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Abstract: Carotenoids are important compounds of quality and coloration within sweet potato
storage roots, but the mechanisms that govern the accumulation of these carotenoids remain poorly
understood. In this study, metabolomic and transcriptomic analyses of carotenoids were performed
using young storage roots (S2) and old storage roots (S4) from white-fleshed (variety S19) and
yellow-fleshed (variety BS) sweet potato types. S19 storage roots exhibited significantly lower total
carotenoid levels relative to BS storage roots, and different numbers of carotenoid types were detected
in the BS-S2, BS-S4, S19-S2, and S19-S4 samples. β-cryptoxanthin was identified as a potential key
driver of differences in root coloration between the S19 and BS types. Combined transcriptomic and
metabolomic analyses revealed significant co-annotation of the carotenoid and abscisic acid (ABA)
metabolic pathways, PSY (phytoene synthase), CHYB (β-carotene 3-hydroxylase), ZEP (zeaxanthin
epoxidase), NCED3 (9-cis-epoxycarotenoid dioxygenase 3), ABA2 (xanthoxin dehydrogenase), and
CYP707A (abscisic acid 8’-hydroxylase) genes were found to be closely associated with carotenoid and
ABA content in these sweet potato storage roots. The expression patterns of the transcription factors
OFP and FAR1 were associated with the ABA content in these two sweet potato types. Together,
these results provide a valuable foundation for understanding the mechanisms governing carotenoid
biosynthesis in storage roots, and offer a theoretical basis for sweet potato breeding and management.

Keywords: sweet potato; carotenoid; abscisic acid; metabolome; transcriptome

1. Introduction

Sweet potato (Ipomoea batatas (L.) Lam.) is an annual worldwide member of the
Convolvulaceae family, representing an important food source and cash crop throughout
the world [1]. Sweet potato storage roots contain high levels of carbohydrates, minerals,
dietary fiber, and bioactive ingredients [2]. Yellow-fleshed sweet potato types are rich in
β-carotene and other provitamin A carotenoids [3]. The color of sweet potato storage roots
is considered highly important, in part because it can inform consumer choices [4]. There is
thus a clear need to fully explore the interplay between carotenoid biosynthesis and storage
root color development in order to better guide the selective breeding of sweet potatoes
with a high level of commercial value.

Carotenoids are isoprenoid-derived pigments that are vital for the growth of the
plants [5]. In addition to determining the coloration of the flesh of fruits and roots in which
they accumulate, these carotenoids can exert a range of antioxidant and antitumor activities
in humans, with some studies suggesting that these bioactive compounds can prevent a
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variety of ocular diseases [6,7]. The pigmentation of sweet potato storage roots is primarily
determined by the apparent carotenoid and anthocyanin discrepancy [8,9]. While orange-
and yellow-fleshed storage roots contain similar carotenoids, the actual differing levels of
particular carotenoids within the roots of different sweet potato types have been extensively
studied in many plant species. [10–12].

Carotenoid biosynthesis has been studied at length in plants including Arabidopsis [13],
tomatoes [14], peppers [15], rice [16], and maize [17]. This process is governed by a series
of controlled reactions including condensation [14], dehydrogenation [18], cyclization [19],
hydroxylation [20], and epoxidation [17]. The phytoene synthase (PSY)-mediated conden-
sation of 20-carbon geranylgeranyl diphosphate (GGPP) molecules to generate colorless
phytoene (C40) represents a critical step in this biosynthetic process [21]. Lycopene is then
generated through successive phytoene desaturation and isomerization. Phytoene desat-
urase (PDS), z-carotene isomerase (Z-ISO), z-carotene desaturase (ZDS), and carotenoid
isomerase (CRTISO) catalyze four different dehydrogenation reactions [22]. During the pro-
cess of carotenoid cyclization reactions, competition between lycopene beta cyclase (LCY-β)
and lycopene epsilon cyclase (LCY-ε) governs the relative production of β-carotene and
α-carotene [12], with the double hydroxylation of these two respective products yielding
lutein and zeaxanthin, after which further modification of zeaxanthin can yield neoxanthin
and violaxanthin [17]. These latter two carotenoids serve as precursors for the biosynthe-
sis of the phytohormone abscisic acid (ABA), which relies on the enzymatic cleavage of
9-cis-violaxanthin or 9′-cis-neoxanthin (9-cis-epoxy-xanthophylls), mediated by NCED, to
produce C15-xanthoxin and C25-apocarotenoid [23]. After transfer from plastids into the
cytoplasm, xanthoxin then undergoes two further processing steps to yield ABA, whereas
apocarotenoid can be converted by ABA2 (short-chain dehydrogenase/reductase-like en-
zyme ABA-deficient 2), after which it can be oxidated by AAO (ABA by abscisic aldehyde
oxidase) to yield ABA [24]. Further metabolic processing of ABA can then be performed by
enzymes, including ABA-8′-hydroxylases and CYP enzymes of the 707A clade, producing
major catabolites, including phaseic acid (PA) and dihydrophaseic acid (DPA) [25].

