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Abstract: Studies from the last decades indicate that increased levels of ammonia contribute to
muscle wasting in critically ill patients. The aim of the article is to examine the effects of two different
causes of hyperammonemia—increased ATP degradation in muscles during strenuous exercise and
impaired ammonia detoxification to urea due to liver cirrhosis. During exercise, glycolysis, citric acid
cycle (CAC) activity, and ATP synthesis in muscles increase. In cirrhosis, due to insulin resistance
and mitochondrial dysfunction, glycolysis, CAC activity, and ATP synthesis in muscles are impaired.
Both during exercise and in liver cirrhosis, there is increased ammonia detoxification to glutamine
(Glu + NH3 + ATP → Gln + ADP + Pi), increased drain of ketoglutarate (α-KG) from CAC for
glutamate synthesis by α-KG-linked aminotransferases, glutamate, aspartate, and α-KG deficiency,
increased oxidation of branched-chain amino acids (BCAA; valine, leucine, and isoleucine), and
protein-energy wasting in muscles. It is concluded that ammonia can contribute to muscle wasting
regardless of the cause of its increased levels and that similar strategies can be designed to increase
muscle performance in athletes and reduce muscle loss in patients with hyperammonemia. The
pros and cons of glutamate, α-KG, aspartate, BCAA, and branched-chain keto acid supplementation
are discussed.
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1. Introduction

Strenuous exercise and liver injury are the most common causes of hyperammone-
mia. It has been estimated that around 90% of patients with hyperammonemia have liver
disease [1]. The causes of hyperammonemia that are not due to exercise or liver injury
include inherited disorders of the urea cycle, hypovolemic shock, congestive cardiac fail-
ure, sepsis, gastrointestinal bleeding, urinary infection, inherited disorders of fatty acid
oxidation, hematological malignancies, and medications used for therapy of epilepsy and
cancer [2–4].

Several studies have reported that hyperammonemia plays a role in protein-energy
wasting and increased morbidity and mortality in critically ill patients [3–7] and decreases
concentrations of branched-chain amino acids (BCAA; valine, leucine, and isoleucine) in
plasma, and glutamate, and α-ketoglutarate (α-KG) in muscles [8–10]. Studies performed
under in vitro conditions have demonstrated that these alterations are mainly caused by
the direct influence of ammonia on muscles. Exposure of isolated muscles to a medium
with 0.5 mM ammonia increased leucine oxidation and glutamine synthesis, and decreased
glutamate and BCAA levels in muscles [9]. In another study, exposure of myotubes to
ammonia resulted in decreased myotube diameters, decreased protein synthesis, and
increased expression of a range of markers of autophagy [7].

The aim of the article is to clarify similarities and differences in ammonia detoxifica-
tion to glutamine and amino acid and adenine nucleotide metabolism in muscles under
conditions of the different causes of hyperammonemia. In the first part, the pathways of
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ammonia detoxification to glutamine in a healthy man at rest are described. With this ex-
planation as a background, the effects of two main causes of hyperammonemia, strenuous
exercise and cirrhosis of the liver, will be examined. The possible strategies that might
reduce the detrimental effects of ammonia on muscles will be discussed in the final part.

2. Muscle Ammonia and Amino Acid Metabolism at Rest

Ammonia is produced continuously during the metabolism of all organs. The main
sources are amino acid metabolism, degradation of purines and pyrimidines, heme syn-
thesis, and microbiota of the gut. Based on dietary nitrogen intake and urinary nitrogen
elimination in the form of urea and ammonia can be estimated that an adult makes about
700 mmol of ammonia per day. The rise in ammonia levels in the blood, which has a toxic
effect on the brain, is prevented by its temporary detoxification of glutamine. The final
route of ammonia detoxification occurs via urea synthesis in the liver. Therefore, although
ammonia production in the body is high, its concentration in the blood is low and does not
exceed 40 µM in a healthy man at rest. Higher ammonia concentrations (0.5–1 mM) are
only in the portal vein.

2.1. Ammonia Synthesis in Muscles

Physiologically, high amounts of ammonia are formed in skeletal muscles and its
concentration in muscles is more than tenfold higher than in the blood. The main source
is the deamination of AMP to ammonia and inosine monophosphate (IMP) by AMP
deaminase. The reaction is activated by an increased supply of AMP produced from
ADP by adenylate kinase. The greater the supply of ADP due to ATP utilization (e.g.,
during muscle work), the more AMP and ammonia will be formed in the sequence of
three reactions:

ATP + H2O→ ADP + Pi (ATPase)

ADP + ADP→ ATP + AMP (adenylate kinase)

AMP+ H2O→ IMP + NH3 (AMP deaminase)

