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Abstract: Discovering modes of action and predictive biomarkers of drug-induced structural cardi-
otoxicity offers the potential to improve cardiac safety assessment of lead compounds and enhance 
preclinical to clinical translation during drug development. Cardiac microtissues are a promising, 
physiologically relevant, in vitro model, each composed of ca. 500 cells. While untargeted metabo-
lomics is capable of generating hypotheses on toxicological modes of action and discovering meta-
bolic biomarkers, applying this technology to low-biomass microtissues in suspension is experi-
mentally challenging. Thus, we first evaluated a filtration-based approach for harvesting microtis-
sues and assessed the sensitivity and reproducibility of nanoelectrospray direct infusion mass spec-
trometry (nESI-DIMS) measurements of intracellular extracts, revealing samples consisting of 28 
pooled microtissues, harvested by filtration, are suitable for profiling the intracellular metabolome 
and lipidome. Subsequently, an extensive workflow combining nESI-DIMS untargeted metabolom-
ics and lipidomics of intracellular extracts with ultra-high performance liquid chromatography-
mass spectrometry (UHPLC-MS/MS) analysis of spent culture medium, to profile the metabolic 
footprint and quantify drug exposure concentrations, was implemented. Using the synthetic drug 
and model cardiotoxin sunitinib, time-resolved metabolic and lipid perturbations in cardiac mi-
crotissues were investigated, providing valuable data for generating hypotheses on toxicological 
modes of action and identifying putative biomarkers such as disruption of purine metabolism and 
perturbation of polyunsaturated fatty acid levels. 

Keywords: in vitro metabolomics; cardiac microtissues; cardiotoxicity; mode of action; biomarkers; 
untargeted toxicokinetics; sample harvesting; sensitivity 
 

1. Introduction 
Drug-induced cardiotoxicity is a major cause of attrition during preclinical and clin-

ical drug development and post-approval withdrawal of medicines [1–4]. Consequently, 
there is an urgent need to develop effective preclinical assays to evaluate the cardiac safety 
risk of lead compounds [2]. In vitro approaches, when coupled with molecular assays, are 
considered promising for this purpose given their relatively low cost, capability for high 
throughput and ethical benefits, i.e., in the replacement, reduction and refinement of ani-
mal research (3Rs). The effectiveness of preclinical in vitro screens is well evidenced by 
the successes of the hERG assay, which evaluates the risk that a compound will induce 
QT prolongation, an electrical disturbance in the heart [2,5–7]. Furthermore, the ability of 
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assays employing stem cell-derived cardiomyocytes to predict the risk of cardiotoxicity 
has been demonstrated [8–11]. However, these in vitro models do not take into consider-
ation the role of non-cardiomyocytes, which contribute approximately 70% of the cell 
mass and have important roles in cardiac physiology and functionality [12,13]. Further-
more, monolayer cultures are considered to lack physiological relevance given the ab-
sence of cell–cell and cell–extracellular matrix interactions which are important regulators 
of cell morphology [14–16]. The recent development and use of more complex in vitro 
models encompassing human induced pluripotent stem cell-derived cardiomyocytes 
(hiPSC-CMs) in 3D co-cultures alongside fibroblasts and endothelial cells, which together 
represent the majority of non-cardiomyocytes in the heart, has enhanced the specificity 
and sensitivity of assays which aim to predict the cardiac safety risk of screened com-
pounds [12,17]. These spontaneously beating 3D co-cultures, composed of approximately 
500 cells, are termed cardiac microtissues [17]. 

The majority of screening assays developed over recent years have focused on pre-
dicting functional cardiotoxicity, i.e., change in the mechanical function of the myocar-
dium, while molecular biomarkers that can predict drug-induced morphological damage 
of the myocardium and loss of cardiac viability (structural cardiotoxicity) are still lacking 
[8,12,18]. As such, mechanistic insight and predictive biomarkers of structural cardiotox-
icity remain a significant unmet need [2,8,12,18]. Untargeted metabolomics is a promising 
approach in toxicology for generating hypotheses on toxicity modes of action [19–23] and 
for discovering metabolic biomarkers [18]. Metabolomics-based in vivo studies have pre-
viously detected metabolic perturbations associated with drug-induced cardiotoxicity 
[24,25]. Furthermore, the technology has successively been applied to measure changes to 
the extracellular metabolome, termed the ‘metabolic footprint’, of hiPSC-CMs induced by 
cardiotoxins, with the responses of four metabolites (arachidonic acid, lactic acid, 2′-deox-
ycytidine and thymidine) proposed as biomarkers predictive of the cardiotoxicity poten-
tial of drugs [18]. Measurement of the metabolic footprint of an in vitro model can be 
achieved by conventional ultra-high performance liquid chromatography-mass spectrom-
etry (UHPLC-MS)-based analyses of spent culture medium, which can be relatively 
simply and non-invasively sampled [18,26]. However, although it provides an indication 
of molecular disruption to the in vitro model, the metabolic footprint does not represent 
all intracellular responses [26,27]. Thus, profiling intracellular metabolic perturbations, in 
addition to the metabolic footprint in the culture medium, offers a more promising plat-
form for gaining mechanistic insight and discovering predictive biomarkers of structural 
cardiotoxicity. 

