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Abstract: Nuclear magnetic resonance (NMR) spectroscopy is one of the principal analytical techniques
for metabolomics. It has the advantages of minimal sample preparation and high reproducibility,
making it an ideal technique for generating large amounts of metabolomics data for biobanks and
large-scale studies. Metabolomics is a popular “omics” technology and has established itself as a
comprehensive exploratory biomarker tool; however, it has yet to reach its collaborative potential in
data collation due to the lack of standardisation of the metabolomics workflow seen across small-scale
studies. This systematic review compiles the different NMR metabolomics methods used for serum,
plasma, and urine studies, from sample collection to data analysis, that were most popularly employed
over a two-year period in 2019 and 2020. It also outlines how these methods influence the raw data
and the downstream interpretations, and the importance of reporting for reproducibility and result
validation. This review can act as a valuable summary of NMR metabolomic workflows that are
actively used in human biofluid research and will help guide the workflow choice for future research.
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1. Introduction

Metabolomics aims to identify and measure metabolite snapshots of biospecimens that
are representative of the biological condition of a subject, inclusive of internal and external
factors. The dynamic metabolome is sensitive to perturbation of the subject’s state, and
therefore requires the processes of metabolomics research to be well considered, precise, and
rapid. Furthermore, for multiple snapshots within or between studies to be compared, the
metabolomics process requires reproducible analytical instruments, standardised collection
and acquisition procedures, robust statistical workflows, and minimal manual sample
handling (automation).

The two main analytical instruments used for metabolomics are mass spectrometry
(MS), coupled to gas or liquid chromatography, and nuclear magnetic resonance (NMR)
spectroscopy. The advantages and disadvantages for each technique have been detailed
previously [1]. MS is more widespread and commonly used, likely due to the improved
sensitivity that enables more metabolites to be measured using both targeted and untargeted
approaches. However, NMR offers key advantages in reproducibility for data acquisition,
requires less sample preparation steps and allows for absolute quantitation that makes
it favourable for data comparison across studies. It is also faster, and the methods are
more economical than MS-based metabolomics experiments, making it ideal for large
sample sizes.

Metabolomics has become an attractive method for exploring human health, espe-
cially disease states, however, challenges remain in the direct comparison and replica-
tion of results between studies. Previous reviews have reported best practices for NMR
metabolomics [2–5], and emphasized the importance of standardised reporting among
metabolomic studies [6–8]. However, it is unknown how common these practices are

Metabolites 2022, 12, 963. https://doi.org/10.3390/metabo12100963 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12100963
https://doi.org/10.3390/metabo12100963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-0171-6820
https://orcid.org/0000-0002-3388-7408
https://orcid.org/0000-0002-0323-449X
https://orcid.org/0000-0002-5964-5618
https://doi.org/10.3390/metabo12100963
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12100963?type=check_update&version=1


Metabolites 2022, 12, 963 2 of 25

employed in research settings and whether the reporting guidelines have been followed.
Real-world evidence of the variation and popularity of workflows being used would pro-
vide useful guidance for researchers to decide on the right NMR-based workflow to apply
to their disease of interest.

To this end, we systematically summarised NMR-based metabolomics workflows of all
studies reported on human disease patients in 2019 and 2020. In this work we summarised
131 articles with the aim to reveal common NMR metabolomics practices employed in the
literature, the variations at each workflow step and their impacts, comparability of data
across studies, and adherence to reporting standards.

2. Materials and Methods
2.1. Protocol and Registration

For this research we could not preregister the study in PROSPERO as it did not measure
any health-related outcomes. The concept of this research was to identify variations and
inconsistencies in the steps of NMR metabolomics workflow. We first critically analysed
the first ten eligible articles in our literature search and extracted topics regarding different
steps in the NMR metabolomics workflow that were to be examined. We then iteratively
read and entered the corresponding information into columns for the rest of the articles.
From our knowledge no such review exists that relates NMR-based metabolomics pitfalls
supported by evidence from actual studies.

2.2. Eligibility Criteria, Information Sources and Search Parameters

The search terms were “nuclear magnetic resonance”, “metabolomics” and “patients”
in the title/abstract of papers published in 2019 and 2020 and included all studies that
analysed human biofluids with NMR metabolomics. The search was conducted on the
8 August 2021 in a single database: PUBMED database.

2.3. Study Selection

We exported the search results into EndNote. Abstracts were assessed independently
by KH and NT to remove articles that were non-human, reviews, method papers or
involved in vivo NMR experiments. Full texts of publications were checked by KH to
confirm eligibility criteria. After the identification of eligible articles, if articles investigated
multiple biofluids, they were further separated into their own study. In this research an
“article” refers to the entire publication and “studies” refers to the individual biofluid
workflows. The final literature search was filtered for biofluids that were serum, plasma,
or urine.

2.4. Data Collection Process and Data Items

For each included study KH extracted the data in Excel. If an article referenced a
protocol paper, the details reported in the protocol paper was compiled and referenced. For
all included studies CA checked if the data extraction was performed correctly. Additionally,
the following variables were also extracted but were not included into the results synthesis:
(1) demographics of cohorts, (2) storage conditions for samples, (3) univariate analyses
performed for clinical data, (4) pathways analysis, (5) software used for data analysis.

2.5. Synthesis of Results

No meta-analyses were predefined at the study conception stage, as the number of
topics analysed, and the factors explored as determinants of articles addressing a topic
could only be assessed after conducting the systematic review. The data extracted from
this systematic review were all qualitative; bivariate (presence/absence) or non-ordinal
categorical variables. Analysis began with generating frequency tables for each individual
topic to identify initial trends. Topics were then analysed based on the flow of a typical NMR
metabolomics workflow. Finally, topics were analysed holistically to visualise the different
points of diversions that can occur across the NMR workflow. All data visualisations,
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frequency tables and percentages were constructed and calculated using the “R” statistical
environment [9].

2.6. Risk of Bias

We are not aware of any tools that measure the risk of bias for this type of systematic
review. All eligible studies gathered under the inclusion criteria were used in the result
synthesis. Extracted information were validated by one or more researcher.

3. Results
3.1. Study Selection and Data Collected

We identified 172 articles published over a two-year period (2019 and 2020) that used
NMR metabolomics to analyse biospecimens from human patients [10–180]. The screening
process is shown in Figure 1. The 172 articles were divided into separate studies for each
biospecimen type. Twenty-eight articles had investigated two or more biospecimens, pro-
ducing 208 studies after breaking down biospecimens into their own individual workflow.
These were then filtered for biofluids that were either serum, plasma, or urine. The final lit-
erature sample consisted of 131 articles with 147 studies. The studies of other biospecimens
(n = 61) were excluded due to inadequate data for comparison.
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Figure 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.
After screening 204 articles, we synthesised 147 studies analysing NMR metabolomics workflows.
N = number of articles, n = number of individual study arms.