Carotenoid production is primarily shaped by the expression of genes that regulate
the different steps in these biosynthetic pathways [26], with differential gene expression
ultimately accounting for the observed differences in carotenoid content among species
and types. In yellow celery, lutein and β-carotene content is closely associated with
AgLCYB and AgPSY2 expression levels [20]. Analyses of mutant Oranzheva kaoia types,
exhibiting high concentrations of β-carotene, have revealed the presence of a biosynthetic
pathway breakdown owing to CrtZchr03 gene deletion, ultimately contributing to increased
β-carotene content and affirming the regulatory role of particular genes in this metabolic
context [27]. Studies of mutant Cara cara navel oranges have further demonstrated that the
DXS1, DXR, GGPPS2, PSY1, and LCYB genes are the primary determinants of carotenoid
biosynthesis [9].

Comprehensive multi-omics analyses have been widely employed to study the mech-
anisms whereby plant pigmentation is established. In Cyclocarya paliurus, for example,
the MYB transcription factors (TFs) and two bHLH TFs were identified via a multi-omics
approach as important regulators of flavonoid biosynthesis [28]. Similarly, integrative
metabolomic and transcriptomic analyses have enabled the determination of the mecha-
nisms that regulate anthocyanin and flavonoid accumulation within sweet potato root skin
and leaf vein base tissues [29]. By leveraging these multi-omics techniques, researchers
have also established a putative transcriptional regulatory network that dictates flavonoid
and carotenoid biosynthesis in navel oranges, enabling the development of a hierarchical
model for proposed pathway-related genes and TFs [9]. Similar strategies have also sup-
ported studies concerning the relationship between carotenoid biosynthesis and petal color
in Brassica napus [26].

To date, most studies of sweet potato carotenoids have primarily focused on phe-
notypic characteristics or derivation rather than on underlying metabolic and molecular
processes. In the present study, the storage roots of the white-fleshed S19 and the yellow-
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fleshed BS sweet potato types were selected for systematic metabolomic and transcriptomic
analyses aimed at exploring the mechanisms underpinning carotenoid accumulation in
these sweet potato storage roots. Ultimately, this approach highlighted key metabolites
and genes associated with the coloration of these sweet potato storage roots while offering
novel mechanistic insight into the basis for sweet potato carotenoid biosynthesis.

2. Materials and Methods
2.1. Plant Materials and Treatments

The white-fleshed, red-skinned S19 variety (Ipomoea batatas (L.) Lam. cv ‘Shangshu 19’)
and the yellow-fleshed, light yellow-skinned BS variety (Ipomoea batatas (L.) Lam. cv
‘Baishu’) were selected for experimental use.

On 30 May 2020, these two sweet potato types were planted on the experimental
agricultural farm of Shanxi Agricultural University (coordinates: 112.58′ E, 37.42′ N). They
were planted in a random block arrangement, with two rows of 50 plants per variety using
a single ridge planting approach with 35 cm between plants, and a row spacing of 90 cm.
Sample collection was performed on day 90 (S1), day 100 (S2), day 110 (S3), and day 120 (S4)
after planting. In total, five plants per variety were harvested at random for each time point,
yielding 20 storage roots. Similarly sized storage roots with smooth skin were selected for
subsequent characterization.

Harvested sweet potato roots were rinsed, dried with absorbent paper, and cut into
0.5 cm × 0.5 cm × 0.5 cm cubes that were snap-frozen for 30 min in liquid nitrogen and
stored at −80 ◦C.

