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Abstract: Colitis-associated cancer (CAC), arising from long-lasting intestinal inflammation, is a
common type of colorectal cancer. Sinomenine (SIN), the major active compound of Sinomenium
acutum, displays excellent antitumor activity. In modern pharmacological research, SIN has been
proved to arrest proliferation of human colon cancer cells in vitro, but its functional role and specific
mechanism in CAC were still elusive. This study explored the molecular mechanism of SIN on
CAC. The results showed that orally administered SIN could decrease the occurrence and devel-
opment of CAC. Metabolomics results revealed SIN could reprogram metabolism in CAC mice by
reversing 34 endogenous metabolites. Importantly, the most prominent metabolic alteration was
lipid metabolism. Mechanistically, SIN improved lipid metabolism by enhancing the expression of
CPT1A in CAC mice. Moreover, the inhibitory effect of SIN on the proliferation of human colon
cancer cells was blunted via CPT1A inhibitor. The results of this study added further evidence of the
molecular mechanisms that allow SIN to exert anti-CAC effect by facilitating lipid metabolism and
reaffirmed its potential and distinctive role as a chemopreventive agent in CAC.

Keywords: sinomenine; colitis-associated cancer; lipid metabolism; UPLC-QTOF-MS/MS; cell proliferation

1. Introduction

Colorectal cancer (CRC) is the third most common and deadly cancer globally [1].
Colitisassociated cancer (CAC), as a common and aggressive form of CRC, is triggered by
persistent intestinal inflammation. In recent years, the incidence rate and mortality rate of
CRC have been increasing around the world [2]. In addition to genetics and environment,
unfavorable and established risk factors, such as obesity, lack of physical exercise, excessive
alcohol intake and smoking, directly affect intestinal regeneration and tumorigenesis [3,4].
Currently, surgery combined with chemotherapy and radiotherapy in clinic serve as the
predominant method for CRC treatment [5,6]. Despite progress in surgical technology and
therapy options, the mortality rate of CRC remains high in patients with advanced disease,
and their prognosis is still worse, causing adverse reactions, such as liver metastasis, drug
resistance, nausea, vomiting, weight loss and anemia [7,8]. On this account, the new
preventive strategy is essential for the treatment of CAC.

Recently, traditional Chinese medicine has garnered increasing interest for its definite
curative effect, few side effects and low economic costs. Sinomenine (SIN, Figure 1), an ac-
tive ingredient derived from Sinomenium acutum, possess multi-target anticancer activity [9].
Distinct mechanisms have been proposed for the inhibition of SIN on tumor formation,
such as direct cytotoxicity, restriction of proliferation, and induction of autophagy [10–15].
These findings highlight that it holds the capacity to be developed as a potent cancer killer.
Despite the fact that emerging studies have described SIN dampening the growth of colon
carcinoma cells, whether it exerts an anti-CAC role in vivo and its mechanism remain to
be elucidated [16,17].
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Figure 1. The chemical structure of sinomenine.

Metabolomics, focusing on monitoring endogenous metabolites, could reflect the
impact of disease course and drug target on the human body. Mounting evidence indicated
that metabolomics has been extensively exploited as an available tool to investigate CRC,
liver cancer, bladder cancer, etc. [18–20]. Although multiple altered metabolites in lipid,
bile-acid, amino-acid, and other significant metabolite perturbations in various biological
biofluids and tissues of CRC patients have been proposed, their exact mechanism is still
unclear [21,22]. Here, the protective effect of SIN against CAC was evaluated, and an untar-
geted metabolomics approach based on ultra-performance liquid chromatography coupled
with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was utilized
to investigate the underlying mechanism. Subsequently, molecular biology technology
was applied to analyze the alteration of the related molecular pathway in vivo. Finally,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed
to further excavate the deep mechanisms of SIN.