The core steps in an NMR metabolomics workflow include the pre-analytical phase,
data generation, data analysis and biological interpretation (Figure 2). Briefly, the pre-
analytical phase includes sample collection and sample preparation, which may include
metabolite extraction or removal of macromolecules. Once the sample is prepared data
generation is conducted by data acquisition, with the appropriate experimental parameters,
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spectral processing and then data can be presented as discrete bins that represent the area
under the spectrum or individual metabolite concentrations. Data analysis includes data
pre-treatment, analysis, and the identification of significant metabolites. Finally, biological
interpretation provides biological context to the significant metabolites.
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Figure 2. A typical workflow for untargeted NMR metabolomics. The NMR metabolomics workflow
is divided into four main phases: (a) pre-analytical including sample collection and sample prepa-
ration, (b) data generation which involves NMR spectra acquisition, spectral processing, and the
generation of spectral bins and/or metabolite concentrations. (c) Data analysis is performed for both
data types including pre-treatment, multivariate and univariate analysis. The dashed arrow shows
the optional integration of multivariate and univariate analyses. The fourth phase is (d) biological
interpretation.

For the purposes of this review, we focused on all the main factors that were involved
in the pre-analytical phase: (1) biofluid type, (2) collection method, (3) sample preparation
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steps, (4) references for collection protocols. In the data generation phase, we considered
(5) the pulse sequence(s) applied for data acquisition, (6) references for data acquisition
protocols (7) whether the study generated binned data, metabolite concentrations or both,
(8) uniform or variable width binning, (9) method used for metabolite profiling, as the
chosen method impacts the data produced and data sharing capabilities. In the data
analysis phase, we extracted (10) pre-treatment strategies, (11) tests for normality, (12)
unsupervised multivariate analyses, (13) supervised multivariate analyses, (14) univariate
analyses, (15) multiple testing correction, as it reflects the way the data are packaged for
consumption though publication. The compiled studies used a diverse range of procedures
in their metabolomics workflow summarised in Figure 3. We discuss the nature of this
diversity in the following sections.
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Figure 3. Sunburst charts showing the variation in workflows for NMR metabolomics. Each ring
shows a step in the NMR metabolomics workflow and the segments show the percentage of studies
that had used each method represented in (a) the whole literature search, (b) serum studies, (c)
plasma studies and (d) urine studies only. The flavours of sunbursts can be explored interactively
at https://rpubs.com/sunburstNMRMetabolomics accessed on 25 May 2022. One plasma study
(Article ID: 99) that used sodium-citrate collection tube was removed in the visualization to keep the
segments at a perceivable size (see Supplementary Data for the detailed workflow).

https://rpubs.com/sunburstNMRMetabolomics


Metabolites 2022, 12, 963 6 of 25

3.2. Pre-Analytical Phase

There were 25 different biospecimens identified in our systematic review, including
serum, urine, plasma, tissue, cerebral spinal fluid, follicular fluid, stool, exhaled breath
condensate, saliva, aqueous humour, bile, platelets, seminal fluid, sputum, synovial fluid,
amniotic fluid, acute promyelocytic blasts, interstitial fluid, mouth wash out, pancreatic
juice, peritoneal effusion, red blood cells, tears, tongue swab, and whole blood. The
most popular were serum (32.2%), urine (22.1%), and plasma (16.3%). These biofluids are
generally minimally invasive and relatively simple to collect.

3.3. Blood Collection

Whole blood from patients is often altered upon collection by the tubes and processing
steps that come after. Serum and plasma are the most commonly analysed blood extracts
but analysis can be extended to whole blood [181], platelets [103], red blood cells [56],
peripheral blood mononuclear cells [182] and dried blood spots [183].

Plasma is obtained after the removal of cells and platelets via centrifugation. It
is the liquid proportion of blood that contains clotting factors and protein. Plasma is
collected in tubes containing an anticoagulant. Overall, 41.2% of plasma studies used
ethylenediaminetetraacetic acid (EDTA) tubes, 14.7% used heparin followed by 2.9% using
sodium citrate and 41.2% not reporting the nature of the collection tube. The anticoagulant
should be chosen carefully as it may inhibit other biological processes and influence
the metabolic profile. Heparin inhibits coagulation activator (thrombin) whereas EDTA
and citrate chelate divalent metal ions, such as calcium and magnesium, thus inhibiting
magnesium-dependent coagulation enzymes [183]. EDTA produces intense peaks in NMR
spectra, obscuring signals from choline, dimethylamine, and citrate; and samples may
contain endogenous citrate. Therefore, it is recommended to avoid EDTA and sodium
citrate anti-coagulants [184]. Conversely, it has also been suggested to avoid heparin as it
causes broad peaks in the spectrum complicating lipid quantitation [185]. Furthermore,
38.2% plasma studies reported centrifugation parameters (rotor speed, time, temperature)
for processing at collection, 41.2% prior to sample preparation and 14.7% reported at both
steps. For each of the biofluids (including urine), there were a diverse range of rotor speeds,
the centrifugation time ranged from 5 to 20 min and temperature reported included 4 ◦C or
at room temperature. Not all studies reported all three parameters; a detailed breakdown
can be found in the Supplementary Data.

An alternative to plasma that does not require addition of anticoagulants that interfere
with resonances of the NMR spectra is serum. Serum consists of similar constituents as
plasma with the absence of clotting factors. It is prepared by letting whole blood sit at room
temperature for clot formation, usually for 30 min. Only 31.3% of serum studies reported a
clot time, which ranged from 15 to 240 min. During clotting time, enzymatic reactions and
degradation can still occur. For example, the activation of platelets can release additional
compounds such as hypoxanthine, xanthine, and amino acids [186]. Overall, 19.4% of
serum studies used tubes containing no additives, 7.5% a gel separator, 4.5% silica-coated
tubes and 68.7% did not report the type of tube. Centrifugation parameters were reported
for 50.7% serum studies at collection, 23.9% before sample preparation and 7.5% reported
at both steps.

3.4. Urine Collection

Urine samples can be collected under different conditions. We identified four different
urine types; first morning void (41.3%), random urine (6.52%), 24 h urine (4.35%), spot
urine (2.17%), and 45.7% did not report the condition of urine collection. First morning
void occurs following an overnight fast and is least likely to be affected by daily routine.
Random urine can be collected at any time of the day and may induce the most unwanted
variability from different collection times and conditions. We considered a sample to be
random urine if it was collected after appointments or treatments occurring at unspecified
times during the day. In contrast, spot urine is collected at specified times. We have defined
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second morning void as spot urine, as it is collected under pre-defined conditions without
fasting. The 24 h urine is a pooled sample of all voids within a 24 h period [187]. This
sample type can average out fluctuations from the circadian cycle.

Another consideration for urine collection is bacterial contamination. Overall, 21.7%
of urine studies reported midstream collection which reduces the risk of collecting a
sample contaminated from the urinary tract [188]. Further, removing cells and bacteria
from the sample is a standard practice that is achieved with mild centrifugation and/or
filtration with a 0.20 µm syringe filter [185]. In all, 63.0% urine studies reported performing
centrifugation and/or filtration, with the remainder unknown. Meanwhile, 33% studies
reported centrifugation parameters at collection, 43.5% before sample preparation for the
thawed sample and 15.2% reported for both steps.