2.2. Analyses of Total Carotenoid Content and Color

A colorimetric approach was used to assess the average carotenoid content in BS
and S19 sweet potato storage root samples. The color was assessed using a X Rite VS450
colorimeter (Xrite, Grand Rapids, MI, USA). Carotenoid content following crude organic
solvent-mediated extraction was assessed as per Lambert–Beer’s law as follows:

A = α CL (1)

where A corresponds to the absorbance of a given solution, C corresponds to the concen-
tration of the reactant, L corresponds to liquid layer thickness, and α corresponds to the
absorption coefficient.

Each sample was analyzed in triplicate using biological replicates.

2.3. Quantification of Carotenoid Content and ABA Levels

After freeze-drying, samples of detached sweet potato storage roots from the BS and
S19 types at the S2 and S4 time points were ground using a mixer mill. An UPLC-APCI-
MS/MS system (UPLC, ExionLCTM AD, https://sciex.com.cn/ (accessed on 4 November
2020); MS Applied Biosystems 6500 Triple Quadrupole, https://sciex.com.cn/ (accessed on
4 November 2020)) and the MetWare (http://www.metware.cn/ (accessed on 4 November
2020)) application were then used to assess the carotenoid and phytohormone content in
these samples, with all analyses having been performed by the MetWare company. Princi-
pal component analysis (PCA) and orthogonal partial least squares discriminant analysis
(OPLS-DA) approaches were used to evaluate differences in metabolite profiles among these
samples. Differentially abundant metabolites (DAMs) were identified using defined signifi-
cance criteria: variable importance in projection ((VIP) ≥ 1, |log2 FC (fold change)| ≥ 1,
and p < 0.05 (Student’s t-test)). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was then used to map DAMs and to assess significant enrichment thereof, and to
define key enriched pathways.

2.4. qPCR

Prior to the experimental operation, the bench was treated with a Solid RNase scav-
enger (Coolaber, Beijing, China). Frozen sweet potato storage root samples were ground in

https://sciex.com.cn/
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liquid nitrogen using a mortar and pestle to produce a powder from which total RNA was
extracted using RNaiso Plus (Takara Biotechnology, Beijing, China). An ultra-low-volume
spectrometer (BioDrop, Cambridge, UK) was utilized to measure the concentration and
A260/A280 ratios for these samples, with cDNA then being prepared with a PrimeScript™
RT reagent Kit with gDNA Eraser (Takara Biotechnology, Beijing, China), based on pro-
vided directions for RNA samples with an A260/A280 of 1.8–2.1. Prior to qPCR analyses,
these cDNA samples were subject to 5-fold dilution. A Bio-Rad CFX96 Real-Time PCR
instrument and TB Green® Premix Ex Taq™ II (Takara Biotechnology, Dalian, China) were
used for qPCR with the following settings: 95 ◦C for 30 s; 40 cycles of 95 ◦C for 5 s; 60 ◦C
for 30 s. A melting curve from 60 ◦C to 95 ◦C (0.5 ◦C increments for 5 s) was used. The
∆∆Cq approach was used to assess relative gene expression [30] in the Bio-Rad Manager
3.1 software, with Actin serving as a control to normalize gene expression levels. Primer
Premier 5.0 was used to design all primers for this study (Table S8).

2.5. RNA-Sequencing

For RNA-Seq analyses, Oligo(dT) magnetic beads were used to isolate polyadenylated
mRNA, while the removal of rRNA from total RNA samples was additionally used to
isolate mRNA. A splitting buffer was used to break RNA molecules into shorter strands that
then served as templates for first-strand cDNA synthesis using random hexamer primers.
Then, dNTPs (dUTP, dATP, dGTP, dCTP), DNA polymerase I, and first-strand cDNA were
used for second-strand cDNA synthesis, followed by the use of AMPure XP beads to isolate
prepared cDNA. Following the addition of a poly-A tail, samples were then concatenated
using a sequencing adapter, and a final cDNA library was generated through PCR-based
enrichment. A Qubit 2.0 instrument was used to quantify cDNA library size, with insert
size being assessed using an Agilent 2100 instrument, and qPCR being used to measure
the effective concentration. After cDNA library quality had been confirmed, an Illumina
Hi-Seq instrument was used for sequencing.