2. Material and Methods
2.1. Chemicals and Reagents

SIN (purity > 98%) was supplied by Nanjing Dilger Medical Technology Co., Ltd.
(Nanjing, China). Azoxymethane (AOM), etomoxir (ETX) and dimethyl sulfoxide were pro-
duced by Sigma-Aldrich (Saint Louis, MO, USA). Dextran sulfate sodium (DSS) (molecular
weight: 36–50 kDa) was the product of MP Biomedical (Irvine, CA, USA). HiScriptTMQ RT
SuperMix and HieffTM qPCR SYBR® Green Master Mix were developed by Abm Biotech-
nology Co., Ltd. (Shanghai, China). GAPDH (1:10,000 dilution) was produced by Sangon
Biotech Co., Ltd. (Shanghai, China). Methanol and acetonitrile were obtained from Merck
Drugs & Biotechnology (Darmstadt, German). Formic acid was the product of Aladdin
Bio-Chem Technology Co., Ltd. (Shanghai, China). L-2-chloro-phenylalanine was supplied
by Shanghai Yuanye Biotechnology Co., Ltd. (Shanghai, China). TRIzol reagent was pro-
duced by Invitrogen (Carlsbad, CA, USA). NP-40 buffer was supplied by Nanjing SunShine
Biotechnology Co., Ltd. (Nanjing, China). The BCA protein assay kit was developed by
Nanjing Beyotime Biotechnology Co., Ltd. (Nanjing, China). Antibodies against carnitine
palmitoyltransferase 1A (CPT1A) (for WB, 1:1000 dilution) and lysophosphatidylcholine
acyltransferase 3 (LPCAT3) (for WB, 1:1000 dilution) were supplied by Cloud-clone Tech-
nology Co., Ltd. (Wuhan, China). Enzyme-linked immunosorbent assay (ELISA) kits were
obtained from Shanghai Tongwei Biotechnology Co., Ltd. (Shanghai, China).

2.2. Animals

Six-week-old male C57BL/6J mice, weighing 18–20 g, were obtained from the Compar-
ative Medicine Center of Yangzhou University (Yangzhou, China). Mice were housed with
environmental temperature at 22 ± 2 ◦C. The design and experiment of animal models
were approved by the Ethics Committee of China Pharmaceutical University (Approval
No: 2022-05-013).
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2.3. Induction of CAC and Treatments

The AOM/DSS-induced mouse model is widely exploited to assess the occurrence,
progression and chemopreventive agents in CAC. The procedure used for the induction
of CAC model by AOM/DSS was as previously described [23]. All mice were randomly
divided into the following three groups: WT group (n = 8), AOM/DSS group (n = 11)
and AOM/DSS + SIN group (n = 10). On day 1, the mice in AOM/DSS group and
AOM/DSS + SIN group were injected with AOM (10 mg/kg, i.p.). After 1 week, the
AOM/DSS group and AOM/DSS + SIN group were allowed access to 2% DSS for 7 days.
Then, they were fed with water for another 14 days. This process was cycled three times.
The mice in the AOM/DSS + SIN group were orally administered with 120 mg/kg SIN
orally once a day, and the mice in the WT and AOM/DSS group were given an equal
volume of vehicle. All samples including serum and colon tissues were placed at −80 ◦C
until analysis.

2.4. Colonic Histological Analysis

The distal sections of the mouse colon were excised, fixed in 4% paraformaldehyde,
embedded in paraffin, and sectioned into 5-µm slices. Then, sections were stained with
hematoxylin-eosin (H&E) and observed by professional pathologists under optical micro-
scope (Olympus, Tokyo, Japan).

2.5. Colonic Immunohistochemical Analysis

Paraffin-embedded tissue sections were stained by immunohistochemistry. The sec-
tions were incubated with primary antibody against proliferating cell nuclear antigen
(PCNA) at 4 ◦C overnight, and then with the secondary antibody at room temperature for
30 min. Then, the peroxidase conjugate was visualized with diaminobenzidine solution.
Next, the sections were counterstained with hematoxylin for 10–15 s and installed on a
coverslip. Finally, the images were obtained by microscope.

2.6. Quantitative Real-Time PCR (qRT-PCR)

Total RNA from 10 mg of colonic tissue was homogenized using 800 µL of Trizol
reagent, and was reversely transcribed to cDNA using HiScriptTMQ RT SuperMix. Real-
time polymerase chain reaction (PCR) was performed using HieffTM qPCR SYBR® Green
Master Mix on a Bio-rad IQ5 (Bio-Rad Laboratories, Hercules, CA, USA). The level of
mRNA was normalized by GAPDH. The 2−∆∆Ct method was used to process data. Primer
sequences were listed in Table 1.

Table 1. Mouse primer pairs used in real-time polymerase chain reaction.