Profiling drug-induced intracellular metabolic perturbations, particularly of more 
advanced in vitro models such as microtissues, is challenging. For example, conventional 
metabolomics technologies such as UHPLC-MS typically require more than a million cells 
per sample [26], while 3D microtissue cultures are limited to just a few hundred cells [12]. 
Greater sensitivity may be achieved through application of a spectral-stitching nanoelec-
trospray ionisation direct infusion mass spectrometry (nESI-DIMS)-based approach, 
which offers an enhanced detection sensitivity while maintaining high reproducibility 
and minimising ion suppression and/or enhancement [28]. However, this approach is thus 
far untested on in vitro samples consisting of <5 × 105 cells (HepaRG) [29]. Furthermore, 
harvesting cells in a manner that ensures the metabolomics analysis accurately measures 
the levels of intracellular physiological metabolites is challenging, particularly for sus-
pended cultures including cardiac microtissues [30]. Optimally, sample harvesting re-
moves the culture medium, including extracellular metabolites, while limiting leakage of 
intracellular metabolites [30]. Sample harvesting of suspended cell cultures is often 
achieved by centrifugation to first separate the cells from their culture medium before 
quenching metabolism. However, it can often take up to several minutes before metabo-
lism is quenched, particularly when washing steps are included to ensure thorough re-
moval of extracellular metabolites. This is deemed unacceptable for metabolites with rel-
atively fast turnover rates [30]. Filtration has been proposed as an alternative approach 
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which can allow more rapid isolation of cells from their culture medium, although this 
has only been tested on relatively large-scale cultures [30]. 

Characterising a drug’s disposition is commonplace in in vivo studies to aid the pre-
diction of human risk from the responses of model species [31,32]. However, comparable 
analyses are not typically applied in in vitro toxicity evaluations, despite their potential 
for enhancing the interpretation of endogenous responses and subsequently aiding in 
vitro to in vivo extrapolation (IVIVE). We have previously developed and implemented 
an ‘untargeted toxicokinetics’ workflow capable of extracting information on xenobiotic 
disposition from UHPLC-MS untargeted metabolomics datasets, including extraction of 
relative extracellular levels of an exposure xenobiotic, sunitinib, in an in vitro cardiomyo-
cyte-based model over a 24 h toxicity study [33]. Moving beyond this, absolute quantifi-
cation of drug concentrations in the spent culture medium of in vitro models over the 
duration of a toxicity experiment would enable validation of drug exposure levels and 
may contribute to greater certainty in IVIVE. 

The aim of this study was to develop and subsequently demonstrate an extensive 
metabolomics workflow for investigating drug-induced cardiotoxicity in cardiac microtis-
sues, incorporating nESI-DIMS-based untargeted metabolomics of intracellular extracts 
and UHPLC-MS-based analysis of spent culture medium, both to profile the metabolic 
footprint and quantify drug exposure concentrations. Firstly, approaches for harvesting 
and washing cardiac microtissues for intracellular metabolomics were evaluated with re-
spect to the m/z feature count, data reproducibility and effectiveness of culture medium 
removal. Additionally, an experimentally feasible sample biomass for intracellular nESI-
DIMS metabolomics was determined by assessing the sensitivity and reproducibility of 
measurements across a gradient of cardiac microtissue biomasses. The third objective was 
to demonstrate the suitability of this workflow for assessing drug-induced cardiotoxicity 
in microtissues. Cardiac microtissues were exposed to sunitinib, a synthetic drug and es-
tablished structural cardiotoxin, at two concentrations, for up to 72 h. Time-resolved in-
tracellular metabolic perturbations and changes to the metabolic footprint were discov-
ered by nESI-DIMS and UHPLC-MS analysis, respectively. The final objective was to in-
tegrate quantitative measurements of the extracellular concentrations of the exposure 
drug, sunitinib, into the same UHPLC-MS metabolomics assay. 

2. Results and Discussion 
2.1. Comparison of Approaches for the Sampling of Cardiac Microtissues for Untargeted 
Metabolomics 

A rapid filtration-based microtissue sampling approach using cell strainers was eval-
uated by comparison against a more routine, slower centrifugation-based approach, with 
respect to the efficiency in isolating the microtissues from the culture medium, impact on 
the cells (i.e., do they induce cell lysis) and overall metabolic reproducibility. These char-
acteristics were assessed by examining the number of m/z features detected as well as their 
variability across biological replicates. Comparing the time scales for the two sampling 
approaches (outlined in Figure S1), the filtration method required ca. 60 s from collecting 
the microtissues from their culture plate through to the quenching of metabolism, while 
the centrifugation method required over 10 min, opening the potential for significant and 
unwanted metabolic changes. Principal component analysis (PCA) of nESI-DIMS meas-
urements of the metabolome and lipidome revealed that somewhat more consistent (less 
variable) intracellular metabolic and lipidomic signatures can be obtained when the mi-
crotissues are sampled rapidly via filtration (Figure 1). This finding is further evidenced 
by the lower median relative standard deviation (mRSD); an established metric for de-
scribing the variance of metabolic features [34], measured across filtered, vs. centrifuged, 
biological replicates (Table 1). Sampling microtissues by filtration resulted in a 1.9× and 
1.6× higher number of m/z features in the intracellular polar metabolite and lipid extracts, 
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respectively, compared to when microtissues were sampled by centrifugation. This im-
proved coverage of the metabolome and lipidome is believed to be a consequence of the 
shorter handling times and reduced strain placed on cells during sampling, which likely 
minimises metabolite degradation and cell lysis prior to quenching.  