2.6. Quality Control and Bioinformatics Analyses

After sequencing, cleaned reads were obtained through filtering, error rate analyses,
and assessments of GC content in the obtained raw reads. The Trinity software was
used to derive reference sequences, and clustering was performed with the Corset (https:
//code.google.com/p/corset-project/ (accessed on 10 November 2020)) tool, which enables
the establishment of gene-level counts based on de novo transcriptomic assemblies in
which the most extended cluster sequences are designated as a unigene. MetWare (http:
//www.metware.cn/ (accessed on 4 November 2020)) performed all analyses. Unigenes
were compared with the KEGG and the Gene Ontology (GO) databases using the BLAST
software, and predicted amino acid sequences for protein-coding unigenes were established,
after which they were compared with the protein family (Pfam) database using the HMMER
program. Differentially expressed genes (DEGs) were compared between samples using
DESeq2 in R, with Benjamini–Hochberg correction being used to control for the p-value
false discovery rate (FDR) when performing multiple comparisons. DEGs were ultimately
identified based on the following criteria: |log2FC|≥ 1 and FDR < 0.05. The prediction
of gene function was performed using cluster analyses, and distribution frequencies were
assessed in all functional categories.

2.7. Statistical Analysis

SPSS 22.0 was used for statistical analyses of included samples. Data were compared
using the Tukey test for multiple comparisons. Differences in physicochemical indices were
compared using a minimum of three biological replicates for all experiments. Microsoft
Office Excel 2016 was used for data analyses.

https://code.google.com/p/corset-project/
https://code.google.com/p/corset-project/
http://www.metware.cn/
http://www.metware.cn/
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3. Results
3.1. Carotenoid Accumulation in Storage Roots Varies in Different Sweet Potato Types

During different stages of development, the coloration of S19 and BS storage roots
were compared, revealing that these two types exhibited white and yellow storage root
flesh, respectively (Figure 1a). In line with these phenotypes, BS samples contained 7-fold
higher total carotenoid levels relative to S19 samples over the analyzed stages of devel-
opment (S1–S4) (Figure 1c,d). Changes in color represented by the b * (yellow/white)
value were significantly positively correlated with total carotenoid content (r2 > 0.95),
and this trend remained consistent from stage S1 to stage S4 (Figure 1b–d). Carotenoid
content in these storage root samples was then examined in further detail via LC-MS/MS,
leading to the identification of 68 carotenoid types, including 14 types of lutein, 7 types of
carotenes, and 47 types of carotenoid esters. The BS-S2, BS-S4, S19-S2, and S19-S4 samples
contained 12, 12, 9, and 8 carotenoid types, respectively. Different trends in carotenoid
content were observed in these two sweet potato types over the course of development.
The most abundant carotenoid in the yellow-fleshed BS sweet potato storage roots was
β-cryptoxanthin (81.41% in S2; 82.02% in S4), and these levels were 86- and 111-fold higher
than the corresponding levels in white-fleshed S19 storage roots at the S2 and S4 stages,
respectively (Figures 2f and S1a,b). Whereas the most abundant carotenoid in S19 samples
was β-carotene (69.18% in S2; 77.92% in S4), its total abundance remained significantly
lower than that in BS storage roots during all stages of development (Figures 1 and S1c,d).
These results suggest that the contents of β-cryptoxanthin, β-carotene, and zeaxanthin
palmitate may be the primary determinants of the overall differences in total carotenoid
content observed in storage roots from these two types of sweet potato. Significant increases
in violaxanthin, lutein palmitate, violaxanthin palmitate, violaxanthin dipalmitate, and
echinenone content were also evident in BS storage roots relative to those from S19 sweet
potatoes at the S2 and S4 stages of development, whereas no differences in antheraxanthin,
apocarotenal, or lutein content were observed when comparing these two types. Principal
component analysis (PCA) confirmed that there were significant differences between the
metabolite profiles of these two sweet potato types, with PC1 and PC2 accounting for 61.9%
and 15.7% of the variability among these samples, respectively (Figure S1e).