Gene Primer Sequences

IL-1β Forward 5′- TCGCAGCAGCACATCAACAAGAG -3′

Reverse 5′- AGGTCCACGGGAAAGACACAGG -3′

TNF-α Forward 5′- GCCTCTTCTCATTCCTGCTTGTGG -3′

Reverse 5′- GTGGTTTGTGAGTGTGAGGGTCTG -3′

CPT1A Forward 5′- GATGTGGACCTGCATTCCTT -3′

Reverse 5′- TCCTTGTAATGTGCGAGCTG -3′

LPCAT3 Forward 5′- GCTGCGGCTCATCTTCTCCATC -3′

Reverse 5′- AGGAACTGAAGCACGACACATAGC -3′

GAPDH Forward 5′- GGTTGTCTCCTGCGACTTCA -3′

Reverse 5′- TGGTCCAGGGTTTCTTACTCC -3′

2.7. ELISA

The mouse colons (30 mg) were accurately weighed and reconstituted with PBS. These
extracts were then centrifuged for 20 min at 3500 rpm. IL-1β and TNF-α levels were
measured in the supernatants using ELISA kits.
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2.8. Metabolomics Analysis of Serum Samples
2.8.1. Sample Pretreatment

Fifty microliters of serum was mixed with 200 µL of methanol for 5 min, and cen-
trifuged for 25 min. Then, they were placed at −20 ◦C for 30 min and centrifuged again.
Finally, the supernatants were transferred to a new tube for metabolomics research.

2.8.2. UPLC-QTOF-MS/MS Conditions

Chromatographic separation was carried out with a 1290 Infinity system coupled to a
6545 quadrupole time-of-flight (Q-TOF) system (Agilent Technologies, Santa Clara, CA, USA).
The separations of samples were performed on a ZORBAX StableBond-C18 column (50× 2.1 mm,
1.8 µm) at 30 ◦C. The mobile phase was composed of 0.1% formic acid-water (v/v; A) and
0.1% formic acid-acetonitrile (v/v; B) with a 0.3 mL/min flow rate. The following optimal gradi-
ent elution condition for serum sample: 0 to 2 min, 5% B; 2 to 5 min, 5% to 40% B; 5 to 10 min,
40% to 55% B; 10 to 15 min, 55% B; 15 to 23 min, 55% to 95% B; 23 to 30 min, 95% to 5% B. The
parameters of MS were: drying gas temperature, 350 ◦C; nebulizing gas (N2) flow rate, 11 L/min;
sprayer pressure, 35 psi; capillary voltage, 3500 V; scan range, 100–1000 m/z.

2.8.3. Multivariate Data Analysis and Identification of the Differential Metabolites

The chromatographic data were exported and further processed by multivariate
statistical analysis with MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/, accessed on
30 September 2022). Then, principal component analysis (PCA) was exploited to obtain
an overview of samples. Partial least squares discriminant analysis (PLS-DA) was carried
out to discriminate patterns among different groups. Differential metabolites were defined
as those with variable importance in projection (VIP) > 1.0 and p value less than 0.05.
HMDB (http://www.hmdb.ca, accessed on 24 August 2021), MassBank (http://www.
massbank.jp, accessed on 24 August 2021) and LIPID MAPS (https://www.lipidmaps.org/,
accessed on 24 August 2021) were used for metabolite identification according to the MS
and MS/MS data.

2.9. Western Blotting

Total proteins in colons of mice were extracted using NP-40 buffer. Then, supernatants
were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and trans-
ferred onto nitrocellulose membranes. The membranes were blocked on 5% defatted milk
in TBST for 2 h and probed for specific primary antibodies overnight at 4 ◦C, followed by
incubation with the appropriate secondary antibody for 2 h at room temperature. GAPDH
antibody was used as the internal reference to ascertain equal loading of proteins. The pro-
tein bands were visualized using enhanced chemiluminescent reagent and then analyzed
by ImageJ software.

2.10. Cell Culture

Human colon cancer cells (HT-29, HCT-116 and SW-480) were obtained from the Chinese
Academy of Sciences (Shanghai, China). HT-29 cells were cultured in RPMI 1640 medium
(Gibco, Carlsbad, CA, USA) supplemented with 10% fetal calf serum, streptomycin (100 U/mL)
and penicillin (100 U/mL). HCT-116 cells and SW-480 cells were cultured in DMEM (Gibco,
Carlsbad, USA) supplemented with 10% fetal calf serum, streptomycin (100 U/mL) and
penicillin (100 U/mL). They were maintained at 37 ◦C in a humidified environment with
5% CO2. In in vitro experiments, SIN and ETX were diluted in complete medium to obtain the
required concentrations.