3.5. Sample Preparation

There are additional sample preparation steps that may be included in the workflow
to isolate metabolites from macromolecules that remain in the samples after treatment.
These steps include ultrafiltration or metabolite extraction. We found that 82.2% of blood
(serum and plasma) studies did not perform additional sample preparation steps, 9.5%
performed ultrafiltration and 7.9% performed metabolite extraction. Overall, 4.3% of urine
studies performed ultrafiltration, and the remainder conducted no preparation.

Part of sample preparation is converting raw biofluid into an optimal medium that
is suitable for the analytical instrument. Deuterated phosphate buffer is often added
to the sample prior to NMR data acquisition. Adding buffer maintains a constant pH
(physiological pH 7.4) across all the samples which minimises metabolite chemical shift
variations and allows for more accurate metabolite identification against library standards.
Sodium or potassium phosphate buffer was used in 79.6% studies, 6.1% used deuterated
water (D2O) only, 2.7% used saline solution with two deuteration levels (100% or 10%)
and 0.7% (one urine study) used Chenomx Internal Standard Solution consisting of D2O,
sodium trimethylsilylpropanesulfonate (DSS) and sodium azide (Table 1). Sodium azide
(NaN3) can also be added in the buffer to prevent bacterial growth [189], which 30.6%
studies had reported. Overall, 68.7% studies reported a chemical shift reference, with
trimethylsilylpropanoic acid (TSP) (54.5%) and DSS (10.2%) being the most popular.

Table 1. Comparison of the final buffer concentrations and pulse sequence combinations for
serum/plasma and urine.

Reference Collection
Tube

Sample
Prep

Sample:
Buffer
Ratio

Buffer %
D2O

Chemical Shift
Reference

(mM)

NaN3
(mM) pH NMR

Experiments
Temp
(K)

Plasma

Beckonert
[184] Li-heparin 1:2 103 mM NaCl 6.66 noesy, cpmg,

(jres, diff) 310

Bernini
[185] EDTA or citrate 1:1 35 mM

Na2HPO4
10 TSP (27.5) 19 7.4 noesy, cpmg 310

Dona [3] Li-heparin or
EDTA 1:1 37.5 mM

NaH2PO4
10 TSP (2.73) 3.08 7.4 noesy, cpmg,

jres 310

Soininen
[190] 1:1 37.5 mM

Na2HPO4
10 TSP-d4 (2.32) 3.08 7.4 noesy, cpmg 310

Chenomx
Ultra-

filtration
3 kDa

9:1 D2O 10 DSS-d6 (0.5) 1.54 noesy 298
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Table 1. Cont.

Reference Collection
Tube

Sample
Prep

Sample:
Buffer
Ratio

Buffer %
D2O

Chemical Shift
Reference

(mM)

NaN3
(mM) pH NMR

Experiments
Temp
(K)

Urine

Beckonert
[184]

0.05% wt/vol
NaN3

2:1 82.3 mM
Na2HPO4

6.66 TSP (0.33) 1 7.4 noesy 300

Bernini
[185] 3 mM NaN3 9:1 150 mM

K2HPO4
10 TSP (1.0) 7.4 noesy, jres 300

Dona [3] 0.05% wt/vol
NaN3

9:1 150 mM
KH2PO4

1 TSP (0.68) 0.2 7.4 noesy, jres 300

Chenomx 9:1 D2O 10 DSS-d6 (0.5) 1.54 noesy 298

Serum follows the same parameters as plasma minus the collection tube. NMR experiments listed in brackets
were optional recommendations. TSP-d4: 3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt. DSS-d6: 3-
(Trimethylsilyl)-1-propanesulfonic acid-d6 sodium salt.

3.6. Data Generation Phase
3.6.1. NMR Introduction

NMR is a powerful analytical technique known for its ability to characterise molecular
structures and dynamics. The majority of NMR applications take advantage of NMR-active
nuclei from isotopes such as 1H, 13C, 15N, 31P. 1H has 99% natural abundance and is present
in most metabolites, including amino acids, sugars and fatty acids making it particularly
useful and popular for the identification of known metabolites. A single 1D 1H NMR
spectrum can capture hundreds to thousands of signals from molecules that may be low or
high in molecular weight [191]. There are different NMR experiments with various pulse
sequences, which are series of microsecond radio frequency pulses and magnetic gradients
that can be manipulated to excite the active nuclei to produce characteristic NMR spectra.

3.6.2. NMR Experiments

The non-destructive nature of NMR allows multiple NMR experiments to be ap-
plied to a single sample. Overall, 69.4% of studies performed a single experiment, 29.4%
performed multiple experiments and 0.7% did not report the type of experiment. We
identified two main experiments which were the 1D Carr-Purcell-Meibom-Gill (CPMG)
experiment with presaturation for solvent suppression and T2 relaxation filtering and
the 1D nuclear Overhauser enhancement spectroscopy (NOESY) experiment also with
presaturation [184]. Overall, 48.3% of studies performed a CPMG experiment, 46.3% per-
formed a NOESY experiment, 9.5% studies sent their samples to the Nightingale Health
metabolomics platform for data acquisition and generation [192], 8.8% performed a 2D
J-resolved experiment [193], 8.2% performed a diffusion-edited experiment [194] and 8.8%
applied other NMR experiments (Supplementary Table S1).

Different NMR pulse sequences can exploit the behaviour of nuclei to produce a
characteristic spectrum. The 1D presaturation NOESY pulse sequence suppresses the water
signal, without sacrificing the signal intensity of the majority of metabolite peaks, capturing
high and low molecular weight compounds [195]. The CPMG experiment attenuates signals
that have short transverse relaxation times, such as large proteins and lipoproteins, leaving
only slowly relaxing small metabolites and those signals from slow relaxing protons, such
as methyl groups of lipid signals in the spectrum. Since serum, plasma and urine consist of
different molecular constituents and NMR experiments can filter or select for molecules,
their relationship is shown in Figure 4.
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Figure 4. Bar graph showing how data are acquired on NMR. Different NMR experiments and the
Nightingale Health platform used to generate NMR data from different sample preparation steps in
serum, plasma, and urine studies.

Briefly, Nightingale Health has created a high-throughput and automated NMR
metabolomics platform for serum and plasma samples; able to detect lipids, lipoprotein
particles and subclasses (LIPO), and low molecular weight metabolites (LMWM) [190,192].
It uses robotics to prepare the blood samples for the LIPO and LMWM spectra, applying
the 1H NOESY and CPMG pulse sequences, respectively. A manual lipid extraction is
performed, and a third lipid spectrum is acquired using 1H NOESY pulse sequence. All
the spectra are automatically processed (including phase correction, baseline correction,
spectrum alignment) and metabolites are automatically identified and quantified using in-
house software based on Bayesian modelling [196]. The 2D 1H NMR J-resolved experiment
separates the scalar coupling and chemical shifts of resonant peaks into two dimensions
which spread out overlapping signals, aiding in the identification of metabolites [193].
Diffusion-edited experiments can produce a spectrum only containing metabolites by sub-
tracting the macromolecule spectrum from the whole spectrum based on the diffusion
coefficient of the nuclei [194,197].