Another source of AMP is the purine-nucleotide cycle (PNC) which acts as a pathway
to balance the levels of the adenine nucleotides (ATP, ADP, and AMP) via the recycling
of IMP [11]. The PNC comprises reactions catalyzed by adenylosuccinate synthetase,
adenylosuccinate lyase, and AMP deaminase (Figure 1). Via the PNC, the amino groups of
aspartate, glutamate, and BCAA can become a source of ammonia:

BCAA + α-KG→ BCKA + Glu (BCAA aminotransferase)

Glu + oxaloacetate→ α-KG + Asp (AST)

Asp + IMP + GTP→ adenylosuccinate + GDP + Pi (adenylosuccinate synthetase)

adenylosuccinate→ fumarate + AMP (adenylosuccinate lyase)

AMP + H2O→ IMP + NH3 (AMP deaminase)

Theoretically, the deamination of glutamic acid by glutamate dehydrogenase can also
be a source of ammonia:

Glu + NAD(P)+ + H2O→ α-KG + NH4
+ + NAD(P)H

However, glutamate dehydrogenase activity in muscles is very low [12], and ow-
ing to rapid glutamate removal for ammonia detoxification to glutamine, the possibility
is unlikely.



Metabolites 2022, 12, 971 3 of 18

Metabolites 2022, 12, 971 3 of 18 
 

 

However, glutamate dehydrogenase activity in muscles is very low [12], and owing 
to rapid glutamate removal for ammonia detoxification to glutamine, the possibility is 
unlikely. 

 
Figure 1. Ammonia synthesis and detoxification to glutamine in muscles. 1, ATPase; 2, creatine ki-
nase; 3, adenylate kinase (myokinase); 4, AMP deaminase; 5, glutamine synthetase; 6, BCAA ami-
notransferase; 7, BCKA dehydrogenase; 8, ALT; 9, AST; 10, adenylosuccinate synthetase; 11, ade-
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phate; OA, oxaloacetate; Pi, inorganic phosphate. 
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Glutamine synthesized in muscles is released to the blood in exchange for the uptake 
of BCAA via transporter for large neutral amino acids LAT1 (SLC7A5) and metabolized 
predominantly in periportal hepatocytes, enterocytes, immune cells, and the kidneys to 
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Figure 1. Ammonia synthesis and detoxification to glutamine in muscles. 1, ATPase; 2, cre-
atine kinase; 3, adenylate kinase (myokinase); 4, AMP deaminase; 5, glutamine synthetase;
6, BCAA aminotransferase; 7, BCKA dehydrogenase; 8, ALT; 9, AST; 10, adenylosuccinate syn-
thetase; 11, adenylosuccinate lyase; 12, fumarase. BCAA, branched-chain amino acids; BCA-CoA,
branched-chain acyl-CoA; CAC, citric acid cycle; Cr, creatine; CrP, creatine phosphate; IMP, inosine
monophosphate; OA, oxaloacetate; Pi, inorganic phosphate.

2.2. Ammonia Detoxification to Glutamine in Muscles

In a healthy individual, there is no significant net uptake or release of ammonia by
muscles in a state of inactivity although ammonia concentration in muscles is higher than
in the blood [13–15]. This phenomenon has two reasons.

Firstly, ammonia occurs in the body in non-ionized and ionized forms (NH3↔ NH4
+).

Since the pKa of ammonia is ~9.2, only 1–2% of ammonia is in the form of NH3 at physio-
logical pH values. The non-ionized form diffuses easily, the ionized form is poorly soluble
in fats and therefore does not diffuse through cell membrane lipids. Therefore, because the
transport of ammonia between the blood and tissues is ensured mainly by NH3 diffusion,
the exchange is very slow. Moreover, because the pH of the blood is higher than in muscle
cells, the percentage of the non-ionized form of ammonia in the blood is higher.

Secondly, part of the ammonia produced in muscles is rapidly detoxified to glutamine
in a reaction catalyzed by glutamine synthetase:

Glu + NH3 + ATP→ Gln + ADP + Pi

Glutamine synthesized in muscles is released to the blood in exchange for the uptake
of BCAA via transporter for large neutral amino acids LAT1 (SLC7A5) and metabolized
predominantly in periportal hepatocytes, enterocytes, immune cells, and the kidneys to
ammonia and glutamate.