 
Figure 1. PCA score plots visualising the metabolic differences between samples harvested by centrifugation or filtration 
as measured by (a) nESI-DIMS polar metabolomics (positive ion mode) and (b) nESI-DIMS lipidomics (positive ion mode). 
Replicate samples are colour coded as:  centrifugation—biological replicates;  centrifugation—technical replicates;  
filtration—biological replicates; and  filtration—technical replicates. Dashed lines show 95% confidence intervals for 
each group of samples. 

Table 1. Metrics used to evaluate the relative coverage of the microtissue metabolome/lipidome (m/z feature count), tech-
nical reproducibility (mRSD across technical replicates) and total reproducibility (mRSD across biological replicates) for 
pooled microtissues sampled by either centrifugation- or filtration-based approaches and all analysed by nESI-DIMS 
metabolomics and lipidomics (positive ion mode). 

Assay Metabolomics Lipidomics 
Sampling Method Centrifugation Filtration Centrifugation Filtration 

Feature count 1697 3169 3173 4919 
Technical variation: median RSD 

across technical replicates (%) 17.0 12.9 13.0 20.4 

Total variation: median RSD across 
biological replicates (%) 42.1 35.5 50.2 31.6 

Thorough removal of residual culture medium from cells is preferable to limit con-
tamination of intracellular extracts [30]. This is particularly important for nESI-DIMS 
measurements where high-concentration, highly ionisable compounds in the media (po-
tentially including the exposure chemical) can induce ion competition in the mass spec-
trometer source, suppressing detection of the intracellular metabolome and lipidome [35]. 
The use of isotonic washing solutions, e.g., 0.9% NaCl (saline), is preferable in order to 
minimise metabolite leakage by osmotic shock to the cells [30]. However, residual salts in 
analytical samples can interfere with nESI-DIMS measurements; thus, a final water wash, 
rapid enough to minimise osmotic shock (<20 s), is recommended [36]. 

Consequently, we sought to optimise the procedures for washing harvested microtis-
sues as part of the filtration-based sampling approach. This was achieved by evaluating 
the impact of the number and volume of saline wash steps on the nESI-DIMS measure-
ment of process blanks, and thus the effectiveness of residual media removal, by compar-
ing the total number of features detected per group and the relative intensities of features 
per group. Washing was shown to impact the amount of residual media removed from 
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the cell strainers, demonstrated by the significant decrease in the number of features de-
tected from washed strainers compared to no washing (Figure 2a) and a significant reduc-
tion in the intensities of between 71 and 117 features, depending on the washing protocol, 
that were detected in at least 2 of 3 replicates per group (q < 0.1, one-way ANOVA with 
Tukey’s HSD post hoc test and FDR correction; Figure 2b). Included in the features with 
significantly reduced intensities are constituents of cell culture media (e.g., putatively an-
notated lactic acid, amino acids; Table S1). Upon examining a range of washing options, 3 
× 1 mL saline followed by 1 × 1 mL water yielded the least number of detected features 
and, of those, the most features with significantly reduced intensities compared to no 
washing. It was concluded to wash with 3 × 1 mL saline, plus 1 × 1 mL water, to limit the 
residual culture medium contamination on the cell strainers during sampling of cardiac 
microtissues for metabolomics analysis. 

 
Figure 2. Evaluation of washing procedures for filtration-based sampling of microtissues. (a) Bar chart showing the total 
number of features detected in process blanks prepared without washing, or with 2 × 0.5 mL, 2 × 1 mL, 3 × 1 mL or 4 × 1 
mL saline washes, followed by 1 × 1 mL water wash. Negative control data were acquired from extraction blanks (i.e., no 
medium was passed through the cell strainer prior to extraction). Error bars display standard error across 3 replicates. 
Significant differences between groups (one-way ANOVA with Tukey’s post hoc test) are displayed: *** p < 0.01, ** p < 
0.05, * p < 0.1, NS, not significant. (b) Bar chart showing the number of features (of 2023 features detected in ≥2 of 3 repli-
cates in each group) whose intensities are significantly reduced by each washing protocol compared to no washing. Sig-
nificant reduction in feature intensity is defined where fold change of median intensity in washed samples compared to 
non-washed samples is <1 and q < 0.1, calculated by one-way ANOVA with Tukey’s post hoc test and FDR correction. 

Thus, here, we present a filtration-based approach which allows for rapid, reproduc-
ible and efficient harvesting of suspended cell cultures for untargeted metabolomics. Alt-
hough only demonstrated for cardiac microtissues, we propose our approach would be 
appropriate for other suspended cell cultures of low biomass. 

2.2. Sensitivity and Reproducibility of nESI-DIMS Untargeted Metabolomics Measurements 
Using Very Low Biomass Samples 

Following the demonstration of an improved methodology for the sampling of car-
diac microtissues relative to a more conventional centrifugation-based approach, we 
sought to characterise the sensitivity and reproducibility of nESI-DIMS untargeted metab-
olomics measurements across a gradient of cardiac microtissue biomasses, with the aim 
to determine which biomass to use in subsequent toxicology studies. Specifically, four 
biomasses were selected based on practical feasibility, corresponding to 28, 21, 14 and 7 
pooled microtissues.  