There were a few research groups that were frequently referenced for sample prepara-
tion and data acquisition: Beckonert et al. (2007) [184], Bernini et al. (2011) [185] Dona et al.
(2014) [3], and Soininen et al. (2015) [192] which describe the sample preparation and data
acquisition parameters used in the Nightingale Health NMR metabolomics platform. Their
parameters are described in Table 1.

3.6.3. Spectral Binning

NMR spectra of biological mixtures yield information-rich data that can be quantified
by spectral binning or metabolite profiling where for the latter concentrations are deter-
mined. We found 39.5% of studies generated binned data only, 35.4% analysed metabolite
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concentrations only, and 25.2% investigated both. There was a higher proportion of urine
studies (80.4%) compared to blood that generated binning data, with 48.0% also generating
metabolite concentrations. More blood studies generated metabolite concentrations only
(42.6%), while 32.7% employed binning only and 24.8% for both.

Spectral binning offers a rapid and consistent method in identifying global trends
in spectral peak patterns without the initial need for metabolite identification [198]. The
simplest method is uniform binning. It divides the spectrum into equal widths (for example
0.01, 0.04 ppm). Software from Bruker including AMIX and AssureNMR, Mnova, Chenomx,
MATLAB, ACD/Labs, NMRProcFlow [199], dataChord Spectrum Miner [200], KnowItAll
Software (John Wiley & Sons, Inc., Hoboken, NJ, USA) were used to generate uniform
binning data (Supplementary Table S1). Due to the small spectral widths (10–12 ppm)
of 1H NMR spectra, metabolite peaks can overlap and summate therefore a bin may not
always contain a single peak corresponding to a single 1H moiety of a metabolite. Further,
peak-shift problems and the presence of noise can influence downstream analyses. This
has prompted the development of various intelligent, adaptive, and dynamic binning
algorithms to account for intensity variation and multiple metabolite peaks [201–204]. The
basic concept behind these algorithms is to isolate every peak by determining local maxima
and minima, form bin boundaries with variable widths and subsequently remove noise.
Out of the studies that generated binned data, 16.3% used variable width bins generated
from algorithms or manual integration.

Bins that show significant differences between groups are identified in the downstream
data analysis. Peaks of the metabolites within these bins are assigned based on their
chemical shift by referencing to various databases such as the Human Metabolome Database
(HMDB), Biological Magnetic Resonance Bank (BMRB), BBIOREFCODE (Bruker) and
assignments reported in the literature.

3.6.4. Metabolite Profiling

Metabolite profiling involves fitting the sample spectrum to pure known metabolite
spectra. Through this process, metabolites are both identified and quantitated. Fully
automated metabolite profiling remains a challenge in the NMR-based metabolomics
workflow due to overlapping metabolite signals and slight chemical shift differences from
pH, ionic strength, temperature, and biological matrix discrepancies. Many studies resort
to manual or semi-automatic deconvolution methods and commercial software which can
be slow, subjective, and error prone.

Our findings suggest that commercial metabolite profiling tools or platforms were
preferred over open source. The most frequently used tools or platforms included Chenomx
(42.7%), Nightingale Health (15.7%) and Bruker (AMIX, IVDr, PERCH Solutions) (14.4%).
To maximise accuracy of automatic fitting and quantitation, samples should be acquired
with the same experimental parameters as used for the reference library. Chenomx pro-
vides standard operating protocols (SOPs) (Table 1) for sample preparation and their own
NMR acquisition parameters. Despite their popularity as a metabolite profiling tool, only
one profiling study used the Chenomx SOP (1.1%). Open source web-servers including
MAGMET [205], MetaboHunter [206] and Metabominer [207] were each employed once
(1.1%) by profiling studies. Various deconvolution algorithms exist [208], however only
BATMAN [209] appeared (also once, 1.1%).

3.7. Data Analysis Phase
3.7.1. Data Pre-Treatment

Metabolomic data may be subjected to confounding biological and experimental
variations. Therefore, it is necessary to perform pre-treatment such as normalisation,
scaling, and transformation to produce a “clean” dataset that make samples (participants)
and variables (bin integrals or metabolite concentrations) more comparable and suitable for
specific analyses. The application of various pre-treatment methods emphasize different
aspects of the data and can profoundly affect biological interpretation [210].
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We found two main normalisation techniques: 32.0% used total sum; 12.2% used
probabilistic quotient normalisation (PQN); and 41.5% did not report a normalization
technique. Total sum represents each variable relative to all the number of variables [211].
PQN divides each sample spectrum by a reference spectrum that is representative of the
median [212]. The advantage of PQN is that regions of the spectrum are normalised
against itself, therefore areas of interest are not influenced by the rest of the spectrum. Both
total sum and PQN are global normalisation approaches [213]. Other approaches include
referencing the spectra to a single entity that can either be the chemical shift reference or an
endogenous metabolite such as creatinine and formate (Supplementary Table S1).

Unit variance scaling, also known as autoscaling was performed by 30.6% of the
studies, 19.3% performed pareto scaling, 3.4% performed mean centring only and 46.7%
did not report. Unit variance scaling and pareto scaling initially involves mean centring
the data. All the metabolite concentrations therefore fluctuate around zero, accounting
for any bias that may favour abundant metabolites. Autoscaling subsequently divides
each variable by their standard deviation so that all metabolites are treated with equal
importance in downstream analyses and pareto scaling divides the mean-centred data by
the square root of the standard deviation to simulate the relative abundance of metabolites
from the original dataset in the scaled dataset [210].

3.7.2. Multivariate Analyses

Multivariate analysis was performed by 87.1% of the studies. The majority began with
unsupervised principal components analysis (PCA), followed by a supervised classification
model and the identification of key metabolites through variable importance scores. PCA
was a common analysis and was applied by 68.0% of the studies that performed multivariate
analysis. PCA is a dimensionality reduction technique which reconstructs high-dimensional
data into linear combinations called principal components that preserve the maximum
variation observed in the original dataset [214]. The variation can separate the data into
different clusters. Being an unsupervised analysis, PCA does this without the knowledge of
class labels, which is the attribute of interest that defines a group; in metabolomics studies
class labels are often the presence or absence of a disease.

Projection to Latent Structures Discriminant Analysis (PLS-DA) is a classification
machine learning algorithm [215]. Like PCA, it also performs dimensionality reduction by
generating linear combinations, however with the knowledge of class labels. Overall, 42.2%
of multivariate studies performed PLS-DA, which has two additional variations: orthogonal
PLS-DA (OPLS-DA) and sparse PLS-DA (sPLS-DA). The best performing PLS-DA variant
is debated in the literature [216]. Both variations are aimed to identify important variables
and remove those that do not contribute to the prediction of the class label. OPLS-DA was
performed by 48.4% of multivariate studies and 0.5% performed sPLS-DA. The weakness
of PLS-DA is that it is prone to overfitting, which means they rely heavily on the initial
training dataset for accurate prediction.

Other unsupervised and supervised machine learning algorithms that appeared in
our literature search included random forest (11.7%), hierarchical clustering analysis (5.5%),
support vector machine (4.7%), k-means clustering (2.3%), and t-SNE (0.8%). Although
outside the scope of this review, many reviews exist that explore the broad array of statistical
objectives, misconceptions, and pitfalls implemented [217,218]. At this stage, the studies
from our systematic review showed that machine learning models are still at the training
stage and are yet to become inferential.