For non-working muscles, the main source of glutamate for glutamine synthetase
reaction is the blood. Most of the glutamate uptake is removed together with aspartate by
a transporter specific for dicarboxylic acids termed X-

ag. The system is dependent on an
electrochemical gradient of sodium ions and enables a net uptake of glutamate although glu-
tamate concentration in muscles is far higher than its concentration in plasma. Other sources
of glutamate for muscles can be a breakdown of muscle proteins and synthesis by α-KG-
linked aminotransferases, specifically AST (Asp + α-KG→ oxaloacetate + Glu) and BCAA
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aminotransferase (BCAA + α-KG→ BCKA + Glu). The driving force for the flux of α-KG
through these reactions can be glutamate consumption by glutamine synthetase [16]. In mus-
cles, the ALT reaction is directed toward alanine synthesis (pyruvate + Glu→ Ala + α-KG)
and thus can only indirectly affect glutamate production (Figure 2).
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Figure 2. Biochemical pathways and transporters involved in ammonia and amino acid metabolism
in skeletal muscle in a physiological state at rest. 1, AMP deaminase; 2, glutamine synthetase;
3, BCAA aminotransferase; 4, BCKA dehydrogenase; 5, AST; 6, ALT; 7, pyruvate dehydrogenase;
8, pyruvate carboxylase. ASCT1 (alanine, serine, cysteine, and threonine carrier 1); BCAA, branched-
chain amino acids; BCA-CoA, branched-chain acyl-CoA; BCKA, branched-chain keto acids; FA, fatty
acids; LAT1, large neutral amino acid transporter 1; OA, oxaloacetate; X-

ag, a transporter for aspartate
and glutamate.

The main source of nitrogen for glutamate synthesis is the BCAA delivered to the
muscles by an exchange for glutamine via LAT1 or released during the breakdown of
muscle proteins. As the expression of BCAA aminotransferase (the first enzyme in BCAA
catabolism) in muscles is high, whereas its expression in the liver is very low, skeletal
muscle is the initial site for most of the BCAA catabolism. Glutamate synthesized by BCAA
aminotransferase can then act as a source of an amino group for the synthesis of alanine
from pyruvate, aspartate from oxaloacetate, or as a substrate for ammonia detoxification to
glutamine (Figures 1 and 2). The key enzyme in the degradation route of BCAA is BCKA de-
hydrogenase at the inner mitochondrial membrane. The enzyme is regulated by reversible
phosphorylation mediated by a specific kinase and phosphorylase. Increased concentra-
tions of α-ketoisocaproate (KIC, the transamination product of leucine) and decreased
concentrations of ATP, NADH, and acyl-CoA derivatives activate the enzyme [16,17].

2.3. Compartmentation of Ammonia and Amino Acid Metabolism in Muscles

Metabolic pathways involved in ammonia synthesis and its detoxification to glutamine
are compartmentalized between cytosol and mitochondria. In the cytosol are enzymes
for degradation of adenine nucleotides to ammonia, glutamine synthesis, PNC, ALT, and
cytosolic AST. Enzymes of the CAC, BCAA catabolizing enzymes, and mitochondrial AST
are in mitochondria. The interactions between the reactions taking place in the cytosol and
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mitochondria are mediated by the system of inner mitochondrial membrane transporters.
These are mainly aspartate-glutamate carriers (AGC) and malate-ketoglutarate carriers
(MKC) that form a “malate-aspartate shuttle” and a transporter for BCAA belonging to the
SLC25A family [18].

Figure 3 shows that the BCAA are transported from cytosol to mitochondria to be
used as a source of the amino group for glutamate synthesis by BCAA aminotransferase.
Glutamate produced by BCAA aminotransferase or delivered to mitochondria by AGC
is in mitochondria converted to α-KG and aspartate in an AST-catalyzed reaction. The
α-KG can be returned to the CAC cycle or translocated to the cytosol by MKC. Aspartate is
translocated by AGC to the cytosol to be used in PNC or for glutamate synthesis. Hence,
the BCAAs act as the source of nitrogen for glutamate synthesis in the cytosol via aspartate
synthesized in mitochondria and transported out of the mitochondria by the malate-
aspartate shuttle.
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Figure 3. Compartmentation of ammonia and amino acid metabolism in muscles. 1, glutamine
synthetase; 2, BCAA aminotransferase; 3, BCKA dehydrogenase; 4, ALT; 5, mitochondrial AST;
6, cytosolic AST; 7, malate dehydrogenase; 8, pyruvate dehydrogenase; 9, pyruvate carboxylase.
AGC, aspartate-glutamate carrier; ASCT1 (alanine, serine, cysteine, and threonine carrier 1); BCAA,
branched-chain amino acids; BCA-CoA, branched-chain acyl-CoA; BCKA, branched-chain keto acids;
CAC, citric acid cycle; LAT1 (large neutral amino acid transporter 1); MKC, malate-ketoglutarate
carrier; OA, oxaloacetate; PC, pyruvate carrier; PNC, purine nucleotide cycle; X-

ag, a transporter for
aspartate and glutamate.