The sensitivity of the nESI-DIMS untargeted metabolomics was assessed according 
to the number of features detected in ≥80% of samples (biological replicates and intra-
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study quality control samples (QCs) that were composed of an equivalent number of mi-
crotissues as the biological samples) after blank subtraction, at each sample biomass. As 
expected, the m/zfeature count increased with increasing sample biomass (Table 2). Spe-
cifically, there was a 1.7-fold and 1.8-fold increase in the number of features detected by 
the metabolomics and lipidomics assays, respectively, when samples consisting of 28 
pooled microtissues were compared to just 7 microtissues. We concluded that the maxi-
mum feasible number of microtissues per sample, 28 (ca. 14,000 cells), should be employed 
to maximise detection of the metabolome and lipidome. 

Table 2. Metrics to evaluate the detection sensitivity (feature count), technical reproducibility (mRSD across intra-study 
QCs) and total reproducibility (mRSD across biological replicates) of measurements are reported for samples of 7, 14, 21 
or 28 pooled cardiac microtissues analysed by nESI-DIMS metabolomics and lipidomics (positive ion mode). 

Assay Metabolomics Lipidomics 
Sample biomass  

(Number of pooled cardiac microtissues) 
7 14 21 28 7 14 21 28 

Feature count 796 817 1030 1321 1427 1765 2336 2507 
Technical variation: median RSD across intra-

study QCs (%) 13.7 10.6 18.0 20.5 17.6 16.9 15.1 12.4 

Total variation: median RSD across biological 
replicates (%) 37.1 39.0 40.5 31.9 33.4 37.9 34.7 27.6 

It is noteworthy that of the 367 metabolite and 914 lipid features detected consistently 
across all four sample biomasses, the intensities of 45% and 50% of these features, respec-
tively, showed a significant positive correlation (Spearman’s, p < 0.05) with the sample 
biomass. This association evidences the biological origin of those features, thus demon-
strating that a reduced feature metabolic and lipidomic signature could, in fact, be meas-
ured using nESI-DIMS analysis of as little as seven pooled microtissues (ca. 3500 cells). 

The technical reproducibility of the nESI-DIMS measurements was assessed by 
mRSDs across replicates derived from intra-study QCs for each sample biomass. The 
mRSD values were ≤20.5% for all four microtissue biomasses (Table 2), which were 
deemed acceptable based on the mRSDs reported for cell-based samples of a larger bio-
mass, e.g., technical mRSD of 14% for human immortalised K562 cells analysed by nuclear 
magnetic resonance spectroscopy [34].  

Variation measured across biological replicates can originate from any step in the 
workflow from cell culturing through to the analytical measurement. Minimising this var-
iation can improve statistical power in comparative analyses, e.g., in the discovery of met-
abolic features perturbed by chemical exposure. Our data show no clear trend in the total 
variation as a function of the sample biomass; however, the most reproducible peak in-
tensities, as indicated by the lowest mRSD across biological replicates, are observed for 
samples composed of 28 pooled microtissues for both metabolomics and lipidomics meas-
urements (Table 2), further supporting the selection of 28 pooled microtissues per sample 
for subsequent studies. 

Thus, we have demonstrated that implementation of nESI-DIMS with SIM stitching 
enables reproducible untargeted metabolomic analysis of samples composed of as little as 
ca. 3500 cells. This discovery may encourage the application of untargeted metabolomics 
to other sample types which suffer from a limited biomass. 

2.3. Probing Molecular Responses of Cardiac Microtissues to Sunitinib Exposure 
With validation of a filtration-based sampling approach for cardiac microtissues and 

confirmation that the nESI-DIMS analytical method is sufficiently sensitive and reproduc-
ible for untargeted analyses of intracellular extracts from 28 pooled microtissues, we next 
sought to demonstrate the capability of this approach to discover time-resolved intracel-
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lular metabolic responses of cardiac microtissues following exposure to sunitinib, a syn-
thetic drug and clinically labelled cardiotoxin. Additionally, we implemented UHPLC-
MS(/MS) analysis of the spent culture medium from the same samples both to characterise 
changes to the metabolic footprint of cardiac microtissues following exposure to sunitinib 
and to quantify extracellular concentrations of sunitinib over the duration of exposure.  

The responses to two concentrations of sunitinib were investigated: 3.5 μM (‘high’) 
and 1.1 μM (‘low’), where the high concentration is phenotypically anchored to the IC30 of 
ATP depletion after 72 h of exposure [12], i.e., a concentration known to induce some met-
abolic disruption, and the low concentration is a half-log dilution of the high concentra-
tion. 

2.3.1. Phenotypic Measurements Demonstrate Adversity at 72 h 
High-content biology measurements [12] conducted on a subset of microtissues pro-

vided confirmation that phenotypic perturbations are induced by both concentrations of 
sunitinib after 72 h. Specifically, the high exposure to sunitinib (3.5 μM) induced an 83.9% 
and 24.8% reduction in endoplasmic reticulum (ER) integrity and mitochondrial mem-
brane permeability (Δψm), respectively (Figure S2). Meanwhile, the low exposure (1.1 
μM) induced a slight change (−9.5%) to Δψm and a more significant 63.1% loss of ER in-
tegrity by 72 h (Figure S2). These results are consistent with previously reported dose–
response relationships of sunitinib-exposed cardiac microtissues, thus demonstrating the 
high reproducibility of the in vitro model [12]. 

