
the average rainfall and temperature for white and brown rice collection regions in Korea
and China, respectively. No significant differences in temperature were observed between
Korea and China. However, a significant difference in the rainfall was observed between
Korea and China. Rainfall has significant consequences for specific geographical locations
and seasons. Most notably, during critical phases of crop growth, protracted durations
of rainfall may drain considerable amounts of essential substances from plants, such as
amino acids, organic acids, and polysaccharides [31]. Rainfall and solar radiation have
been reported to significantly affect tea production and quality [32]. In addition, in most
plants, a change in one factor can affect the metabolite content, even when other factors
remain constant [33]. Therefore, we speculate that rainfall was the main environmental
factor responsible for the differences in the metabolites of rice samples.

3.2. PCA Model Establishment for Predicting the Geographical Origin of Rice

In this study, PCA was used to objectively analyze the 1H-NMR data. In the PCA score
plot (Figure 2), the white and brown rice samples from Korea and China were distinctly
separated by partial conjoining. The UV and Par scaling methods for white and brown rice,
respectively, showed better clustering of 10 quality control (QC) samples, demonstrating
the instrumental stability and reliability of NMR spectroscopy. For white rice, the principal
components (PC1 and PC2) collectively accounted for 55.8% of the total variation, with
R2X = 0.975 and Q2 = 0.607. For brown rice, the principal components (PC1 and PC2)
collectively accounted for 68.7% of the total variation, with values of R2X = 0.984, and
Q2 = 0.692.
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Table 1. Putative peak assignment of nuclear magnetic resonance (NMR) spectra in rice.

No. Compound InChI Key Chemical Shift Assignment Method

(Multiplicity,
J Value) White Rice Brown Rice

Amino Acids

1 4-Aminobutyrate BTCSSZJGUNDROE-
UHFFFAOYSA-N 1.84–1.92 (m), 2.29 (t, J = 7.4), 3.00 (t, J = 7.2) 1D 1D, HSQC