2.11. MTT Assay

The viability of HT-29 cells, HCT-116 cells and SW-480 cells in the presence of SIN was
detected by MTT assay. Briefly, HT-29 cells, HCT-116 cells and SW-480 cells (0.8 × 104 cells
per well) were seeded in 96-well culture plates, and incubated with SIN (0, 0.625, 1.25, 2.5,
5, 10 and 20 mM) for 24 h. Then, 20 µL of MTT solution (5 mg/mL dissolved in PBS) was

https://www.metaboanalyst.ca/
http://www.hmdb.ca
http://www.massbank.jp
http://www.massbank.jp
https://www.lipidmaps.org/
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added into each well 4 h at 37 ◦C. The supernatants were then carefully discarded, and
150 µL of dimethyl sulfoxide was added to each well. After shaking for 10 min, the optical
absorbance was measured at 570 nm.

The effect of SIN combined with ETX on the proliferation of HT-29 cells, HCT-116 cells
and SW-480 cells was estimated by MTT assay. They were treated with different methods:
(1) negative control group (RPMI 1640 culture medium), (2) 2.5 mM SIN group, (3) 50 µM
ETX group, (4) 2.5 mM SIN combined with 50 µM ETX group. The other operation steps
were the same as above.

2.12. Statistical Analysis

The experimental data were presented as mean ± standard error of mean (SEM). One-
way analysis of variance (ANOVA) followed by Tukey’s test was performed to compare the
differences between multiple groups by using SPSS version 22.0 (SPSS Inc., Chicago, IL, USA).
A value of p < 0.05 was accepted as a significant difference.

3. Results
3.1. SIN Suppressed Colorectal Tumorigenesis in CAC Mice

To investigate the potential function of SIN in CAC, the AOM/DSS-induced CAC
mouse model was constructed according to the procedure shown in Figure 2A. The colon
length of mice in the AOM/DSS group was shortened, when compared with the wild-type
(WT) group (Figure 2B). Such decrease was ameliorated with SIN treatment (Figure 2B).
Meanwhile, the incidence of colon adenoma was 100% in the AOM/DSS group and 70% in
the AOM/DSS + SIN group. Furthermore, SIN diminished the tumor number and average
tumor load by 59.47% and 49.50%, respectively (Figure 2C,D). Together, the mice in the
AOM/DSS + SIN group exhibited more rapid recovery, fewer tumors and smaller tumor
sizes in the colon than that in the AOM/DSS group.
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Figure 2. Effect of sinomenine on colitis-associated cancer induced by AOM/DSS in mice. (A)
Schematic of the AOM/DSS model of colitis-associated cancer. (B) The length of the mouse colons.
(C) The number of tumors in the mouse colon tissues. (D) The tumor load in the mouse colon tissues.
n = 8–11. ##p < 0.01 vs. WT group. * p < 0.05, ** p < 0.01 vs. AOM/DSS group.
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3.2. SIN Attenuated Histopathological Injury in CAC Mice

To gain better insight into the therapeutic effect of SIN, histopathological examination
was performed. The results displayed that colonic mucosal damage, necrosis, edema,
infiltration of inflammatory cells, nodular hyperplasia of a large number of irregular glands,
expanding lumens and canceration of partial hyperplastic glands were observed in the colon
of the AOM/DSS group (Figure 3A). SIN markedly alleviated pathological damage, includ-
ing colonic mucosal injury, necrosis, submucosal edema and infiltration of inflammatory
cells, and also dampened the number and size of intramucosal adenocarcinoma (Figure 3A).
Functionally, SIN intervention suppressed colitis-associated tumorigenesis in mice.
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3.3. SIN Decreased the Number of PCNA+ in CAC Mice

PCNA plays a pivotal role in the process of eukaryotic DNA replication, and represents
an important index to evaluate the state of cell proliferation. To this end, immunohisto-
chemical assessment was used to evaluate the effect of SIN on colonic PCNA in CAC mice.
The results indicated that the number of PCNA+ cells induced by AOM/DSS in mice were
significantly attenuated by SIN (Figure 3B). Overall, these data further characterized the
beneficial role of SIN in CAC.