2.3.2. Quantification of Extracellular Sunitinib in Spent Culture Medium Indicates Up-
take into Microtissues 

Targeted absolute quantification of sunitinib as part of the same UHPLC-MS(/MS) 
analytical run applied for untargeted metabolomics (described later), using an external 
sunitinib calibration curve (Figure S3), allowed us to confirm and evaluate the variability 
of sunitinib exposure concentrations across biological replicates, and to estimate the ex-
tent of uptake into the microtissues. The measurements showed extracellular sunitinib 
concentrations reached an equilibrium of 77% and 69% of the nominal low and high con-
centrations, respectively, by 2 h and remained consistent at least up to 48 h (Figure 3). This 
suggests a 23% and 31% uptake of sunitinib at low and high exposures, respectively, into 
the cardiac microtissues, assuming the nominal exposure concentrations were accurate 
and negligible nonspecific binding of sunitinib occurred, e.g., to plasticware. This second 
assumption is substantiated by there being no significant difference between the nominal 
and measured concentrations of sunitinib in ‘negative control’ samples that include media 
and sunitinib but lack microtissues. At 72 h, extracellular levels were restored to 132% and 
90% of the nominal high and low exposures, respectively, a significant increase from the 
levels measured at 48 h (p < 0.0001, two-sided t-test), suggesting efflux of the drug from 
microtissues may occur between 48 and 72 h (Figure 3). The variability in exposure con-
centrations between samples was low, with mRSDs across biological replicates (sum of 
biological and technical variability) of < 20% for both exposure concentrations at all time 
points. 



Metabolites 2021, 11, 644 8 of 20 
 

 

 
Figure 3. Absolute sunitinib concentrations in spent media of pooled microtissues collected at 2, 6, 
48 and 72 h after initial exposure as calculated from measured peak areas using an external calibra-
tion curve. Solid lines show the median extracellular sunitinib concentration at each time point for 
low (green) and high (blue) exposures separately. Nominal low and high exposure concentrations 
are displayed as a dashed line, green and blue, respectively. **** p < 0.0001, for comparison of con-
centrations at 48 h vs. 72 h, per concentration (two-sided t-test). All other comparisons of concen-
trations at consecutive time points (2 vs. 6 h, 6 vs. 48 h) were not significant (p > 0.05). 

Absolute quantification of exposure drugs in in vitro studies is not routinely ob-
tained, and while measurements of an exposure drug in the same biological samples as 
those used to probe endogenous metabolic responses have been demonstrated previously 
[33], these were limited to relative exposure levels only. Here, we demonstrate that by 
including an external calibration curve in the analytical sequence, it is possible to abso-
lutely quantify exposure drug concentrations using the same UHPLC-MS(/MS) untar-
geted measurements used to probe endogenous responses. In in vitro toxicology studies, 
such measurements offer the opportunity to enhance IVIVE by providing confidence in 
actual exposure concentrations and to make evidence-based predictions on the amount of 
drug uptake.  

2.3.3. Untargeted Metabolomics and Lipidomics Reveal Time-Dependent Sunitinib-In-
duced Intracellular and Extracellular Perturbations in Cardiac Microtissues  

Four nESI-DIMS assays were implemented to measure the intracellular polar metab-
olome and lipidome, both in positive and negative ion modes, of cardiac microtissues ex-
posed to sunitinib (high concentration—3.5 μM; low concentration—1.1 μM) or 0.1% (v/v) 
DMSO (control), sampled at 2, 6, 48 and 72 h after initial exposure. Intra-study QCs were 
derived from a single pool of control cardiac microtissue extracts. Biological feature 
counts, after data processing, were 1874 and 1559, and 2106 and 2456, for positive and 
negative ion metabolomics, and positive and negative ion lipidomics assays, respectively. 
The technical variability of the datasets was estimated from QCs, with mRSDs of 33.8% 
and 6.8%, and 9.0% and 14.0%, for positive and negative ion metabolomics, and positive 
and negative ion lipidomics assays, respectively, indicating high technical reproducibility 
in three of the four assays. The positive ion metabolomics dataset was deemed of poor 
technical quality and thus not considered further. The total metabolic variability was as-
sessed for each group of biological replicates, with mRSDs ranging between 20.0% and 
49.6% for all groups and assays (Figures S4–S6). No clear trend in the total metabolic var-
iability with respect to treatment class or time point was observed. 
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Univariate statistical analysis (one-way ANOVAs with Tukey’s HSD post hoc test-
ing) comparing measured levels of intracellular features in sunitinib-exposed vs. control 
microtissues revealed a significant perturbation of the cardiac microtissue metabolome 
after 6, 48 and 72 h (Figure 4a). The greatest perturbation of the intracellular metabolome 
was observed in response to low sunitinib exposure after 6 h, where the intensities of 315 
features changed significantly (q-value < 0.1, one-way ANOVA with Tukey’s HSD post 
hoc testing) compared to time-matched controls. At 48 h, the levels of 69 and 47 polar 
features were significantly different in microtissues exposed to low and high concentra-
tions of sunitinib, respectively, compared to controls. Meanwhile, at 72 h, significant dif-
ferences were only detected in microtissues exposed to the higher concentration of 
sunitinib.  