3.7.3. Univariate Analyses

Univariate analysis was performed by 85.7% of studies. It uses one variable to describe
or infer a conclusion on a sample population using hypothesis testing or univariate gener-
alised linear modelling for testing the strength of association between the metabolite and
class label. Here, we will mainly discuss how hypothesis testing is used in metabolomic
studies. Choosing the correct hypothesis test for the data can yield more reliable results
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which can be achieved by meeting all assumptions the test relies upon, e.g., normality,
independence, and equal variance [219,220].

A normal (gaussian) distribution is when observations appear most frequently around
the mean value, which can be visualized as a symmetrical bell-shaped plot. To assess
for normality, tests reported in our studies included Kolmogorov-Smirnoff, Shapiro–Wilk,
D’Agostino-Pearson, and histograms and Q-Q plots for visual inspection. Overall, 90.5% of
studies that performed hypothesis testing did not perform a normality test prior.

Simultaneously performing multiple hypothesis tests for the large number of metabo-
lite features increases the possibility of false positives (Type I error). Significance levels
and p-values need to be adjusted which is referred as multiple testing correction [221].
Studies reported controlling the false discovery rate inclusive of Benjamini–Hochberg and
Benjamini–Yekutieli procedures, and the family-wise error rate including the Bonferroni
correction (Supplementary Table S1). Out of the studies that performed hypothesis testing,
36.5% also adjusted for multiple testing. Some may argue that multiple testing correc-
tion is not necessary as it may be more detrimental to the research if potential significant
metabolites were missed. Considering this, the multiple testing corrections have different
thresholds which can be applied based on the exploratory nature of the research question.

4. Discussion

The main aim of this systematic review of NMR-based metabolomics research on
human biofluids was to determine how much variation in workflow existed between
different studies. Although various tissue, cells and compartmentalised fluids may provide
more localised significance and relevance to metabolic perturbations observed in a disease,
serum, plasma, and urine accounted for more than 70% of the studies in our literature
search. The variation of workflows on these three biofluids (visualised in Figure 3) is quite
substantial, especially for serum and plasma.

Serum and plasma are extracts of whole blood. Previous studies found that the quanti-
tation of metabolites in plasma was more reproducible due to reduced handling [222], how-
ever higher concentrations of amino acids were found in serum which may be explained
by volume displacement effects [223]. A recent study investigating the impact of collection
tubes between serum and plasma revealed that heparin plasma, followed by EDTA plasma
had a closer metabolic profile to serum collected in tubes with no-additives [224]. Further,
serum separator tubes containing polymeric gel has been shown to alter metabolite levels
therefore it is recommended to use additive-free glass or plastic tubes [184]. Another
pre-analytical factor that needs to be considered are the centrifugation parameters. The
force applied may affect platelet count [225] or cause hemolysis which alter metabolite
levels in blood [2]. Various studies have investigated the influence of different centrifuga-
tion parameters have on serum, plasma and urine metabolomes and developed optimal
protocols for their respective processing [226,227].

The goal of sample collection and sample preparation steps is to preserve the metabolic
composition of the sample to ensure an accurate representation of the metabolome at the
time of collection. Therefore, SOPs specific for metabolomics studies are crucial as slight
variations in sample collection, processing and storage conditions can significantly affect
metabolite stability and abundance [183]. However, the issue of having numerous best
practices remains and it is up to the researcher to be well-versed and transparent in their
decisions. To achieve this, complete reporting of collection method including collection
tubes and durations and processing parameters are mandatory for reproducibility and to
reduce analytical bias.

Sample preparation steps are often used to enhance the metabolite peak signals of the
NMR spectra. Macromolecules, such as protein and lipids, give rise to intense and broad
signals in NMR spectra, obscuring metabolite signals, and the chemical shift reference may
bind to protein causing difficulties and errors in metabolite quantification. Ultrafiltration
(with 3 kDa or 3.5 kDa cut-off) is the simplest and fastest method for removing macro-
molecules. However, metabolites can be lost in the filter membrane and protein-bound
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metabolites are filtered out along with the protein [228]. Liquid-liquid extraction (LLE)
is a metabolite extraction method that uses organic solvents to precipitate protein and
separate polar metabolites and lipids into hydrophilic and hydrophobic phases, respec-
tively. Using deuterated methanol and chloroform has been shown to prevent further
enzymatic activity [229] and yield efficient recovery of metabolites [230]. LLE appears to
enhance metabolite peaks compared to ultrafiltration [230], most likely due to the capture
of protein-bound metabolites after precipitation. Solvent peaks that are introduced into the
NMR sample may be removed via lyophilisation, however this process will remove some
of the volatile metabolites. The chemical shift reference is used for spectra alignment and
absolute metabolite quantitation. Without a chemical shift reference, spectra can be aligned
using isolated metabolite peaks that are unlikely to be affected by pH, however, with this
approach metabolites cannot be absolutely quantitated.

The NOESY pulse sequence can consistently generate high-quality spectra with short
acquisition time, and it is relatively simple to set up with few optimisation parameters,
suitable for the non-spectroscopist. The disadvantage of the NOESY pulse sequence is that
the solvent suppression can leave the baseline distorted, or alter signal intensities near the
suppressed solvent peak [231]. Distorted baselines will cause difficulties for automatic
processing and may introduce inaccurate or subjective corrections. When a sample contains
high molecular weight compounds such as protein and lipoproteins, they create broad
peaks in the NMR spectrum which may dominate metabolites signals, therefore a CPMG
pulse sequence is more ideal for quantitating metabolites in biospecimens with high protein
content. Another consideration of using the CPMG pulse sequence is that protein-bounded
metabolites will not be observed in the NMR spectrum as they share an effective relaxation
time with the protein and are filtered out together with the protein signals. Furthermore,
lipids in the sample can obscure upfield metabolite signals. As part of the MSI guidelines [6],
all instrument parameters should be fully reported so that experimental procedures can be
replicated; all studies except for one followed this requirement either briefly describing the
parameters or referencing the protocol followed.

For the sake of comparing NMR data between separate studies it is most important
that sample collection, sample preparation and data generation techniques are as consistent
as possible. Urine was shown to have a very consistent workflow of neat collection, no
preparation, and NOESY pulse sequence being applied in 71.7% of studies. Serum and
plasma were both inconsistent and this was confounded by a lack of reported information
on collection tubes used to produce the serum or plasma. Removing the issue of the
collection tube from the equation, the most common combination for serum and plasma
was no preparation and CPMG pulse sequence (56.4% of blood studies). The Nightingale
Health NMR metabolomics platform provides a consistent combination of collection factors;
however, the limitation of this platform is that spectra are not provided, so binning analysis
cannot be performed. Minimal handling of samples is a sensible way to reduce human error
and manipulation of in vivo measurements of blood. Such minimal handling may explain
why no sample preparation is the most common method for NMR-based metabolomics.