3.4. SIN Alleviated Colonic Inflammation in CAC Mice

To probe the anti-CAC effect of SIN in more detail, we interrogated a battery of
inflammatory factors, which are hallmark features of CAC. The effects of SIN on the
cytokines production in colon of CAC mice were displayed in Figure 4. SIN noticeably
downregulated the levels of IL-1β and TNF-α at mRNA and protein levels in colon tissues
of CAC mice (Figure 4). These findings collectively elucidated that SIN administration
inhibited the production of proinflammatory cytokines in colon of CAC mice.
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Figure 4. Sinomenine decreased the expression of IL-1β and TNF-α of colon in CAC mice. (A) The
mRNA levels of IL-1β and TNF-α in colon tissues as determined by qRT-PCR assay. (B) The protein
levels of IL-1β and TNF-α in colon tissues as determined by ELISA. n = 5–11. # p < 0.05, ## p < 0.01 vs.
WT group. * p < 0.05, ** p < 0.01 vs. AOM/DSS group.

3.5. SIN Modulated Serum Metabolism in CAC Mice

To further dissect the pathogenesis of CAC and decipher the mechanism of SIN against
CAC, a metabolomics method based on UPLC-QTOF-MS/MS was employed to iden-
tify key endogenous metabolites in serum after SIN intervention in CAC state. Repre-
sentative base peak chromatograms obtained from serum samples (WT, AOM/DSS and
AOM/DSS + SIN group) were depicted in Figure 5. PCA, an unsupervised statistical method,
was performed to obtain an overview of the data, eliminate outliers and evaluate metabolomic
differences. The PCA score plot showed that the metabolism of the AOM/DSS group was
significantly different from that of the other two groups (Figure 6A). In addition, quality
control (QC) samples were taken to monitor and control the existing variability [24]. The QC
samples were closely clustered together in the PCA score plots of serum samples, indicating
that the LC-MS system has good reproducibility and stability (Figure 6A). PLS-DA was
employed to describe deep metabolic variations between groups. The results indicated that
the AOM/DSS + SIN group was close to the WT group and far away from the AOM/DSS
group, suggesting that SIN exerts a metabolic protective effect in CAC (Figure 6B).
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ion mode. n = 8–11.

The variable importance in projection (VIP) and p value were combined as the criteria
for seeking candidate metabolites. A total of 34 metabolites in serum of CAC mice were
perturbed when compared with the WT group (Figure 7A). These endogenous metabolites
were reversed back to the normal-like levels after SIN administration (Figure 7A). Table 2
summarized the basic information of these differential metabolites, including name, formula,
retention time (RT), detected m/z and trends of different groups. Supplementary Table S1
summarized the detailed information of differential metabolites, including name, RT, formula,
database source, electron spray ionization (ESI) mode, mass, MS and MS2 m/z. According to
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the information of these 34 metabolites, the development of CAC incurred largely metabolic
disorders involving fatty acids metabolism, sphingolipid metabolism, purine metabolism
and amino acid metabolism (Table 2). SIN intervention could improve multiple metabolic
pathways in CAC mice (Figure 7B). To describe the change trend of differential metabolites
and relationship of related pathways in CAC mice and SIN-treated mice, a schematic diagram
of metabolic pathway was displayed in Figure 8. These results revealed the lipid metabolism
of CAC mice was dysregulated and SIN could restore lipid metabolism.
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with blue. The upward arrow indicates a significant increase (p < 0.05), and the downward arrow
indicates a significant decrease (p < 0.05).
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Table 2. The potential differential metabolites identified in serum which can be regulated by sinome-
nine (∆ppm < 20).

No. RT
(min) Formula Identification Detected m/z Change Trend

(AOM/DSS vs. WT)

Change Trend
(AOM/DSS + SIN

vs. AOM/DSS)