2 Alanine QNAYBMKLOCPYGJ-
REOHCLBHSA-N 1.47 (d, J = 7.2) 1D 1D

3 Asparagine DCXYFEDJOCDNAF-
REOHCLBHSA-N 2.80–2.92 (m), 2.88–3.00 (m) 1D 1D

4 Aspartate CKLJMWTZIZZHCS-
REOHCLBHSA-N 2.80 (dd, J = 17.4, 3.9) 1D, COSY 1D

5 Glutamate WHUUTDBJXJRKMK-
UHFFFAOYSA-N 2.00–2.10 (m) 1D, COSY 1D, COSY

6 Glutamine ZDXPYRJPNDTMRX-
VKHMYHEASA-N 2.06–2.20 (m), 2.38–2.50 (m) 1D 1D

7 Glycine DHMQDGOQFOQNFH-
UHFFFAOYSA-N 3.56 (s) 1D 1D

8 Isoleucine AGPKZVBTJJNPAG-
WHFBIAKZSA-N 0.92 (t, J = 7.2), 1.00 (d, J = 7.2) 1D, HSQC 1D, COSY, HSQC

9 Leucine ROHFNLRQFUQHCH-
YFKPBYRVSA-N 0.95 (t, J = 6.2) 1D 1D, COSY

10 Methionine FFEARJCKVFRZRR-
BYPYZUCNSA-N 2.66 (t, J = 7.8) 1D, COSY 1D, COSY

11 Threonine AYFVYJQAPQTCCC-
GBXIJSLDSA-N 1.31 (d, J = 6.6) 1D, COSY 1D, COSY

12 Valine KZSNJWFQEVHDMF-
BYPYZUCNSA-N 0.98 (d, J = 6.9), 1.03 (d, J = 6.6) 1D 1D, COSY

Organic acids

13 Malate BJEPYKJPYRNKOW-
UHFFFAOYSA-N 4.33 (d, J = 7.8) 1D, COSY 1D, COSY

14 Fumarate VZCYOOQTPOCHFL-
OWOJBTEDSA-N 6.51 (s) 1D 1D

15 Succinate KDYFGRWQOYBRFD-
UHFFFAOYSA-N 2.42 (s) 1D 1D

16 Acetate QTBSBXVTEAMEQO-
UHFFFAOYSA-M 1.91 (s) 1D 1D

17 Glycolate AEMRFAOFKBGASW-
UHFFFAOYSA-N 3.95 (s) 1D 1D

Sugars

18 Glucose WQZGKKKJIJFFOK-
GASJEMHNSA-N 4.63 (d, J = 7.8), 5.22 (d, J = 3.6) 1D, HSQC 1D, HSQC

19 Maltose GUBGYTABKSRVRQ-
PICCSMPSSA-N 5.41 (d, J = 3.6) 1D, COSY, HSQC 1D, COSY, HSQC

20 Sucrose CZMRCDWAGMRECN-
UGDNZRGBSA-N

3.46 (t, J = 9.6), 3.67 (s), 3.75 (t, J = 9.6), 4.04
(t, J = 8.6), 4.21 (d, J = 8.7), 5.39 (d, J = 3.6) 1D, COSY, HSQC 1D, COSY, HSQC

Alcohol

21 Ethanol LFQSCWFLJHTTHZ-
UHFFFAOYSA-N 1.17 (t, J = 7.2) 1D 1D

Others

22 Pyruvate LCTONWCANYUPML-
UHFFFAOYSA-N 2.36 (s) 1D 1D

23 Threonate JPIJQSOTBSSVTP-
STHAYSLISA-N 4.00 (d, J = 2.4) 1D, HSQC 1D, HSQC

24 Choline OEYIOHPDSNJKLS-
UHFFFAOYSA-N 3.19 (s) 1D, HSQC 1D, HSQC

s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, quartet; m, multiplet; 1D, 1-dimensional; COSY,
correlation spectroscopy; HSQC, heteronuclear single quantum correlation.
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Figure 2. Principal component analysis (PCA) score plots for discriminating the geographical origin
of white rice (A) and brown rice (B) samples from Korea and China.

3.3. Comparing ML Models for Predicting the Geographical Origin of Rice

Table 2 lists the model performance (R2Y and Q2Y) and parameters (intercept values
of R2Y and Q2Y) of permutation for predicting Korean and Chinese white and brown
rice samples with different normalization and scaling methods. For white rice samples,
the model established with total area normalization and UV scaling showed the highest
R2Y and Q2Y values, 0.673 and 0.566, respectively. Therefore, we selected this model as
the optimal model. The permutation test was also satisfied with R2Y and Q2Y intercept
values of 0.0731 and −0.196, respectively. OPLS-DA-derived score plots showed an explicit
separation between the Korean and Chinese rice samples (Figure 3A).

Table 2. Orthogonal partial least square–discriminant analysis (OPLS-DA) model parameters based on
various normalization and scaling methods for discriminating the geographical origin of rice samples.

Group
No.

Normalization
Method

Scaling
Method

Component
Number R2Y Q2Y R2Y

Intercept
Q2Y

Intercept

White Rice

1
Total area

UV 1 + 3 + 0 0.673 0.566 0.0731 −0.196
2 Par 1 + 3 + 0 0.623 0.538 0.0941 −0.244
3 Standardized

area
UV 1 + 1 + 0 0.396 0.233 0.0276 −0.292

4 Par - - - - -

Brown rice

1
Total area

UV 1 + 7 + 0 0.844 0.736 0.172 −0.403
2 Par 1 + 4 + 0 0.702 0.597 0.119 −0.275
3 Standardized

area
UV 1 + 6 + 0 0.827 0.723 0.144 −0.386

4 Par 1 + 7 + 0 0.82 0.702 0.152 −0.399

UV, unit variance; Par, pareto.
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from Korea and China.

For brown rice samples, the total area normalization and Par scaling methods were
optimal with satisfactory R2Y and Q2Y values of 0.702 and 0.597, respectively (Table 2). The
score plots showed an explicit separation between the Korean and Chinese rice samples
(Figure 3B). The permutation test also yielded R2Y and Q2Y intercept values of 0.119 and
−0.275, respectively (Figure 3B, Table 2). The OPLS-DA-derived score plots also showed
a clear separation between the Korean and Chinese rice samples (Figure 3B). The model
with total area normalization and UV scaling showed the highest value closest to 1 for
brown rice; however, it showed scattered plots of QC samples in the PCA-derived score
plots. The clustering of QC samples represents the robustness and reproducibility of the
analysis [34,35]. Therefore, total area normalization and Par scaling were selected for
discrimination of the Korean and Chinese brown rice samples because they showed better
clustering of the QC samples than that with the other methods.