3.2. Changes in ABA Metabolism over the Course of Storage Root Development

ABA metabolism and its relationship with carotenoids in sweet potatoes were exam-
ined by using LC-MS/MS. Opposing trends in ABA and ABA-glucosyl ester (ABA-GE)
content were observed in these storage roots, with ABA-GE levels trending upwards over
the course of development in both sweet potato types, while ABA levels trended down-
wards. Total ABA content was significantly higher in BS storage roots than S19 storage roots
(Figure 3a,b). As shown in Figure 3c, changes in the ABA content of these two sweet potato
types were positively correlated with the observed trends in most carotenoid compositions.
However, the change trend of ABA-GE content was only related to that of antheraxanthin
content (Figure 3c).

3.3. Transcriptomic Analyses of BS and S19 Sweet Potato Storage Roots

To fully understand the molecular mechanisms that shape sweet potato carotenoid
biosynthetic processes, a transcriptomic analysis of the S19 and BS sweet potato storage
roots was conducted at the young (S2) and old (S4) stages of development. In total,
analyses of these 12 samples yielded 79.17 GB of clean data (6 GB/sample), with Q30 base
percentages of >90% and a GC content of 45% (Table S1). Over 84% of reads were mapped,
including 70% uniquely mapped reads and 10% multiply mapped reads (Table S2).

DESeq2 was next used to identify differentially expressed genes (DEGs) in BS and
S19 samples at these different stages of development (|log2FC| ≥ 1, FDR < 0.05). PCA
and cluster analyses revealed close clustering of biological replicate samples, with clear
distinctions between samples from different groups (Figure 4a–c). In total, these analyses
identified 8643 (4470 upregulated and 4173 downregulated), 12,212 (6154 upregulated
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and 6058 downregulated), 3298 (983 upregulated and 2315 downregulated), and 4409
(1391 upregulated and 3018 downregulated) DEGs for the respective S19-S2_vs_BS-S2,
S19-S4_vs_BS-S4, BS-S2_vs_BS-S4, and S19-S2_vs_S19-S4 comparisons (Figure 4d). In total,
10 subset classes were clustered based on DEG expression patterns (Figure 4e).
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tent. (a) Storage root phenotypes were assessed for BS-S2, BS-S4, S19-S2, and S19-S4 samples.
Scale bar = 200 µm. (b) Correlations between carotenoid content and color change. (c,d) Total
carotenoid content (c) and color change (d) were analyzed in both sweet potato types at the an-
alyzed time points. Data are means ± SEM (n = 3). *** p < 0.001, ** p < 0.01, * p < 0.05.

When the annotated DEGs in these groups were subject to GO classification based
on the molecular function (MF), biological process (BP), and cellular component (CC)
annotation categories (Table S3), 3800 DEGs (885 MF, 2491 BP, and 424 CC), 3883 DEGs
(898 MF, 2547 BP, and 438 CC), 3064 DEGs (728 MF, 2048 BP, and 288 CC), and 3329 DEGs
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(728 MF, 2222 BP, and 325 CC) were annotated for these four respective comparisons
(S19-S2_vs_BS-S2, S19-S4_vs_BS-S4, BS-S2_vs_BS-S4, and S19-S2_vs_S19-S4).
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Specific metabolic pathways involved in the regulation of sweet potato storage root
carotenoid biosynthesis in the BS and S19 were further explored through KEGG enrichment
analyses for these four comparisons, revealing these DEGs to be significantly enriched
in cellular processes, environmental information processing, genetic information process-
ing, metabolism, and organismal systems. In total, 19, 11, 30, and 20 DEGs from the
four respective comparisons (BS-S2_vs_BS-S4, S19-S2_vs_S19-S4, S19-S2_vs_BS-S2, and
S19-S4_vs_BS-S4) were found to be significantly enriched in the carotenoid biosynthesis
pathway (ko00906) (Figures S2–S4).
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3.4. Combined Analyses of Metabolites and Genes Associated with Carotenoid Biosynthesis in
Sweet Potato Storage Roots

To explore the metabolites and mechanisms associated with sweet potato storage root
carotenoid accumulation, a combined transcriptomic and metabolomic analysis of BS and
S19 samples during the different stages of development was conducted. In total, 43 DEGs
and 7 differentially accumulated metabolites (DAMs) were associated with the carotenoid
biosynthesis pathway (Tables S4 and S5), enabling the establishment of a metabolic profiling
diagram for these carotenoid pathways (Figure 5). In total, 24 differentially expressed
structural genes associated with the biosynthesis and catabolism of carotenoids were
identified, including genes encoding PSY (15-cis-phytoene synthase), ZEBRA2 (prolycopene
isomerase), ZEP (zeaxanthin epoxidase), VDE (violaxanthin de-epoxidase), NCED (9-cis-
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epoxycarotenoid dioxygenase), LCYE (lycopene epsilon-cyclase), and CHYB (β-carotene
3-hydroxylase).
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(d) PCA for samples included in transcriptomic analyses. (e) DEG cluster analyses.
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(A: BS-S2; B: BS-S4; C: S19-S2; D: S19-S4.).