1 10.42 C25H47O12P LysoPI (16:1) 571.2961 ↑ *** ↓ ***
2 6.62 C18H39NO3 Phytosphingosine 318.2997 ↓ *** ↑ ***
3 10.2 C26H50NO7P LysoPC (18:2) 520.3393 ↑ *** ↓ **
4 12.23 C26H52NO7P LysoPC (18:1) 522.3552 ↑ *** ↓ ***
5 8.99 C23H40NO7P LysoPE (18:4) 474.2596 ↓ *** ↑ **
6 21.52 C20H34O2 Dihomo-gamma-linolenic acid 307.262 ↑ *** ↓ *
7 10.23 C30H50NO7P LysoPC (22:6) 568.3392 ↑ *** ↓ **
8 6.43 C21H30O4 21-Deoxycortisol 347.2217 ↓ *** ↑ **
9 8 C18H39NO2 Sphinganine 302.3051 ↓ *** ↑ ***
10 0.49 C4H9N3O2 Creatine 132.0766 ↓ *** ↑ **
11 10.23 C28H50NO7P LysoPC (20:4) 544.339 ↑ *** ↓ **
12 0.82 C10H12N4O5 Inosine 269.089 ↓ *** ↑ **
13 10.75 C25H46NO7P LysoPE (20:3) 504.3049 ↑ *** ↓ **
14 9.87 C23H44NO7P LysoPE (18:2) 478.2923 ↑ *** ↓ **
15 0.51 C8H17NO2 2-Aminocaprylic acid 160.1333 ↓ *** ↑ **
16 21.01 C22H34O2 Docosapentaenoic acid 331.263 ↑ *** ↓ *
17 11.11 C30H52NO7P LysoPC (22:5) 570.3522 ↑ *** ↓ **
18 11.38 C28H52NO7P LysoPC (20:3) 546.3551 ↑ ** ↓ *
19 9.96 C25H44NO7P LysoPE (20:4) 502.2921 ↑ ** ↓ **
20 4.23 C10H11NO3 Phenylacetylglycine 194.0805 ↓ ** ↑ **
21 9.98 C27H44NO7P LysoPE (22:6) 526.2919 ↑ ** ↓ **
22 20.52 C29H49O12P LysoPI (20:4) 621.3089 ↓ * ↑ ***
23 0.82 C5H4N4O Hypoxanthine 137.0467 ↓ * ↑ **
24 10.08 C31H49O12P LysoPI (22:6) 643.2888 ↑ *** ↓ *
25 4.6 C8H15NO3 Acetyl-DL-Leucine 172.0972 ↓ *** ↑ *
26 4.65 C11H13NO3 Acetylphenylalanine 206.0823 ↓ *** ↑ *
27 4.065 C6H12O3 Leucinic acid 131.0715 ↓ *** ↑ *
28 9.95 C27H49O12P LysoPI (18:2) 595.2885 ↑ ** ↓ *
29 4.72 C7H8O4S p-Cresol sulfate 187.0071 ↓ ** ↑ **
30 4.78 C11H11NO3 Indolelactic acid 204.0668 ↓ ** ↑ *
31 0.91 C4H8O3 3-Hydroxybutyric acid 103.0403 ↓ ** ↑ **
32 0.52 C4H6N4O3 Allantoin 157.0369 ↓ ** ↑ **
33 4.14 C8H7NO4S Indoxyl sulfate 212.0011 ↓ * ↑ *
34 2.1152 C5H10O3 2-Hydroxyvalerate 117.0561 ↓ * ↑ *

The change trend of differentially expressed metabolites was labeled with (↑) up-regulation and (↓) down-
regulation (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

3.6. SIN Increased the Expression of CPT1A and LPCAT3 in Colon of CAC Mice

SIN consumption reshaped the lipid metabolism in CAC mice revealed by a robustly
lower level of lipid identified in the SIN intervention group. Given that CPT1A and
LPCAT3 play a central role in lipid metabolic balance, we next queried whether these two
enzymes in colon tissue were altered in CAC mice after SIN administration. Both mRNA
and protein levels of CPT1A and LPCAT3 in the colon were attenuated in AOM/DSS
group relative to their controls, and SIN intervention rescued this decline (Figure 9). Taken
together, these results elucidated that SIN augmented expression of CPT1A and LPCAT3,
and subsequently accelerated lipid metabolism, thus inhibiting CAC.
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Figure 9. Sinomenine increased the expression of CPT1A and LPCAT3 in the colon of CAC mice.
(A) The mRNA levels of CPT1A and LPCAT3 in colon tissues as determined by qRT-PCR assay.
(B) Western blot analysis of the protein expressions of CPT1A and LPCAT3 in colon tissues. n = 5–8.
# p < 0.05, ## p < 0.01 vs. WT group. * p < 0.05, ** p < 0.01 vs. AOM/DSS group.