To distinguish between Chinese and Korean rice, the total area normalization method,
which divided each metabolite peak area by the total peak area, was used, giving each
sample the same total peak area of 1. The total area normalization method is one of the
most widely used normalization techniques for NMR data in metabolomics research. Con-
sequently, each peak intensity can be reported as a percentage of the total peak intensity,
making it possible to compare metabolite levels across samples in the same unit [36,37].
By assigning equal values to each metabolite and setting the standard deviation to one
for all metabolites, the UV scaling strategy is one of the simplest ways to normalize
metabolic variability [37–39]. Appropriate normalization and scaling techniques are crucial
for improving the biological information in metabolomics data. These techniques decrease
unwanted biases induced by biological and technical variance and compensate for different
ranges between samples or variables for comparison [37,40,41]. Normalization considerably
decreases metabolite intensity variance between samples (sample-to-sample variance), allow-
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ing all samples to be compared. Scaling balances intensity variation between metabolites
(metabolite-to-metabolite comparison), allowing all metabolites to be compared [36,37].

Table 3 presents the comparison of the performance of the differentiation models
established by various ML algorithms after LOOCV. The SVM-based differentiation model
outperformed the RF-, decision tree-, k-nearest-neighbors-, and OPLS-DA-based differenti-
ation models. The mentioned parameters were selected using “GridSearchCV”. SVM is
prone to overfitting; however, the correct type of kernel selection makes it robust to noise
and overfitting [14,42]. The SVM can handle outliers efficiently because it uses a maximum
margin solution. The maximum margin solution uses a maximum margin separating
hyperplane for optimization [43]. SVM has a significant advantage over PLS and OPLS
because the SVM model can be built using both linear and nonlinear kernels [42].

We employed datasets obtained from the 1H-NMR analysis, which are not high-
dimensional because the number of features is less than the number of samples. High-
dimensional data correspond to data with more features than the number of samples [44].
As discussed previously, the choice of kernel is essential. Therefore, “GridSearchCV” was
used with different kernels and parameter sets to find the best kernel type to distinguish
the rice samples. In our case, the SVM model with a linear kernel showed better train and
test accuracy than the radial basis function and polynomial and sigmoid kernels. Kernel
type may differ for different 1H-NMR data for other crops.

The linear SVM classified rice samples using a single line or hyperplane. A line or
hyperplane is adjusted by updating weights or intercept values during training. The
SVM finds the best weights and intercept values that create a hyperplane or decision
boundary [45,46]. The closest samples to the decision boundary were identified as support
vectors, which draw lines parallel to the decision boundary to provide an optimized
solution, called the maximum margin solution [47,48].

Furthermore, SVM can perform better than other standard classification algorithms.
Logistic regression is also a linear classifier that can classify data by a hyperplane; however,
the activation function makes it different from SVM because logistic regression uses a
sigmoid function instead of a maximum margin solution [49], which does not give an
optimal solution. However, the logistic regression algorithm requires a large sample size
for better and stable model training and shows poor performance with irrelevant and highly
correlated data. The decision tree algorithm uses Gini or information gain for building the
tree. The bias of the decision tree is to find the smallest tree that can classify the data. If
data change slightly or are noisy, the outcomes can vary considerably.

Moreover, decision tree algorithm cannot deal with high-dimensional data and can
easily be overfitted to training data [50]. Random forest algorithms ensemble many trees
during training [51], slowing down the algorithms by increasing the number of trees.
Moreover, the predictions of the trees need to be uncorrelated [50]. KNN is time-consuming
for large datasets and requires data scaling because it uses distance for finding neighbors,
is sensitive to outliers [49], cannot handle missing values, and does not work well for
imbalanced datasets [49,50].

In comparison, SVM can perform better than other standard classification algorithms
for imbalanced datasets [52]. The imbalance dataset has significantly more samples than
other classes, which is a cause of model overfitting. However, for our rice dataset, SVM’s
optimal nature showed better performance than other standard classifiers because it can
handle both balanced (brown rice dataset; Korea, 14 and China, 15) and imbalanced datasets
(white rice dataset; Korea, 30 and China, 5).