2.4. The Role of Glycolysis and Citric Acid Cycle (CAC)

The glycolysis is the main source of pyruvate, which can be converted by pyruvate
dehydrogenase to acetyl coenzyme A (acetyl-CoA) or pyruvate carboxylase to oxaloacetate.
Maintaining adequate concentrations of oxaloacetate is essential for its condensation with
acetyl-CoA by citrate synthase, which is recognized as a rate-limiting step in the oxidation
of acetyl-CoA originating from glycolysis and fatty acid oxidation. Ammonia ions were
shown to stimulate glycolysis and pyruvate carboxylase activity [19,20].

The citric acid cycle (CAC) is the main source of reducing equivalents that enter the
respiratory chain, where ATP is produced, and α-KG for the synthesis of carbon skeletons
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of glutamate and glutamine. The flux through CAC and production of ATP and α-KG
increase when glycolysis is activated. Impaired glycolysis due to diabetes or during the first
days of starvation reduces the flux through the CAC and increases the BCAA levels due to
decreased α-KG production and flux of BCAA through BCAA aminotransferase [21].

It should also be pointed out that the transfer of NADH formed during glycolysis
into mitochondria is associated with α-KG and aspartate synthesis and their transfer from
mitochondria into the cytosol by malate-aspartate shuttle:

cytosol: oxaloacetate + NADH + H+ →malate + NAD+

mitochondria: malate + NAD+ → oxaloacetate + NADH + H+

oxaloacetate + Glu→ α-KG + Asp

3. Muscle Ammonia and Amino Acid Metabolism during Exercise

Exercise greatly increases the rate of ATP utilization and deamination of AMP pro-
duced by myokinase and PNC to ammonia and IMP (Figure 4). A different situation exists
during exercise at moderate intensity and exhaustive exercise. The results of several human
and animal studies have demonstrated that ammonia concentrations in blood and muscles
did not change or increased slightly during submaximal exercise [17,22–25]. During pro-
longed exhaustive exercise the rate of ATP utilization exceeds the rate of ATP synthesis,
and the total adenine nucleotide pool (ATP + ADP + AMP) decreases significantly [26–28].
Ammonia level increases up to 250 µmol/L in plasma and up to 5 mmol/kg in mus-
cles [14,27]. It has been shown that ammonia production is greatest during prolonged,
steady-state exercise that requires 60–80% VO2 max [25]. It is assumed that exercise-induced
hyperammonemia contributes to both central and peripheral fatigue [29].

As discussed in the previous section, the pivotal role in ammonia detoxification in
muscles plays glutamate, which is the direct substrate for glutamine synthetase. Human
and animal studies have shown that due to an enormous increase in glutamine synthesis,
intramuscular glutamate decreases up to 80% during exercise although glutamate uptake
from the blood is activated [14,27,30,31]. A role in glutamate deficiency also plays its
increased utilization in alanine synthesis in the cytosol (Glu + pyruvate→ α-KG + Ala)
and aspartate synthesis in mitochondria (Glu + oxaloacetate → α-KG + Asp). Alanine
release from muscles increases during exercise and it is well established that alanine is a
physiologically important substrate for gluconeogenesis in the liver, which is increased
during endurance exercise [14,30]. Aspartate formed from glutamate and oxaloacetate in
mitochondria is via AGC transported to the cytosol, where it is utilized by several pathways
including PNC and glutamate synthesis [11].

Both human and animal studies indicate that moderate physical exercise is associated
with increased plasma glutamine concentrations [22–25,27]. However, plasma glutamine
decreases during strenuous (vigorous) exercise, post-exercise recovery, and overtraining
syndrome [31–33]. The main causes are apparently impaired glutamine synthesis in muscles
and its increased use to form NH4

+ by the kidneys to eliminate acidic substances formed
during muscle work.

3.1. BCAA Metabolism

Catabolism of the BCAA in muscles increases and BCAA concentrations in plasma
and muscles decrease during exercise [34–36]. The main causes of the increased flux
of the BCAA through BCAA aminotransferase and BCKA dehydrogenase are probably
decreased glutamate and ATP levels and increased KIC availability due to increased leucine
transamination [16,17,22,37]. Studies in humans with 13C-labeled leucine showed that
BCAA oxidation increased 2- to 4-fold during exercise [38–40].

3.2. Glycolysis and CAC Activity

The glycolysis and activities of pyruvate dehydrogenase and pyruvate carboxylase in
muscles increase during aerobic exercise more than a hundredfold [41,42]. The result is the



Metabolites 2022, 12, 971 7 of 18

increased flux through the CAC and subsequent increase in NADH and ATP production. In
human muscle, the flux through the CAC increased ~70-fold during submaximal exercise
and was ~100-fold higher than at rest at exhaustion [43]. It was shown that net hindlimb
glutamine efflux increased in response to glucose administration in exercised but not
sedentary dogs [44].