3.7. Inhibition of CPT1A Weakened the Antiproliferative Effect of SIN

CPT1A, the rate-controlling enzyme in fatty acid oxidation (FAO), was highly ex-
pressed in the SIN intervention group by gene expression and protein expression. Conse-
quently, we wanted to find out whether inhibition of CPT1A would attenuate the antipro-
liferative effect of SIN. Therefore, a pharmacological approach to inhibit lipid metabolism
by dampening CPT1A activity via ETX was adopted. The results deciphered that the
proliferation of human colon cancer cells (HT-29, HCT-116 and SW-480) treated with SIN
decreased in a dose-dependent manner after incubation for 24 h (Figure 10). Although ETX
had no effect on the proliferation of colon cancer cells, the proliferation of colon cancer cells
incubated with ETX and SIN was increased robustly compared with SIN alone, supporting
the notion that pharmacologic disruption of CPT1A blunted the antiproliferative effect of
SIN. As a result, the beneficial effects of SIN could be transmitted through FAO, and the
antiproliferative effect of SIN on CAC may be dependent on CPT1A.
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Figure 10. Inhibition of CPT1A weakened the antiproliferative effect of sinomenine. (A) MTT assay of
proliferation of HT-29 cells incubated with sinomenine and etomoxir. (B) MTT assay of proliferation of
HCT-116 cells incubated with sinomenine and etomoxir. (C) MTT assay of proliferation of SW-480 cells
incubated with sinomenine and etomoxir. n = 3. * p < 0.05, ** p < 0.01 vs. the indicated groups.
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4. Discussion

CAC poses a severe challenge to health-care systems worldwide; thereby novel and
effective drugs need to be developed. Despite multiple lines of evidence illustrating that
SIN inhibited the growth and metastasis of human colon carcinoma cells, its potential role
and mechanism in CAC are still ambiguous [16,17]. The AOM/DSS-induced mouse model,
which was sufficient to emulate the clinicopathological characteristics of human CAC, is
usually used to investigate the efficacy of drugs. Based on this notion, the therapeutic effect
of SIN on the CAC animal model was evaluated. The significant differences in colon length,
incidence of colonic adenoma, the tumor number, average tumor load, and histological
changes of colon between the WT group and the AOM/DSS group confirmed that the estab-
lishment of the CAC model was successful. According to the results of pharmacodynamic
experiments, SIN markedly ameliorated the symptoms of CAC mentioned above.

The established and powerful connection between inflammatory cytokines and CAC
has been widely recognized. Inflammatory cytokines may facilitate inflammation for-
mation, tumor growth and metastasis through multiple molecular mechanisms, which
supported the notion that inflammatory cytokines are crucial for the maintenance of the
tumor microenvironment. It has been confirmed that the level of proinflammatory factors
in tumor tissue of patients with CAC was increased. In addition, TNF-α-deficient mice with
CAC showed a reduction in mucosal damage after AOM/DSS treatment, followed by alle-
viation of colonic tumors [25]. The increased secretion of IL-1β will lead to the production
and maintenance of an inflammatory microenvironment surrounding cancer cells, which is
conducive to tumor [26]. Thus, attenuation of inflammatory cytokine production seems to
be an effective method to prevent and treat CAC. To address this scenario, we interrogated
a battery of inflammatory factors. The colons of SIN-administered AOM/DSS-treated mice
displayed noticeably lower TNF-α and IL-1β expression compared with AOM/DSS-treated
mice. These findings demonstrated that SIN could mitigate colonic inflammation in CAC
mice, thereby inhibiting tumor growth.

Although our initial study implicated that SIN attenuated CAC functionally, the
mechanism in vivo remains unsettled. Untargeted metabolomics results revealed the
potential targets of SIN and mechanisms responsible for its chemopreventive activity. In this
study, 34 differential metabolites related to CAC were observed. Specifically, the abundance
of lysoPI (16:1), lysoPC (18:2), lysoPC (18:1), dihomo-gamma-linolenic acid, lysoPC (22:6),
lysoPC (20:4), lysoPE (20:3), lysoPE (18:2), docosapentaenoic acid, lysoPC (22:5), lysoPC
(20:3), lysoPE (20:4), lysoPE (22:6), lysoPI (22:6) and lysoPI (18:2) were markedly elevated,
while the abundance of phytosphingosine, lysoPE (18:4), 21-deoxycortisol, sphinganine,
creatine, inosine, 2-aminocaprylic acid, phenylacetylglycine, lysoPI (20:4), hypoxanthine,
acetyl-DL-leucine, acetylphenylalanine, leucinic acid, p-cresol sulfate, indolelactic acid,
3-hydroxybutyric acid, allantoin, indoxyl sulfate and 2-hydroxyvalerate were notably
reduced in CAC mice. However, these endogenous metabolites returned to normal levels
after SIN intervention. Notably, lysoPC and lysoPE accounted for 65% of all changed
metabolites, so it is speculated that the therapeutic effect of SIN could be attributed to the
normalization of lipid metabolism.