UV-scaled data were used for white rice to establish the model, and the best differentia-
tion model was developed by applying SVM (accuracy and ROC-AUC of 0.99 in the test set).
Par-scaled data were used for brown rice to establish the model, and the best differentiation
model was developed by applying an SVM (accuracy and ROC-AUC of 0.96 in the test set).
AUC values of 0.99 (for white rice) and 0.96 (for brown rice) were determined through the
ROC curve analysis for predicting the geographical origin of rice, which suggested that
the discovered 24 metabolites might be utilized to distinguish between rice samples from
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Korea and China. Thus, the SVM model developed in this study can be used to distinguish
and predict Korean and Chinese rice samples.

Table 3. Comparison of leave-one-out cross-validation (LOOCV) performance of various machine
learning algorithms for discriminating the geographical origin of white and brown rice from Korea
and China.

White Rice
Parameters

Accuracy ROC-AUC Specificity Precision Recall F1_Score

Methods Train Test Train Test Train Test Train Test Train Test Train Test

Random
forest

criterion = ‘gini’
max_depth = 4,
min_samples_leaf = 2, 0.94 0.92 0.83 0.78 0.99 0.98 0.94 0.92 0.94 0.92 0.94 0.92
min_samples_split =
20, random state = 0
n_estimators = 10

Decision
tree

criterion = ‘gini’
max_depth = 2,
random state=0

0.99 0.91 0.95 0.81 0.99 0.96 0.99 0.91 0.99 0.91 0.99 0.91

SVM C = 3, gamma = 0.01,
kernel = ‘linear’ 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99

Logistic
regression

C = 2, max_iter = 100,’
1.00 0.96 1.00 0.89 1.00 0.99 1.00 0.96 1.00 0.96 1.00 0.96random_state = 0,

solver = ‘lbfgs

KNN n_neighbors = 2,
weights = ‘distance’ 1.00 0.97 1.00 0.96 1.00 0.98 1.00 0.97 1.00 0.97 1.00 1.97

OPLS-DA components = 1 + 3 + 0 0.96 0.98 0.98 0.98 0.99 0.98 0.95 0.96 0.89 0.89 0.92 0.91

Brown rice
Parameters

Accuracy ROC-AUC Specificity Precision Recall F1_score

Methods Train Test Train Test Train Test Train Test Train Test Train Test

Random
forest

criterion = ‘entropy’
max_depth = 3,
min_samples_leaf = 2, 0.99 0.92 0.98 0.92 1.00 0.95 0.99 0.92 0.99 0.92 0.99 0.92
min_samples_split =
10, random state = 0
n_estimators = 20

Decision
tree

criterion = ‘gini’
max_depth = 2,
random state = 0

0.98 0.94 0.99 0.94 0.98 0.95 0.98 0.94 0.98 0.94 0.98 0.94

SVM C = 250, kernel =
‘linear’ 1.00 0.96 1.00 0.96 1.00 0.96 1.00 0.95 1.00 0.95 1.00 0.95

Logistic
regression

C = 2, max_iter = 10,’
0.83 0.78 0.82 0.78 0.82 0.78 0.83 0.78 0.83 0.78 0.82 0.78random_state = 0,

solver = ‘liblinear’

KNN n_neighbors = 6,
weights = ‘distance’ 1.00 0.91 1.00 0.92 1.00 0.93 1.00 0.91 1.00 0.91 1.00 0.91

OPLS-DA components = 1 + 4 + 0 0.98 0.95 1.00 0.96 0.99 0.98 0.99 0.98 0.97 0.94 0.98 0.96

SVM, LR, RF, KNN, and DT were performed using Scikit-Learn software, and the parameters were selected by the
“GridSearchCV” function in SciKit-Learn. OPLS-DA was performed using SIMCA software, and the parameters
were selected by the “Autofit” function in SIMCA software. DT, decision tree; KNN, k-nearest neighbors; LR,
logistic regression; OPLS-DA, orthogonal partial least squares–discriminant analysis; RF, random forest; SVM,
support vector machine.

In total, 105 and 87 rice sample spectra were analyzed using NMR. SVM showed better
performance than other ML algorithms, as it offers great generalization ability for a small
sample size [53,54]. Generalization is a ML term, which means that the model should be
able to make appropriate decisions for unseen data based on previously observed data [55].
Hou et al. [53] identified 11 types of edible oil (from 52 samples) by employing an SVM
based on a low-field nuclear magnetic resonance dataset comprising five extracted features.