The generation of metabolite data can be considered one side of the workflow, the
other side is the analysis and interpretation of that data. The data analysis workflow and
the presentation of data in research papers was highly varied between projects. There
are many ways to look at data, but the standardisation of the steps appears to be limited.
Beyond variation, there appeared to be minimal justification for the data analysis steps
taken by researchers presenting metabolomics data. Prior to the analysis of data, the data
needs to be converted from the NMR spectral format to a numerical format. This conversion
of data can be performed by profiling metabolite concentrations or by producing bins that
quantitate the area under the spectrum.

Datasets continue to grow and become more complex therefore requiring proper pre-
treatment. Specific scaling strategies should be applied for different statistical analyses as
the aim of the scaling method should match what the analysis is measuring. There was
a large proportion of studies that did not report a normalisation or scaling strategy, we
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strongly encourage researchers to provide a detailed reasoning for their choice, or lack of
pre-treatment.

Although hypothesis testing procedures are routine tests seen in metabolomics studies,
we found that they were misused. Both parametric hypothesis tests, which are tests that
meet the conditions of a normal distribution, and non-parametric tests, which are tests for
non-normally distributed data, were often conducted without first assessing normality [232].
Parametric tests are more powerful than non-parametric, therefore significant metabolites
may be inadvertently deemed important or missed if either parametric or non-parametric
tests are applied with incorrect normality assumptions [233]. Once an initial assessment
for normality is conducted, non-normal data may be scaled or transformed so that a
parametric test can be performed. An alternative is algorithmic modelling or machine
learning which uses functions to identify patterns within the data and is measured based
on prediction accuracy [234]. It is important to recognise that there are several models
that may be applicable to the data [234], therefore it is crucial to describe the biological
interpretation in context with the analyses performed, whether it is univariate, multivariate
or algorithmic-based. The drawback for machine learning algorithms is that large sample
sizes are required for accurate prediction, whereas most sample sizes for metabolomics
studies are still relatively small. We believe that the standardisation in data generation for
data collation will pave the way for the next advancements of metabolomics and machine
learning applications.

While this systematic review aims to provide an update on current methods commonly
employed in the NMR metabolomics workflow and point out the extent of their variation
between studies, we still expect to see variation in the future as improvements are made to
existing methods or new methodologies are developed. The necessity for standardisation
is often debated as there are continued advancements made in the NMR metabolomics
field such as sample collection devices [235,236], data processing software [237], NMR
experiments and pulse sequences [238], improved instrument sensitivity [239,240], and
metabolite deconvolution software [241–243]. Therefore, when using new methods, we
encourage careful considerations in their implementation and detailed reporting.

5. Conclusions

Our analysis of metabolite disease studies published in 2019 and 2020 has highlighted
that significant variation exists in NMR-based metabolomics data generation and data anal-
ysis workflows. The variation in data analysis workflows is expected but more justification
of steps taken should be reported. Given that NMR reproducibility is a real strength to
using this platform for metabolomics, we recommend using data generation workflows
that are consistent within the field while leaning towards minimal sample handling steps.
For urine, there is a consistent workflow of neat collection, no preparation and using the
NOESY pulse sequence to acquire NMR data (this data generation workflow is likely most
suitable for any biofluid that lacks macromolecules). For serum and plasma, there are
inconsistencies between studies, but the use of glass tubes without additives for serum and
heparin for plasma appear to be the most common; this is followed by no preparation step
and using both NOESY and CPMG pulse sequences for acquiring NMR data. Overall, this
review can act as a valuable starting resource for any research group wanting to standardise
their research and make it suitable for data collation and comparison.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo12100963/s1, Table S1: Summary table for serum,
plasma, and urine.

Author Contributions: K.H., N.T. and C.W.A. designed the review concept; K.H. performed the data
curation, investigation (with N.T.), data analysis, visualisation and the original draft preparation; and
C.W.A. and P.R.G. guided the project. All authors contributed to the review process and editing. All
authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/metabo12100963/s1


Metabolites 2022, 12, 963 15 of 25

Funding: This salary of the researchers that conducted this work was supported by grants from Open
Medicine Foundation and Mason Foundation.

Data Availability Statement: Compiled dataset in an excel spreadsheet available in Supplementary
Information.

Acknowledgments: This work was supported by grants from The Mason Foundation and Open
Medicine Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15,

473–484. [CrossRef]
2. Gonzalez-Dominguez, R.; Gonzalez-Dominguez, A.; Sayago, A.; Fernandez-Recamales, A. Recommendations and Best Practices

for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics. Metabolites 2020, 10, 229. [CrossRef]
3. Dona, A.C.; Jimenez, B.; Schafer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R.; Pearce, J.T.; Holmes, E.; Lindon, J.C.; Nicholson, J.K.

Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping.
Anal. Chem. 2014, 86, 9887–9894. [CrossRef]

4. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to
Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [CrossRef]

5. Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P.G.; Tenori, L.; Turano, P.; Luchinat, C. High-Throughput Metabolomics by 1D
NMR. Angew. Chem. Int. Ed. Engl. 2019, 58, 968–994. [CrossRef]

6. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.;
et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

7. Members, M.S.I.B.; Sansone, S.A.; Fan, T.; Goodacre, R.; Griffin, J.L.; Hardy, N.W.; Kaddurah-Daouk, R.; Kristal, B.S.; Lindon, J.;
Mendes, P.; et al. The metabolomics standards initiative. Nat. Biotechnol. 2007, 25, 846–848. [CrossRef]

8. Spicer, R.A.; Salek, R.; Steinbeck, C. Compliance with minimum information guidelines in public metabolomics repositories. Sci.
Data 2017, 4, 170137. [CrossRef]

9. R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna,
Austria, 2020.

10. Kumar, U.; Sharma, S.; Durgappa, M.; Gupta, N.; Raj, R.; Kumar, A.; Sharma, P.N.; Krishna, V.P.; Kumar, R.V.; Guleria, A.; et al.
Serum Metabolic Disturbances Associated with Acute-on-chronic Liver Failure in Patients with Underlying Alcoholic Liver
Diseases: An Elaborative NMR-based Metabolomics Study. J. Pharm. Bioallied Sci. 2021, 13, 276–282. [CrossRef]

11. Rocca, M.S.; Vignoli, A.; Tenori, L.; Ghezzi, M.; De Rocco Ponce, M.; Vatsellas, G.; Thanos, D.; Padrini, R.; Foresta, C.; De Toni, L.
Evaluation of Serum/Urine Genomic and Metabolomic Profiles to Improve the Adherence to Sildenafil Therapy in Patients with
Erectile Dysfunction. Front. Pharmacol. 2020, 11, 602369. [CrossRef]

12. Izquierdo-Garcia, J.L.; Comella-Del-Barrio, P.; Campos-Olivas, R.; Villar-Hernández, R.; Prat-Aymerich, C.; De Souza-Galvão,
M.L.; Jiménez-Fuentes, M.A.; Ruiz-Manzano, J.; Stojanovic, Z.; González, A.; et al. Discovery and validation of an NMR-based
metabolomic profile in urine as TB biomarker. Sci. Rep. 2020, 10, 22317. [CrossRef] [PubMed]