It can be assumed that the decrease in glucose oxidation and CAC activity due to
oxygen deprivation during strenuous exercise will decrease α-KG supply for glutamate
synthesis and subsequent ammonia detoxification to glutamine. Some studies, but not all,
have shown that whereas the concentrations of most intermediates of the CAC increased in
human muscles during exercise, the concentration of α-KG decreased [43–46].

3.3. Protein Metabolism during and after Muscle Work

During exercise, muscle protein catabolism is activated as evidenced by the decreased
content of muscle proteins in rodents after prolonged physical activity [47,48]. The main
cause is probably depressed protein synthesis, the reports of the effect of exercise on protein
degradation are not consistent [38,49,50]. It is very likely that the role in decreased protein
synthesis plays ATP and BCAA deficiency.

It should be noted that although intense muscle work induces loss of muscle proteins,
regular physical activity does not lead to a decrease in muscle mass, but vice versa. It has
been shown that during the post-work regeneration period, protein synthesis is activated
in the muscles in parallel with the formation of energy stores, and the proliferation and
differentiation of satellite cells [51,52].
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Figure 4. Ammonia and amino acid metabolism in muscles during exercise. Ammonia synthesis
increases due to the enhanced turnover of adenine nucleotides. The main pathway of ammonia
detoxification in muscles is glutamine synthesis. Increased glycolysis and CAC activity are essential
for an adequate supply of α-KG and subsequent glutamate and glutamine synthesis. ASCT1 (alanine,
serine, cysteine, and threonine carrier 1); BCAA, branched-chain amino acids; BCA-CoA, branched-
chain acyl-CoA; BCKA, branched-chain keto acids; CAC, citric acid cycle; FA, fatty acids; LAT1 (large
neutral amino acid transporter 1); OA, oxaloacetate; X-

ag (transporter for aspartate and glutamate).
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4. Ammonia Metabolism in Liver Cirrhosis

This article deals only with decompensated cirrhosis with manifestations of hepatic
encephalopathy and elevated blood ammonia levels. The most common causes are viral
hepatitis, alcoholism, biliary obstruction (biliary cirrhosis), and chronic heart failure (cardiac
cirrhosis). Regardless of the etiopathogenesis, the cause of hyperammonemia is portal-
systemic shunts and/or impaired ammonia detoxification in the liver to urea.

In cirrhosis, similar to strenuous exercise, ammonia detoxification to glutamine in
muscles is activated. A marked increase in glutamine and a decrease in glutamate, α-KG,
aspartate, alanine, and BCAA in muscles has been found in a rat model of liver cirrhosis [10].
In plasma, glutamine usually rises, but there are also data on its unchanged or decreased
concentration [10,53–56].

Unlike exercise, the temporary ammonia detoxification to glutamine in the muscles is
not very effective. Several studies reported mitochondrial impairment in the muscles of
patients with liver cirrhosis and demonstrated that cirrhosis depletes CAC intermediates,
especially α-KG, and ATP in muscles [10,57–59]. It can be supposed that insulin resistance,
depletion of glycogen stores, decreased glycolysis, and increased drain of α-KG from
the CAC (cataplerosis) play a role in impaired flux through the CAC and mitochondrial
dysfunction. Moreover, unlike exercise, much of the glutamine released to the circulation is
not detoxified to urea but catabolized to form ammonia (Figure 5). A vicious cycle, in which
ammonia detoxification to glutamine in muscles leads to increased glutamine degradation
to ammonia in visceral tissues that further emphasizes the increase in blood ammonia
levels, has been postulated [60].
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4.1. BCAA Metabolism

Enhanced rates of BCAA oxidation in liver cirrhosis have been demonstrated both
in animals and human subjects [61,62]. Similar to heavy exercise, the main causes are
increased flux through BCAA aminotransferase due to glutamate deficiency and increased
BCKA dehydrogenase activity due to ATP deficiency. The increased requirements of the
BCAA in muscles are fulfilled by their enhanced uptake from the extracellular fluid by
exchange with glutamine via L-system (SLC7A5; LAT1). Therefore, the final cause of
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decreased BCAA levels in the blood in liver cirrhosis is their increased influx to muscles
(Figure 6).
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Figure 6. Ammonia and amino acid metabolism in cirrhosis. Increased ammonia detoxification
to glutamine in muscles results in BCAA deficiency, cataplerosis (drain of α-KG from CAC), and
mitochondrial dysfunction. Due to the limited activation of glycolysis and mitochondrial dysfunction,
the detoxification of ammonia is less efficient than during exercise. ASCT1 (alanine, serine, cysteine,
and threonine carrier 1); BCAA, branched-chain amino acids; BCA-CoA, branched-chain acyl-CoA;
BCKA, branched-chain keto acids; CAC, citric acid cycle; FA, fatty acids; LAT1 (large neutral amino
acid transporter 1); OA, oxaloacetate; X-

ag (transporter for aspartate and glutamate).