PSY (g29616) expression in BS has been shown to be significantly upregulated relative
to levels in S19 storage roots at the S2 and S4 stages. CHYB expression in the storage roots
of these sweet potato types trended downward from the S2 to the S4 stage, with CHYB
gene (g1548 and g953) expression levels in BS storage roots that were 3.56-, 3.85-, and 2.52-,
2.59-fold higher than those in the S19 storage root at the analyzed stages of development.
Relative to BS storage roots, lower levels of ZEP (g41700) expression were evident in S19
storage roots, particularly during the S2 stage. However, ZEP genes (g14444 and g1103)
were expressed at very high levels in S19 samples, with opposing expression trends during
different stages of development. CCD gene (g49586) expression was significantly increased
in BS storage roots at the analyzed stages of development, as compared to those from S19
sweet potatoes. Relative NCED3 (g36276) expression was increased by 34.09- and 39.74-fold
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in S19 storage roots during the respective S2 and S4 stages relative to levels in BS storage
roots. Moreover, 8 ABA metabolism-associated DEGs were identified, including 14 ABA2
(xanthoxin dehydrogenase) and 5 CYP707A (abscisic acid 8’-hydroxylase). Downregu-
lated expression of the ABA2 gene was observed over the course of development, with
significantly lower ABA2 (g34785) expression in S19 storage roots relative to those from BS
sweet potatoes. The ABA degradation-associated gene CYP707A (g34128) was expressed
at 302.20- and 59.31-fold higher levels in S19 storage roots relative to BS storage roots
at the S2 and S4 stages, respectively. Three key ABA2 genes (g4684, g34785, and g41600)
were also significantly positively correlated with ABA content (Figure 6). These DEGs
may be associated with the observed differences in carotenoid metabolic activity in the BS
and S19 types, and with differences in the levels of detected DAMS. β-carotene (C02094),
β-cryptoxanthin (C08591), antheraxanthin (C08579), violaxanthin (C08614), neoxanthin
(C13431), ABA (C06082), and ABA-GE (C15970) were detected (Figure 5, Table S5).
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3.5. Identification of Transcription Factors Related to Carotenoid Accumulation

Transcription factors (TFs) and other transcriptional regulators (TRs) are key regu-
lators of the expression of all genes, including those associated with the biosynthesis of
carotenoids. In this study, 284 (88 upregulated, 196 downregulated), 255 (58 upregulated,
197 downregulated), 365 (231 upregulated, 134 downregulated), and 577 (335 upregulated,
242 downregulated) differentially expressed TF-coding genes were identified from the
comparisons of BS-S2_vs_BS-S4, S19-S2_vs_S19-S4, S19-S2_vs_BS-S2, and S19-S4_vs_BS-S4,
respectively. Moreover, these four respective comparisons yielded 44 (10 upregulated, 34
downregulated), 57 (18 upregulated, 39 downregulated), 89 (41 upregulated, 48 downregu-
lated), and 126 (54 upregulated, 72 downregulated) differentially expressed TR-encoding
genes (Table S6). These TFs included members of the AP2/ERF, MYB, bHLH, bZIP, NAC,
FAR1, C2H2, PLATZ, WRKY, OFP, and TCP families, while identified TRs included mem-
bers of the PHD, SET, SNF2, TAZ, and AUX/IAA, and SNF2 families (Table S7). Of these
differentially expressed TFs and TRs, the most highly expressed included AP2/ERF, MYB,
bHLH, AUX/IAA, SNF2, and PHD. When screening the top 20 DEGs encoding TFs, the
genes associated with carotenoid biosynthesis were found to be upregulated when compar-
ing S19 and BS storage roots, particularly during the S2 stage of development (Figure 7).
The gene encoding NAC was expressed at higher levels in BS storage roots relative to S19
storage roots during both the S2 and S4 stages, although when comparing S2 vs. S4 samples,
NAC (g103) was downregulated in BS storage roots yet upregulated in S19 storage roots.
Strikingly, of the analyzed differentially expressed TF genes, OFP (g10779) and FAR1 (g1323)
expression levels differed significantly in the storage roots from the two sweet potato types,
with OFP (g10779) being expressed at significantly higher levels in BS samples, whereas
FAR1 (g1323) was expressed at significantly higher levels in S19 samples at the S2 and S4
stages of development.
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3.6. RNA-Seq Result Validation