13. Citterio, F.; Romano, F.; Meoni, G.; Iaderosa, G.; Grossi, S.; Sobrero, A.; Dego, F.; Corana, M.; Berta, G.N.; Tenori, L.; et al. Changes
in the Salivary Metabolic Profile of Generalized Periodontitis Patients after Non-surgical Periodontal Therapy: A Metabolomic
Analysis Using Nuclear Magnetic Resonance Spectroscopy. J. Clin. Med. 2020, 9, 3977. [CrossRef] [PubMed]

14. Yang, F.; Li, Q.; Xiang, J.; Zhang, H.; Sun, H.; Ruan, G.; Tang, Y. NMR-based plasma metabolomics of adult B-cell acute
lymphoblastic leukemia. Mol. Omics 2021, 17, 153–159. [CrossRef] [PubMed]

15. Värri, M.; Niskanen, L.; Tuomainen, T.P.; Honkanen, R.; Kröger, H.; Tuppurainen, M.T. Metabolite Profiling of Osteoporosis and
Atherosclerosis in Postmenopausal Women: A Cross-Sectional Study. Vasc. Health Risk Manag. 2020, 16, 515–524. [CrossRef]
[PubMed]

16. Ghini, V.; Laera, L.; Fantechi, B.; Monte, F.D.; Benelli, M.; McCartney, A.; Leonardo, T.; Luchinat, C.; Pozzessere, D. Metabolomics
to Assess Response to Immune Checkpoint Inhibitors in Patients with Non-Small-Cell Lung Cancer. Cancers 2020, 12, 3574.
[CrossRef]

17. Ren, Y.; Chen, Z.Z.; Sun, X.L.; Duan, H.J.; Tian, J.S.; Wang, J.Y.; Yang, H. Metabolomic analysis to detect urinary molecular changes
associated with bipolar depression. Neurosci. Lett. 2021, 742, 135515. [CrossRef]

18. Paris, D.; Palomba, L.; Mirra, V.; Borrelli, M.; Corcione, A.; Santamaria, F.; Maniscalco, M.; Motta, A. NMR Profiling of Exhaled
Breath Condensate Defines Different Metabolic Phenotypes of Non-Cystic Fibrosis Bronchiectasis. Int. J. Mol. Sci. 2020, 21, 8600.
[CrossRef]

19. Nizioł, J.; Ossoliński, K.; Tripet, B.P.; Copié, V.; Arendowski, A.; Ruman, T. Nuclear magnetic resonance and surface-assisted laser
desorption/ionization mass spectrometry-based metabolome profiling of urine samples from kidney cancer patients. J. Pharm.
Biomed. Anal. 2021, 193, 113752. [CrossRef]

http://doi.org/10.1038/nrd.2016.32
http://doi.org/10.3390/metabo10060229
http://doi.org/10.1021/ac5025039
http://doi.org/10.1146/annurev-biochem-061516-044952
http://doi.org/10.1002/anie.201804736
http://doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://doi.org/10.1038/nbt0807-846b
http://doi.org/10.1038/sdata.2017.137
http://doi.org/10.4103/jpbs.Jpbs_333_20
http://doi.org/10.3389/fphar.2020.602369
http://doi.org/10.1038/s41598-020-78999-4
http://www.ncbi.nlm.nih.gov/pubmed/33339845
http://doi.org/10.3390/jcm9123977
http://www.ncbi.nlm.nih.gov/pubmed/33302593
http://doi.org/10.1039/D0MO00067A
http://www.ncbi.nlm.nih.gov/pubmed/33295915
http://doi.org/10.2147/VHRM.S279028
http://www.ncbi.nlm.nih.gov/pubmed/33293818
http://doi.org/10.3390/cancers12123574
http://doi.org/10.1016/j.neulet.2020.135515
http://doi.org/10.3390/ijms21228600
http://doi.org/10.1016/j.jpba.2020.113752


Metabolites 2022, 12, 963 16 of 25

20. Chachaj, A.; Matkowski, R.; Gröbner, G.; Szuba, A.; Dudka, I. Metabolomics of Interstitial Fluid, Plasma and Urine in Patients
with Arterial Hypertension: New Insights into the Underlying Mechanisms. Diagnostics 2020, 10, 936. [CrossRef]

21. Quintero Escobar, M.; Costa, T.; Martins, L.G.; Costa, S.S.; vanHelvoort Lengert, A.; Boldrini, É.; da Silva, S.R.M.; Lopes, L.F.;
Vidal, D.O.; Krepischi, A.C.V.; et al. Insights in Osteosarcoma by Proton Nuclear Magnetic Resonance Serum Metabonomics.
Front. Oncol. 2020, 10, 506959. [CrossRef]

22. Yilmaz, A.; Ustun, I.; Ugur, Z.; Akyol, S.; Hu, W.T.; Fiandaca, M.S.; Mapstone, M.; Federoff, H.; Maddens, M.; Graham, S.F.
A Community-Based Study Identifying Metabolic Biomarkers of Mild Cognitive Impairment and Alzheimer’s Disease Using
Artificial Intelligence and Machine Learning. J. Alzheimers Dis. 2020, 78, 1381–1392. [CrossRef]

23. Castaldo, G.; Pagano, I.; Grimaldi, M.; Marino, C.; Molettieri, P.; Santoro, A.; Stillitano, I.; Romano, R.; Montoro, P.; D’Ursi, A.M.;
et al. Effect of Very-Low-Calorie Ketogenic Diet on Psoriasis Patients: A Nuclear Magnetic Resonance-Based Metabolomic Study.
J. Proteome Res. 2021, 20, 1509–1521. [CrossRef]

24. Fraser, D.D.; Slessarev, M.; Martin, C.M.; Daley, M.; Patel, M.A.; Miller, M.R.; Patterson, E.K.; O’Gorman, D.B.; Gill, S.E.; Wishart,
D.S.; et al. Metabolomics Profiling of Critically Ill Coronavirus Disease 2019 Patients: Identification of Diagnostic and Prognostic
Biomarkers. Crit. Care Explor. 2020, 2, e0272. [CrossRef]

25. Sahni, S.; Pandya, A.R.; Hadden, W.J.; Nahm, C.B.; Maloney, S.; Cook, V.; Toft, J.A.; Wilkinson-White, L.; Gill, A.J.; Samra, J.S.;
et al. A unique urinary metabolomic signature for the detection of pancreatic ductal adenocarcinoma. Int. J. Cancer 2021, 148,
1508–1518. [CrossRef]

26. Herrala, M.; Mikkonen, J.J.W.; Pesonen, P.; Lappalainen, R.; Tjäderhane, L.; Niemelä, R.K.; Seitsalo, H.; Salo, T.; Myllymaa, S.;
Kullaa, A.M. Variability of salivary metabolite levels in patients with Sjögren’s syndrome. J. Oral Sci. 2020, 63, 22–26. [CrossRef]

27. Haak, B.W.; Westendorp, W.F.; van Engelen, T.S.R.; Brands, X.; Brouwer, M.C.; Vermeij, J.D.; Hugenholtz, F.; Verhoeven, A.; Derks,
R.J.; Giera, M.; et al. Disruptions of Anaerobic Gut Bacteria Are Associated with Stroke and Post-stroke Infection: A Prospective
Case-Control Study. Transl. Stroke Res. 2021, 12, 581–592. [CrossRef] [PubMed]