4.2. Protein Metabolism

Liver cirrhosis is a typical protein-wasting disorder. The loss of muscle mass limits the
body’s ability to detoxify ammonia to glutamine, reduces muscle strength and their exercise
capacity, and increases the risk of several complications. The prevalence of cachexia in
patients with liver cirrhosis is about 50% [63].

The pathogenesis of muscle wasting is complex. Unless cirrhosis is complicated by
a systemic inflammatory response, the dominant cause is a decrease in protein synthesis
due to anorexia, maldigestion, and malabsorption of nutrients, and some neurohumoral
changes (e.g., decreased IGF-1 production). In the phase of disease progression and under
the influence of inflammatory factors, especially cytokines, increased protein turnover
and activation of proteolysis can be observed. It is likely that hyperammonemia-induced
changes, especially mitochondrial dysfunction and BCAA deficiency, play a role in protein-
energy wasting regardless of whether the cirrhosis is accompanied by an inflammatory
reaction or not.

5. Possibilities to Reduce the Harmful Effects of Ammonia on Muscles

All aminotransferase reactions involved in ammonia detoxification to glutamine in
muscles are reversible, their Km is above usual tissue concentrations of their reactants, and
are sensitive to the supply of α-KG, glutamate, aspartate, BCAA, and BCKA [16]. Removal
of glutamine can also affect the flux through aminotransferase reactions, and subsequently
the flux through the CAC, mitochondrial function, and BCAA oxidation [64]. Therefore,
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several strategies that might attenuate the detrimental effects of hyperammonemia on
amino acid metabolism, mitochondrial function, and protein metabolism in muscles can
be hypothesized.

5.1. Glutamate

Glutamate is effectively taken up by resting and active muscle and an increase in
plasma glutamate levels can replenish its deficiency observed in muscles after strenuous
exercise and in liver cirrhosis. Several studies have shown that ingestion of monosodium
glutamate (~100–150 mg/kg) increases plasma glutamate and glutamine levels up to
700–800% [65–67]. Graham et al. [66] demonstrated that monosodium glutamate ingestion
by resting humans can elevate intramuscular glutamate concentration by ~40%.

Glutamate administration increased exercise duration in a dose-related way when
given intravenously to patients with stable angina pectoris [68]. In the 1950s, a number of
studies were carried out on the treatment of hepatic encephalopathy with L-glutamic acid
and several publications have appeared with somewhat conflicting conclusions [69–71]. It
was finally proved that L-glutamic acid has only a transient effect and that a temporary fall
in ammonia levels occurring during its administration is followed by a rise to pretreatment
levels as soon as glutamate administration was discontinued [72].

It should be noted that the absorption of dietary glutamate is limited by its extensive
metabolisms in enterocytes [73,74]. Therefore, decreased ammonia and elevated glutamate,
alanine, and glutamine levels in plasma and muscles in subjects administered orally by
monosodium glutamate are partly due to alanine synthesis from ingested glutamate in
enterocytes and decreased intestinal uptake of glutamate and glutamine from the blood.

5.2. α-KG

The replenishment of α-KG in muscles may activate glutamate synthesis and ammonia
detoxification to glutamine and attenuate the drain of α-KG from the CAC. Moreover, orally
administered α-KG is oxidized by enterocytes and in this way may suppress glutamine
catabolism and ammonia production by the gut [75].

The shortcoming of α-KG as a supplement is that it penetrates little across the plasma
membrane. Therefore, more effective might be its cell-permeable derivatives, e.g., dimethyl-
α-KG, which have been shown to reverse the low levels of CAC intermediates and ATP
content in myotubes due to hyperammonemia [59].

The adverse effect of enhanced α-KG supply can be increased BCAA catabolism and
worsening of BCAA deficiency in the body. Therefore, BCAA supplementation should be
recommended when the α-KG level in muscles is replenished artificially.