 
Figure 4. Bar charts summarising the number of significantly changing m/z features following the exposure of cardiac 
microtissues to sunitinib. Number of (a) intracellular metabolite, (b) intracellular lipid and (c) extracellular metabolite 
features whose intensities changed significantly upon exposure to two concentrations of sunitinib for 2, 6, 48 or 72 h, 
relative to controls. Stacked bars show contribution of measurements from positive (grey) and negative (yellow) ionisa-
tion-based assays. Significance defined where q < 0.1, one-way ANOVA with Tukey’s HSD post hoc test and false discov-
ery rate correction. 

The largest response of the intracellular lipidome was observed at 48 h following 
high exposure to sunitinib. Here, the intensities of 100 features were significantly different 
compared to the control. A significant lipidomic response to the lower concentration of 
sunitinib was not apparent until 72 h, when the intensities of 29 features were significantly 
perturbed compared to the control. In contrast, the intensities of 86 features were signifi-
cantly perturbed in microtissues exposed to the higher concentration of sunitinib at 72 h 
(Figure 4b). Further analysis, by k-means cluster analysis, revealed five subclusters of in-
tracellular lipids displaying distinct temporal responses when exposed to the higher con-
centration of sunitinib. A subset of lipids in three of the five subclusters showed dose 
dependency in their response, with comparable temporal trends of lower magnitude ob-
served in response to the lower concentration of sunitinib (Figure S7). 

In addition to nESI-DIMS untargeted metabolomics and lipidomics of the intracellu-
lar extracts, UHPLC-MS(/MS) untargeted metabolomics was conducted on spent culture 
medium from the same cardiac microtissues. Feature counts after data processing and 
peak matrix filtering were 756 and 548 for the positive and negative ion modes, respec-
tively. Univariate statistical analyses (one-way ANOVA with Tukey’s HSD post hoc test) 
revealed significant differences (q < 0.1) in the intensities of 18 and 28 features following 
exposure to low- and high-concentration sunitinib, at 6 h. Meanwhile, only 1, 2 and 1 fea-
ture(s) significantly responded to low-sunitinib exposure at 2, 48 and 72 h, respectively, 
and 0, 2 and 1 feature(s) significantly responded in response to high-sunitinib exposure at 
2, 48 and 72 h, respectively (Figure 4c). The time of this maximal effect on the extracellular 
footprint is consistent with the largest response of the intracellular polar metabolome. 
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We further sought to discover intracellular metabolic perturbations in cardiac mi-
crotissues induced by exposure to sunitinib using supervised multivariate analyses. Par-
tial least squares discriminatory analysis (PLS-DA) was conducted separately for each 
treated (either high or low concentration of sunitinib) vs. control comparison across all 
assays and time points. Acceptable models were built which separated the low-exposure 
negative ion metabolome at 2, 6 and 48 h, and high-exposure negative ion lipidome at 48 
and 72 h, from the time-matched controls (Figure S8; Table S2).  

Comparison of features important to the models (variable importance in projection 
(VIP) score > 1) at each time point revealed a relatively high level of consistency, suggest-
ing the same set of metabolites and lipids is capable of discriminating a sunitinib-per-
turbed intracellular microtissue metabolome or lipidome from that of controls at any time 
point (Figure 5). Specifically, 191 and 388 features were consistently important in discrim-
inating the effects of sunitinib on the metabolome and lipidome, respectively.  

 
Figure 5. Venn diagrams displaying the overlap in features with VIP scores > 1 in PLS-DA models discriminating (a) 
between the polar metabolome, as measured by polar negative assay, of microtissues exposed to low-dose sunitinib and 
control microtissues at 2, 6 and 48 h after initial exposure, and (b) between the lipidome, as measured by lipid negative 
assay, of microtissues exposed to high-dose sunitinib and control microtissues at 48 and 72 h after initial exposure. 

Annotation of biological features can allow hypotheses to be generated with respect 
to the perturbations induced at the pathway level. Here, we observed a statistical enrich-
ment (FDR-corrected p-value, hypergeometric test) of polar metabolites associated with 
purine metabolism, in response to sunitinib exposure for 6 h, as determined by univariate 
analyses (Tables S3 and S4). 

Additionally, the intensities of three metabolites—hypoxanthine, inosine and L-glu-
tamine (MSI level 1 annotation, using accurate m/z, retention time and MS/MS fragmen-
tation match to reference standards, Figures S9–S11)—were discovered to be significantly 
different in the spent medium of sunitinib-exposed microtissues relative to untreated con-
trols, at 6 h (Figure 6). These metabolites are all constituents of the purine metabolism 
pathway (map00230, KEGG PATHWAY [37]), thereby supporting the hypothesis from 
the intracellular metabolomics that sunitinib perturbs purine metabolism in cardiac mi-
crotissues within 6 h of initial exposure. 
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Figure 6. Peak intensities of (a) hypoxanthine ([2M − H]−), (b) inosine ([M + H]+) and (c) L-glutamine ([M – H − H2O]−) 
measured using HILIC UHPLC-MS in the spent culture medium of control (exposed to 0.1% DMSO), low (1.1 μM 
sunitinib) and high (3.5 μM sunitinib) cardiac microtissues at 6 h after exposure. The q-values (one-way ANOVA with 
Tukey’s honestly significant difference post hoc test and false discovery rate corrected) are displayed. 