28. Kwon, H.N.; Lee, H.; Park, J.W.; Kim, Y.H.; Park, S.; Kim, J.J. Screening for Early Gastric Cancer Using a Noninvasive Urine
Metabolomics Approach. Cancers 2020, 12, 2904. [CrossRef]

29. Maignien, C.; Santulli, P.; Kateb, F.; Caradeuc, C.; Marcellin, L.; Pocate-Cheriet, K.; Bourdon, M.; Chouzenoux, S.; Batteux, F.;
Bertho, G.; et al. Endometriosis phenotypes are associated with specific serum metabolic profiles determined by proton-nuclear
magnetic resonance. Reprod. Biomed. Online 2020, 41, 640–652. [CrossRef]

30. Lins Neto MÁ, F.; Verdi, G.M.X.; Veras, A.O.; Veras, M.O.; Caetano, L.C.; Ursulino, J.S. Use of metabolomics to the diagnosis of
inflammatory bowel disease. Arq. Gastroenterol. 2020, 57, 311–315. [CrossRef] [PubMed]

31. Piras, C.; Pibiri, M.; Leoni, V.P.; Balsamo, A.; Tronci, L.; Arisci, N.; Mariotti, S.; Atzori, L. Analysis of metabolomics profile in
hypothyroid patients before and after thyroid hormone replacement. J. Endocrinol. Investig. 2021, 44, 1309–1319. [CrossRef]
[PubMed]

32. Barbosa Breda, J.; Croitor Sava, A.; Himmelreich, U.; Somers, A.; Matthys, C.; Rocha Sousa, A.; Vandewalle, E.; Stalmans, I.
Metabolomic profiling of aqueous humor from glaucoma patients—The metabolomics in surgical ophthalmological patients
(MISO) study. Exp. Eye Res. 2020, 201, 108268. [CrossRef]

33. Huhtala, M.S.; Tertti, K.; Rönnemaa, T. Serum lipids and their association with birth weight in metformin and insulin treated
patients with gestational diabetes. Diabetes Res. Clin. Pract. 2020, 170, 108456. [CrossRef]

34. Signoriello, E.; Iardino, P.; Casertano, S.; De Lucia, D.; Pucciarelli, A.; Puoti, G.; Chiosi, E.; Lus, G. 12-months prospective
Pentraxin-3 and metabolomic evaluation in multiple sclerosis patients treated with glatiramer acetate. J. Neuroimmunol. 2020,
348, 577385. [CrossRef]

35. Gómez-Cebrián, N.; García-Flores, M.; Rubio-Briones, J.; López-Guerrero, J.A.; Pineda-Lucena, A.; Puchades-Carrasco, L. Targeted
Metabolomics Analyses Reveal Specific Metabolic Alterations in High-Grade Prostate Cancer Patients. J. Proteome Res. 2020, 19,
4082–4092. [CrossRef]

36. Wang, S.; Wen, S.; Guo, P.; Liu, H.; Feng, J.; Huang, H. Understanding metabolomic characteristics of pancreatic ductal
adenocarcinoma by HR-MAS NMR detection of pancreatic tissues. J. Pharm. Biomed. Anal. 2020, 190, 113546. [CrossRef]

37. Kimhofer, T.; Lodge, S.; Whiley, L.; Gray, N.; Loo, R.L.; Lawler, N.G.; Nitschke, P.; Bong, S.H.; Morrison, D.L.; Begum, S.; et al.
Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological
Signature of SARS-CoV-2 Infection. J. Proteome Res. 2020, 19, 4442–4454. [CrossRef]

38. Kumari, S.; Kumaran, S.S.; Goyal, V.; Sharma, R.K.; Sinha, N.; Dwivedi, S.N.; Srivastava, A.K.; Jagannathan, N.R. Identification of
potential urine biomarkers in idiopathic parkinson’s disease using NMR. Clin. Chim. Acta 2020, 510, 442–449. [CrossRef]

39. Gupta, L.; Guleria, A.; Rawat, A.; Kumar, D.; Aggarwal, A. NMR-based clinical metabolomics revealed distinctive serum
metabolic profiles in patients with spondyloarthritis. Magn. Reson. Chem. 2021, 59, 85–98. [CrossRef]

40. Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Pérez-Álvarez, Á.I.; Gil-Serret, M.; Amigó, N.; Ulloa, C.; Benavente, L.;
Ballina-García, F.J.; Suárez, A. GlycA Levels during the Earliest Stages of Rheumatoid Arthritis: Potential Use as a Biomarker of
Subclinical Cardiovascular Disease. J. Clin. Med. 2020, 9, 2472. [CrossRef]

41. Pauzi, F.A.; Sahathevan, S.; Khor, B.H.; Narayanan, S.S.; Zakaria, N.F.; Abas, F.; Karupaiah, T.; Daud, Z.A.M. Exploring Metabolic
Signature of Protein Energy Wasting in Hemodialysis Patients. Metabolites 2020, 10, 291. [CrossRef]

http://doi.org/10.3390/diagnostics10110936
http://doi.org/10.3389/fonc.2020.506959
http://doi.org/10.3233/JAD-200305
http://doi.org/10.1021/acs.jproteome.0c00646
http://doi.org/10.1097/CCE.0000000000000272
http://doi.org/10.1002/ijc.33368
http://doi.org/10.2334/josnusd.19-0504
http://doi.org/10.1007/s12975-020-00863-4
http://www.ncbi.nlm.nih.gov/pubmed/33052545
http://doi.org/10.3390/cancers12102904
http://doi.org/10.1016/j.rbmo.2020.06.019
http://doi.org/10.1590/s0004-2803.202000000-57
http://www.ncbi.nlm.nih.gov/pubmed/33027483
http://doi.org/10.1007/s40618-020-01434-y
http://www.ncbi.nlm.nih.gov/pubmed/33025552
http://doi.org/10.1016/j.exer.2020.108268
http://doi.org/10.1016/j.diabres.2020.108456
http://doi.org/10.1016/j.jneuroim.2020.577385
http://doi.org/10.1021/acs.jproteome.0c00493
http://doi.org/10.1016/j.jpba.2020.113546
http://doi.org/10.1021/acs.jproteome.0c00519
http://doi.org/10.1016/j.cca.2020.08.005
http://doi.org/10.1002/mrc.5083
http://doi.org/10.3390/jcm9082472
http://doi.org/10.3390/metabo10070291


Metabolites 2022, 12, 963 17 of 25

42. Hao, D.; Sengupta, A.; Ding, K.; Ubeydullah, E.R.; Krishnaiah, S.; Leighl, N.B.; Shepherd, F.A.; Seymour, L.; Weljie, A. Metabolites
as Prognostic Markers for Metastatic Non-Small Cell Lung Cancer (NSCLC) Patients Treated with First-Line Platinum-Doublet
Chemotherapy. Cancers 2020, 12, 1926. [CrossRef]
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