Mitochondrial FAO is the main pathway of fatty acid catabolism and plays an im-
portant role in maintaining whole-body energy balance. CPT1 is a rate limiting enzyme
responsible for the conveyance of lysoPC and lysoPE for β-oxidation. CPT1A is the most
widely distributed and active member in CPT1 family. LPCAT catalyzes acylation of lysoPC
to produce phosphatidylcholine. LPCAT3 is the most abundant isoform of LPCAT in the
intestine. Once LPCAT3 is inhibited, which may lead to the excessive lysoPC accumulation,
thus aggravating inflammation. Similarly, disruption of LPCAT3-dependent phospholipid
noticeably augments tumor formation in Apcmin mice [27]. Therefore, the effect of SIN on
the expression of CPT1A and LPCAT3 was assessed to decipher the biochemical mech-
anism of SIN intervention in CAC. Intriguingly, the expression of CPT1A and LPCAT3
in colon was found to be dramatically enhanced by SIN intervention, lending support to
the hypothesis that SIN promoted the expansion of CPT1A and LPCAT3 in mouse colon
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tissue. Indeed, overexpression of CPT1A in numerous cancers was observed; rather, the
expression level of CPT1A was at significantly low level in patients with CRC [28]. Herein,
we report that both mRNA and protein levels of CPT1A in the colon were attenuated in
model groups relative to their controls, and SIN intervention rescued this decline.

Emerging studies have suggested the enhancement of FAO inhibits the proliferation of
colon cancer cells, and CPT1A is a key enzyme responsible for FAO, raising speculation that
SIN inhibited tumor cell proliferation via CPT1A [29]. To verify this hypothesis, human
colorectal cancer cells were cultured in vitro and subsequently treated with SIN and ETX.
The results of in vitro experiments confirmed that ETX counteracted the inhibitory effects
of SIN in human colorectal cancer cells. In short, SIN suppressed CAC progression via
CPT1A-mediated FAO.

Herein, we elucidated the effect of SIN on serum metabolism from the perspective
of intestine. On the one hand, colon tissue is the site of colon cancer. On the other
hand, accumulating evidence suggests that the action of SIN is gut-dependent [30–33].
Consequently, colonic tissues were selected to investigate the changes of metabolic enzymes
of differential metabolites in this study. Interestingly, 3-hydroxybutyric acid, as one of
the endogenous metabolites interfered by SIN, is produced in the liver rather than in
the intestine, raising speculation that SIN may ameliorate CAC by regulating systemic
metabolism. Future investigation is warranted to clarify whether the anti-CAC effect of
SIN depends on intestinal regulation or systemic regulation.

5. Conclusions

In the present study, a comprehensive strategy of pharmacodynamics, metabolomics
and molecular biology was utilized to clarify the efficacy and potential mechanism of
SIN in the treatment of CAC. Our work interpreted that SIN attenuated CAC through
inhibiting tumor formation, reducing inflammation, restoring histological injury and cor-
recting abnormal lipid metabolism, laying a foundation for the application of SIN in the
treatment of CAC. Importantly, 34 endogenous metabolites of CAC mice were reversed
back to the normal-like levels under the action of SIN. According to these differentially
expressed metabolites, SIN mainly achieved a certain effect on regulating the disorder of
lipid metabolism. Notably, we demonstrated mechanistically that the protective mecha-
nism of SIN might be attributed to the FAO mediated by CPT1A, thereby alleviating CAC.
Collectively, our study cast a spotlight on the pathogenesis of CAC from the metabolic
perspective, and SIN holds the capacity to be developed as a new candidate drug against
CAC in the clinic.
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