Disruption of purine metabolism has also been linked with doxorubicin-induced car-
diotoxicity in vitro. Specifically, an enrichment of purine metabolism pathway (hsa00230, 
KEGG) constituents was discovered amongst significantly down-regulated genes in dox-
orubicin-treated hiPSC-CMs [38]. Thus, our results, coupled to previous findings, impli-
cate purine metabolism dysfunction in the progression of drug-induced structural cardi-
otoxicity.  

Furthermore, putative annotation of the features with a VIP score of > 1 across mul-
tiple PLS-DA models revealed a notional importance for the response of polyunsaturated 
fatty acids, amongst other metabolites and lipids, in discriminating sunitinib-perturbed 
microtissues from controls (Tables S5 and S6). This poses these molecules as of interest for 
further characterisation as potential biomarkers of drug-induced structural cardiotoxicity. 
Polyunsaturated fatty acids have previously been shown to impact the development of 
drug-induced structural cardiotoxicity. Specifically, pre-treatment with eicosapentaenoic 
or docosahexaenoic acid significantly attenuated activation of the NF-ϰB/iNOS/NO sig-
nalling pathway, increased reactive oxygen species, change to mitochondrial membrane 
potential, cytotoxicity and inflammation induced by doxorubicin, a structural cardiotoxin, 
in H9C2 cells [39,40].  

These results demonstrate the capability of our workflow, involving nESI-DIMS un-
targeted metabolomics and lipidomics of intracellular extracts, and UHPLC-MS(/MS) un-
targeted metabolomics of spent culture medium, to reveal metabolic and lipidomic per-
turbations in cardiac microtissues induced by a structural cardiotoxin, in this case, 
sunitinib. The time dependency of these effects reveals the importance of incorporating 
temporal resolution into the design of toxicity studies. Furthermore, through annotation 
of perturbed biological features, it is possible to develop evidence-based hypotheses on 
the mode of action and discover putative metabolic and/or lipid biomarkers of drug-in-
duced structural cardiotoxicity in cardiac microtissues. 

3. Materials and Methods 
3.1. Cell Culturing and Sunitinib Exposure 

Cardiac microtissues were cultured as described previously [12]. Briefly, primary hu-
man cardiac microvascular endothelial cells (hCMECs, Lonza, Basel, Switzerland) and 
primary human cardiac fibroblasts (hCFs, Lonza) were grown and maintained in EGM-2 
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MV Endothelial Med BulletKit (CC-3202), and FGMTM-3 Cardiac Fibroblast Growth Me-
dium-3 BulletKit (CC-4526), respectively. On the day of microtissue synthesis, iPS cardio-
myocytes (iCell Cardiomyocytes, Cellular Dynamics International (CDI), Madison, WI, 
USA) were thawed in plating media according to manufacturer’s instructions, and 
hCMECs and hCFs were detatched to obtain a single suspension. Microtissues were 
formed by combining cell suspensions of hiPS-CMs, hCFs and hCMECs to obtain 285 iPS-
CMs, 142 hCFs and 71 hCMECs in a total of 40 uL (20 μL iPS CM thaw medium (CDI), 
and 20 μL EGM-2 MV medium (Lonza)) per well. Microtissues were plated into 384 ultra-
low attachment U-bottom plates (Corning, UK, PN: 3830), and the medium was topped 
up to 80 μL with maintenance medium (50% iCell maintenance medium (CDI), 50% EGM-
2 MV (Lonza)) after 48 h. Note, microtissues were not plated on the outer edge of the 384-
well plates due to the higher medium evaporation rates here. Microtissues were main-
tained for a minimum of 14 days prior to experimentation by removal of 40 μL medium, 
which was replaced by fresh maintenance medium twice weekly. 

Microtissues were treated with either 0.1% DMSO (control), 1.1 μM sunitinib (low 
concentration) or 3.3 μM sunitinib (high concentration) by the removal of 40 μL medium, 
and addition of drugs at a 2× stock. Microtissues were treated for either 2, 6, 48 or 72 h 
prior to sampling/imaging. 

3.2. High-Content Biology Assay 
Microtissues were stained for 30 min at 37 °C with fluorescent probes by removal 

and replacement of 40 μL cell culture maintenance medium containing 2× dyes—ER-
Tracker (2 μM final) and TMRE (0.5 μM final) for ER integrity and mitochondrial mem-
brane potential analysis, respectively. Microtissues were imaged live on a Cell Voyager 
7000 (Yokogawa, Japan) using a 20× objective in a temperature (37 °C)- and CO2 (5%)-
controlled chamber. ER-Tracker was imaged using a 405 nm excitation laser (405 ± 5 nm, 
100 mW, Coherent, UK) and an Andor Neo sCMOS camera with a 445/45 nm band pass 
emission filter. TMRE was imaged using a 561 nm excitation laser (561 ± 2 nm, 200 mW, 
Coherent) and a 600/37 nm band pass emission filter. Transmitted light images were ac-
quired using a 100 W halogen lamp as an illumination source. Images were captured over 
a 60 μm range in the Z-axis with a 5 μm interval between slices. Z-stack images were out-
put as a maximal projection of multiple z-planes. 