Table 4 presents the performance of the SVM model in discriminating between white
and brown rice using external validation. When establishing a differentiation model,
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internal validation is essential; however, external validation is also suggested to acquire
important information regarding the existing or previously developed performance of the
model [56]. External validation was performed using the previously selected SVM method
by importing validation samples. For white rice, the entire dataset (n = 105) was randomly
divided into development (n = 90) and validation (n = 15) samples. For brown rice, the
entire dataset (n = 87) was randomly divided into development (n = 74) and validation
(n = 13) samples. The performance scores (white and brown rice) were 0.96 or higher for
the development set, whereas they were 1.0 for the validation set.

Table 4. Prediction performance of the support vector machine (SVM)-based machine learning model
to discriminate the geographical origin of rice from the development and external validation datasets.

Evaluators

White Rice (SVM) Brown Rice (SVM)

Developmental Model (n = 90) Validation
Model (n = 15)

Developmental Model (n = 74) Validation
Model (n = 13)Train Test Train Test

Accuracy 1.00 0.97 1.00 1.00 0.96 1.00

ROC-
AUC 1.00 1.00 1.00 1.00 1.00 1.00

Specificity 1.00 0.96 1.00 1.00 1.00 1.00

Precision 1.00 0.97 1.00 1.00 0.96 1.00

Recall 1.00 0.97 1.00 1.00 0.96 1.00

F1_score 1.00 0.97 1.00 1.00 0.96 1.00

Compared with mass spectrometry (MS)-based metabolic profiling, NMR-based
metabolic profiling has advantages in rapid sample preparation and higher reproducibil-
ity [57]. However, it has lower sensitivity than MS-based metabolic profiling. Thus, it
is suggested that both MS- and NMR-based metabolic profiling be employed as comple-
mentary methods for the discrimination of various crops including rice. In a previous
report, MS-based metabolic profiling coupled with PLS-DA and random forest models
discriminated the geographical origin of white rice samples [12]. In our study, we estab-
lished optimal normalization and scaling methods for NMR datasets to differentiate white
and brown rice samples from Korea and China. We also found that the SVM applied to
NMR-based metabolic profiles outperforms the PLS-DA and random forest in predicting
the geographical origins of white and brown rice from Korea and China. In particular,
differentiation of geographical origins of brown rice was conducted for the first time in our
study using NMR-based metabolic profiling.

The limitation of machine learning techniques compared with the widely used multi-
variate statistical analyses, such as PLS-DA or OPLS-DA, is the lack of information about
the contributing factors (metabolites) for the differentiation of each group. The machine
learning techniques should be employed when the main aim is the practical differentiation
or prediction, rather than revelation of contributing factors.

For practical use of established methods in this study, the expensive cost of the NMR
equipment and its maintenance should be considered, especially in developing countries.
Establishment and effective management of a nationwide centralized laboratory system
can be a promising approach for the high-cost problem. In future studies, an extensive
sample collection and analysis could be performed to establish a robust differentiation
model for discriminating rice samples from various countries worldwide.

4. Conclusions

This is the first study to discriminate the geographical origin of rice from Korea and
China with two milling types (white and brown) using NMR spectroscopy coupled with
the most widely used ML algorithms. The SVM-based classification showed the best results
in the LOOCV and external validation of the white and brown rice samples. This study
can be employed as a complementary and alternative approach to previously reported
analytical techniques for the geographical discrimination of rice samples. The concept and
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results of this study could be used for establishing a robust model for differentiation of rice
samples from various countries worldwide in future studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12111012/s1, Figure S1. Map showing the origin of
Korean (A) and Chinese (B) rice samples used in the experiment; Figure S2. Climate data for white
rice (A) and brown rice (B) samples from Korea and China; Figure S3. Two-dimensional NMR
spectra of white rice samples. (A) 1H-1H COSY spectrum and (B) 1H-13C HSQC spectrum; Figure S4.
Two-dimensional NMR spectra of brown rice samples. (A) 1H-1H COSY spectrum and (B) 1H-13C
HSQC spectrum; Table S1. The provinces, cities, and weather information (year: 2018) of rice samples
from the Republic of Korea and China.
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Abbreviations

AUC area under the curve
COSY correlation spectroscopy
HMDB Human Metabolome Database
HSQC heteronuclear single quantum correlation
NMR nuclear magnetic resonance
OPLS-DA orthogonal partial least square–discriminant analysis
Par Pareto
PCA principal component analysis
PLS-DA partial least square–discriminant analysis
RF random forest
ROC receiver operating characteristic
SVM support vector machine
UV unit variance
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