5.3. BCAA

A rational basis for use of the BCAA is their decreased concentration in plasma both
during exercise and in liver cirrhosis and their pharmacological properties, the particularly
positive effect of leucine and several BCAA metabolites, such as BCKA and beta-hydroxy-
beta-methylbutyrate, on protein metabolism [76–78]. It is supposed that correction of the
decrease in the ratio of the BCAA to aromatic amino acids (tryptophane, phenylalanine,
and tyrosine) in plasma reduces the synthesis of serotonin and false neurotransmitters in
the brain and subsequently delays the onset of fatigue during muscle work and improves
brain function in patients with hepatic encephalopathy [79]. Moreover, it was shown that
BCAA supplementation increases ammonia detoxification to glutamine in muscles and
prevents the decrease in the plasma glutamine level during long-term exercise [80,81].

Unfortunately, no valid scientific evidence supports the commercial claims that BCAA
has a beneficial effect on muscle performance [23,82–85]. Nor the results of the clinical
trials examining the therapeutic effects of the BCAA on encephalopathy in cirrhosis are
consistent [86,87]. The cause is probably some adverse effects of the BCAA administration.
These include increased ammonia levels due to increased flux through PNC in muscles and
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increased glutamine catabolism in visceral tissues, and the drain of α-KG from the CAC
(cataplerosis) due to increased glutamate synthesis [83–85,88,89].

5.4. Branched-Chain Keto Acids (BCKA)

Significant amounts of data demonstrate protein anabolic effects of the BCKA [76,90–93],
that BCKA can be aminated to original amino acids in several tissues, particularly in
the kidneys, gut, and the liver [90,94], and that their administration decreases ammonia
production [95–97]. Amination of the BCKA in subjects with impaired liver function was
demonstrated by the increased utilization of labeled KIC (ketoleucine) for the synthesis
of proteins in a rat mode of liver injury and portal-systemic shunting [98]. It can be
supposed that the BCKA amination is facilitated by enhanced glutamine availability and
decreased BCAA levels, as occurs in liver cirrhosis and intensive exercise. In addition, the
BCKA administration should via increased synthesis of α-KG attenuate its drain from the
CAC (cataplerosis) and decrease ammonia production in visceral tissues due to the shift
of glutamate from glutamate dehydrogenase reaction towards BCAA aminotransferase
(Figure 7).
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The studies examining the effects of ketoanaloguesl of amino acids in the form of
Ketosteril® (Fresenius Kabi, Bad Homburg, Germany) have demonstrated that their acute
use can decrease hyperammonemia induced by exercise [99–102], others reported bene-
ficial effects in therapy of portal-systemic encephalopathy [93–107]. Unfortunately, the
limitations of all these studies are the use of mixtures for subjects with renal insufficiency,
which may not be suitable for patients with liver cirrhosis. Studies examining specifically
the effects of the BCKA are not available.

5.5. Aspartic Acid

Aspartate supply can increase the formation of glutamate in muscles during aspartate
transamination by cytosolic AST (Asp + α-KG→ oxaloacetate + Glu) and subsequent detox-
ification to glutamine. Beneficial effects of aspartate supplementation can be mediated also
by its role in the malate-aspartate shuttle (delivery of NADH produced during glycolysis
into mitochondria) and the stimulating effect on urea formation in the liver. Several studies
reported that aspartate levels in plasma and muscles decrease after exhausting exercise and
in liver cirrhosis [8,10,34,108,109].

The results of the studies examining the ergogenic effects of aspartate are not convinc-
ing [110]. More promising seems to combine aspartate with minerals, amino acids (e.g.,
ornithine, arginine, asparagine), and other substances, such as carnitine [111,112]. Several
studies reported ammonia-lowering effects of LOLA (L-ornithine L-aspartate), an agent
employed for the treatment of hepatic encephalopathy [113].
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5.6. Glutamine

During strenuous exercise, the utilization of glutamine often exceeds its synthesis,
and glutamine concentration decreases in both plasma and tissues [31–33]. It has been
shown that glutamine deficiency activates BCAA oxidation and inhibits protein synthesis
in muscles and contributes to impaired immune function and gut integrity in severe
illness [64,81,114,115]. Studies in athletes reported that glutamine supplementation can
attenuate immunodepression, favor muscle strength recovery, and decrease the incidence
of sickness after exhaustive exercise [116–118]. It needs to be emphasized that glutamine
administration should be avoided in patients with liver cirrhosis because most glutamine
is metabolized to form ammonia.

5.7. Ammonia Removal

Hemodialysis and several metabolic scavengers including sodium phenylbutyrate,
glycerol phenylbutyrate, ornithine phenylacetate, AST-120 (spherical carbon adsorbent),
and sodium benzoate have been proposed to reduce ammonia levels [119–122]. Unfor-
tunately, most studies evaluating the effects of these therapies examined only the effects
on symptoms of encephalopathy. The possible effects on muscles have not been investi-
gated although some ammonia scavengers may exert adverse side effects. An example
is a phenylbutyrate, which increases glutamine excretion from the body by urine. It was
demonstrated that phenylbutyrate increases BCAA catabolism and proteolysis in muscles
and impairs the regeneration of the liver [123,124].