To confirm the validity of the RNA-Seq results established above, 13 DEGs associated
with carotenoid biosynthesis, 8 DEGs associated with ABA biosynthesis, and 9 TFs closely
associated with carotenoid biosynthesis were selected for qPCR-based verification analysis
(Figure 8). Overall, the observed expression trends for these 30 genes were highly consistent
with the RNA-Seq results presented above, confirming the accuracy and reliability of these
transcriptomic sequencing analyses.
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4. Discussion

In sweet potato storage roots, carotenoid content is a key determinant of coloration,
appearance, and health-related benefits, thereby shaping consumer preference [31]. In-
deed, the increase in total carotenoid content is strongly correlated with the changes in
the color of these storage roots over the course of development. Sweet potato storage
roots contain carotenoids such as β-carotene, β-cryptoxanthin, zeaxanthin, and violaxan-
thin [32]. Here, characterization of carotenoid content in storage root samples prepared
from two sweet potato types at different stages of development revealed that BS stor-
age roots contained significantly higher carotenoid levels relative to S19 storage roots,
with marked differences in the levels of the two primary carotenoids in these storage
roots (β-carotene and β-cryptoxanthin). The most abundant carotenoids in yellow-fleshed
sweet potatoes included β-carotene and β-cryptoxanthin, with the latter being present at
higher concentrations [10–12,32]. Consistently, β-cryptoxanthin was the most abundant
carotenoid in yellow-fleshed BS storage roots, suggesting that it may be the primary deter-
minant of the observed differences in coloration between these two sweet potato types.

Efforts to characterize carotenoid metabolism-related genes have been made in a
range of species including tomatoes [14], carrots [33], oranges [34], and peppers [15]. The
mechanisms shaping carotenoid biosynthesis in sweet potatoes, however, have yet to be
firmly established. In an effort to identify key carotenoid accumulation-associated genes
and metabolites, metabolomic and transcriptomic analyses were thus performed. PSY is a
key rate-limiting carotenoid biosynthesis-associated enzyme in plants that can ultimately
shape total carotenoid content [21,35]. Both RNA-Seq and qPCR analyses confirmed
significantly increased PSY (g29616) expression in BS storage roots relative to those from
S19 sweet potatoes during the tested developmental stages, potentially partially accounting
for observed differences in carotenoid content in these two types. The CHYB enzyme is
responsible for catalyzing the addition of a hydroxyl residue necessary for esterification,
and is vital for chromoplast carotenoid accumulation in a range of plants. CHYB is a rate-
limiting enzyme in the zeaxanthin biosynthesis pathway that has been shown to play a key
role in chromoplast carotenoid accumulation in Ipomoea petals [36]. Consistently, BS storage
roots exhibited higher CHYB (g1548 and g953) expression levels relative to S19 storage roots,
potentially contributing to differences in β-carotene and zeaxanthin content in BS and S19
samples. The ZEP enzyme catalyzes zeaxanthin and antheraxanthin β-rings epoxidation,
and BS storage roots were herein found to express significantly higher levels of ZEP
(g41700). In line with the present report, Suematsu et al. suggested that ZEP is an important
mediator of carotenoid accumulation in yellow-fleshed sweet potatoes [37]. The NCED
enzyme also plays an important role in downstream aspects of plant carotenoid biosynthesis
pathways [23,38]. In apricots, NCED expression is responsible for flesh coloration, causing
the low levels of β-carotenoid observed in white apricots [39,40]. Here, white-fleshed S19
storage roots were found to exhibit particularly high levels of NCED3 (g36276) expression,
particularly during the S4 stage of development, in line with prior research, and suggesting
that this gene may be a central driver of the differences in coloration and carotenoid content
between the BS and the S19 sweet potato types.