6. Summary
6.1. Similarities and Differences in Ammonia Metabolism in Muscles during Exercise and in
Liver Cirrhosis

Results of the studies presented in this article demonstrate that some changes in
muscles caused by elevated ammonia levels due to increased ammonia production during
strenuous exercise and due to insufficient ammonia detoxification to urea in liver cirrhosis
are similar. In both, there is protein-energy wasting, increased ammonia detoxification to
glutamine, the drain of α-KG from CAC for glutamate synthesis by α-KG-linked amino-
transferases, glutamate and α-KG deficiency, and increased BCAA oxidation in muscles.

Apart from the fact that the changes during exercise are temporary and the changes
in liver cirrhosis are long-term or permanent, the main differences are in glycolysis and
mitochondrial function. During muscle work, the glycolysis, the CAC activity, and ATP
turnover in muscles increase whereas in liver cirrhosis there is a decrease due to impaired
function of mitochondria and insulin resistance. Another important difference is in the fate
of glutamine released from the muscles into the blood. During muscle work, glutamine
acts as a non-toxic form of ammonia transport to the liver for urea synthesis and it is
utilized by several tissues, such as the kidneys, immune cells, and enterocytes. In liver
cirrhosis, a vicious cycle in which glutamine synthesized from ammonia in the muscles
is catabolized to ammonia in visceral tissues, resulting in a further increase in ammonia
levels, is activated.

6.2. Considerations on How to Reduce the Harmful Effects of Ammonia on Muscles

The disturbances in amino acid metabolism induced by enhanced ammonia detoxifica-
tion to glutamine in muscles indicate some possibilities for improving muscle performance
and the prevention and muscle wasting due to hyperammonemia of both hepatic and non-
hepatic origin. It is obvious that the rational basis should be the correction of glutamate,
α-KG, BCAA, and aspartate deficits:

• Glutamate and α-KG—administration could promote ammonia detoxification to glu-
tamine, reduce α-KG drain from CAC, and increase the supply of reduced nucleotides
for respiratory chains in mitochondria. However, studies examining the effects of
glutamate on muscles in humans with hyperammonemia are rare [68]. Glutamate
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administration may be detrimental in liver cirrhosis due to the increased synthesis of
glutamine that is catabolized to ammonia in visceral tissues.

• BCAA—administration could increase ammonia detoxification to glutamine in mus-
cles and correct BCAA deficiency in the blood. Potential adverse effects include in-
creased ammonia production via the PNC and drain of α-KG from the
CAC [83–85,88,89,125,126].

• BCKA—administration could correct BCAA deficiency in the blood, improve mus-
cle protein balance, decrease the drain of α-KG from the CAC (cataplerosis), and
decrease ammonia production in glutamate dehydrogenase reaction. The BCKA ad-
ministration is not associated with an increase in ammonia levels observed after BCAA
administration [95–97]. Unfortunately, studies examining specifically effects of BCKA
supplementation are not existing.

• Aspartate—can increase the formation of glutamate in muscles via cytosolic AST. Its
combination with other substances appears to be promising [111,112].

• Glutamine—can exert benefits after strenuous exercise and in over-training syn-
drome [116–118]. However, glutamine should be avoided in patients with liver cirrho-
sis, in which detoxification of ammonia produced from glutamine by glutaminase and
glutamate dehydrogenase reactions is impaired.

• Ammonia removal—reports of increased BCAA oxidation, negative protein balance
in muscles, and impaired liver regeneration following phenylbutyrate administra-
tion [123,124] indicate the need to investigate the side effects of all therapies used to
reduce ammonia levels.

7. Conclusions

We are not aware of any work that compares the effects of exercise and cirrhosis on
ammonia and amino acid metabolism in muscles. It is concluded that:

• The similarities in the influence of increased levels of ammonia due to strenuous exer-
cise and liver cirrhosis on BCAA, glutamate, α-KG, aspartate, and adenine nucleotide
metabolism in muscles indicate that ammonia can significantly contribute to muscle
wasting regardless of the cause of its increased levels.

• Similar strategies can be designed to reduce the adverse effects of ammonia on the
muscle, increase muscle performance in athletes, and reduce muscle loss in patients
with hyperammonemia.

• To avoid harmful effects of ammonia on muscles, ammonia and plasma amino acid
concentrations should be monitored in individuals with diseases in which ammonia
levels are often elevated.

• Systematic investigation is needed to understand better the relationships between
ammonia metabolism and the metabolism of other amino acids in the pathogenesis of
muscle wasting due to increased ammonia levels.
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