ABA is a key carotenoid-derived phytohormone that is essential in the context of
carotenoid metabolism and biosynthesis [23]. By cleaving the (C11–C12) double bond in
9-cis-violaxanthin and 9′-cis-neoxanthin, NCED generates xanthoxin, which is an ABA
precursor, such that NCED catalyzes the initial step necessary for ABA biosynthesis [24].
In the present analysis, the ABA biosynthesis-related genes ABA2 (g34785) and CYP707A
(g34128) were found to exhibit opposing expression patterns in the two analyzed sweet
potato types. Specifically, ABA2 (g34785) was significantly upregulated in BS storage roots
relative to those from S19 sweet potatoes at the S2 and S4 stages of development, whereas
CYP707A (g34128) exhibited the opposite expression pattern. ABA2 has previously been
reported by González-Guzmán et al. to encode a key enzyme involved in ABA biosynthesis
that catalyzes xanothoxin conversion into abscisic aldehyde [41]. In Capsicum annuum, Kim
et al. determined that ABA hydroxylation mediated by CYP707A was able to promote the
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degradation of ABA, and thereby reduce the levels of this phytohormone [42]. Consistently,
ABA2 (g34785) and CYP707A (g34128) expression levels were found to be positively and
negatively correlated with the ABA levels in BS and S19 samples. Together, these data
support roles for PSY, CHYB, ZEP, NCED3, ABA2, and CYP707A as essential regulators of
ABA and carotenoid biosynthesis and metabolism in sweet potato storage roots.

Our study showed that the top 20 DEGs encoding TFs that were identified when
comparing the S19 and BS storage roots samples were associated with ABA and carotenoid
biosynthesis. MYB, HD-ZIP, bZIP, bHLH, and WRKY have previously been identified as
critical TFs involved in coordinating carotenoid biosynthesis [43,44]. Specifically, bHLH has
been shown to bind the PSY promoter and to thereby suppress the expression of this gene,
thus reducing carotenoid accumulation [43]. Moreover, bZIP has been reported to influence
total carotenoid content in tomatoes [45], while MYB plays a similar role in wolfberries [46].
In line with these prior results, marked bHLH, bZIP, and MYB upregulation was observed
in S19 storage root samples relative to those from BS sweet potatoes.

Strikingly, the two sweet potato types exhibited opposite expression patterns for the
TF-encoding FAR1 (g1323) and OFP (g10779) genes. In a prior report, Tang et al. high-
lighted the importance of FAR1 as a positive regulator of Arabidopsis ABA signaling [47].
Global transcriptional profiling of Arabidopsis specimens further revealed that OFP is a
transcriptional repressor capable of controlling ABA signal transduction [48]. We showed
that significant increases in FAR1 (g1323) expression were evident in S19 storage roots
relative to those from BS sweet potatoes, whereas OFP (g10779) expression was markedly
reduced in S19 samples, as compared to BS samples. This may at least partially account for
the observed differences in ABA content in these two sweet potato types [49]. ABA is a key
phytohormone that is derived from carotenoid metabolite precursors [23]. These two TFs
may thus serve as important regulators of the interplay between carotenoid metabolism
and ABA biosynthesis in sweet potato storage roots.

5. Conclusions

The mechanisms underlying carotenoid biosynthesis were assessed through compre-
hensive metabolomic and transcriptomic analyses of the storage roots from two sweet
potato types exhibiting different levels of carotenoid content. In this study, PSY, CHYB,
ZEP, NCED3, ABA2, and CYP707A were identified as critical genes associated with the
observed differences in carotenoid and ABA content in these two sweet potato types. The
OFP and FAR1 transcription factors were also identified as important regulators of ABA
biosynthesis in sweet potatoes. Carotenoid metabolism is closely related to the biosynthesis
of the ABA, and carotenoids are precursors of the ABA. These results enabled the estab-
lishment of a proposed integrated network controlling the metabolism and biosynthesis of
carotenoids and ABA in sweet potato storage roots. However, further work will be critical
to validate these results and to clarify the role that other genes and regulatory mechanisms
play in shaping these processes.
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