Maximum projection images were imported and analysed in the Columbus Platform 
(v2.7, Perkin Elmer Inc., Beaconsfield, UK). Objects were identified using the transmitted 
light image and the object of interest selected based on morphological and intensity-based 
features from the fluorescence channels. Quantitative measurements of morphological, 
texture and intensity features from the microtissues were captured for all parameters and 
exported for data analysis. 

3.3. Microtissue Sample Collection 
3.3.1. Microtissue Sampling by Centrifugation 

Microtissues and their culture media were aspirated from either 14 wells (1 column) 
or 154 wells (11 columns, corresponding to ½ plate) of the 384-well culture plate and 
pooled. Samples were centrifuged at 400× g for 3 min, the supernatant (culture medium) 
was discarded and the pellet (microtissues) was resuspended in 0.5 mL ice-cold 0.9% 
NaCl. Washed samples were centrifuged again (5000× g, 3 min). The supernatant was dis-
carded, and the saline wash step repeated. Finally, the pellet was resuspended in 0.5 mL 
ice-cold ultra-pure water. Resuspended samples were spun until 5000× g was reached, 
and then the supernatant was rapidly discarded before quenching the microtissues in dry 
ice/ethanol. Harvested microtissue samples were stored at −80 °C until extraction. Process 
blanks were generated by sampling of media only (no microtissues) by the same ap-
proach. 
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3.3.2. Microtissue Sampling by Filtration 
We utilised an adaptation of the filtration method reported by Bordag et al. [30]. Mi-

crotissues and their culture media were aspirated from either 7 (½ column), 14 (1 column), 
21 (1½ columns) or 28 (2 columns) neighbouring wells of a 384-well culture plate and 
added to one side of a cell strainer (37 μm reversible strainer, StemCell Technologies, 
Cambridge, UK). The culture medium was allowed to drain, before successive ice-cold 
0.9% NaCl and ultra-pure water washes (either 2 × 0.5 mL 0.9% NaCl, 1 × 0.5 mL H2O for 
the experiments described in Sections 2.1 and 2.2, or 3 × 1 mL 0.9% NaCl, 1 × 1 mL H2O 
for the experiments described in Section 2.3) were conducted, with the cell strainer al-
lowed to drain. The microtissue-containing cell strainer was then flash frozen in dry 
ice/ethanol and stored on dry ice during the collection of remaining samples. Harvested 
microtissue samples were stored at −80 °C until extraction. Samples of spent culture media 
were spun to remove cellular debris and then stored at −80 °C until extraction. 

Process blanks were generated by sampling of media only (no microtissues) using 
the same approach. To evaluate the effect of washing on the amount of residual medium 
remaining on the cell strainers after sampling, process blanks were generated using media 
only (no microtissues). Specifically, 2.24 mL culture medium was added to a cell strainer 
and allowed to drain. The strainer was then either not washed, or washed with 2 × 0.5 mL 
saline, 2 × 1 mL saline, 3 × 1 mL saline or 4 × 1 mL saline. Each washing protocol was 
concluded with a single water wash of equivalent volume to a single saline wash. 

3.4. Intracellular nESI-DIMS Untargeted Metabolomics and Lipidomics 
3.4.1. Extraction of Intracellular Metabolites  

Intracellular polar metabolites were extracted from harvested microtissues by either 
addition of 200 μL ice-cold 4:1 (v/v) MeOH/H2O (LC-MS grade, VWR International, Lut-
terworth, UK) to each sample in a microcentrifuge tube or, for samples harvested by fil-
tration, addition of 200 μL ice-cold 4:1 (v/v) MeOH/H2O to the surface of the cell strainer 
(held in a microcentrifuge tube, creating an airtight seal which prevents the solvent from 
passing through the filter), followed by re-aspiration of the solvent and microtissues, and 
transferred to a microcentrifuge tube. For the experiment described in Section 2.3, MeOH 
was supplemented with 0.2 μM L-tryptophan-(indole-d5) (Merck, Gillingham, UK), 
added as an internal standard to assess technical error resulting from sample preparation 
and analysis. Samples were vortexed for 2 min and then centrifuged (20,000× g, 4 °C) for 
20 min. Either 180 μL of the supernatant was transferred to a microcentrifuge tube (exper-
iments discussed in Section 2.1) or 90 μL of the supernatant was transferred to 2 micro-
centrifuge tubes (experiments described in Sections 2.2 and 2.3). Extracts were then dried 
in a SPD11V SpeedVac sample concentrator (Thermo Scientific, Rugby, UK) for 4 h. Ex-
traction blanks were generated by applying the same extraction procedure to fresh cell 
strainers. 

3.4.2. Extraction of Intracellular Lipids 
Intracellular lipids were extracted from samples by either addition of 160 μL ice-cold 

MeOH to each sample in a microcentrifuge tube or, for samples harvested by filtration, 
addition of 160 μL ice-cold MeOH to the surface of the cell strainer (held in a microcentri-
fuge tube, creating an airtight seal which prevents the solvent from passing through the 
filter). The solvent and microtissues in the microcentrifuge tube or cell strainer were then 
aspirated and transferred to a 1.75 mL glass vial. An amount of 80 μL ice-cold CHCl3 
(HPLC grade, Merck) was added, for a final solvent ratio of 2:1 (v/v) MeOH/CHCl3. For 
the experiment described in Section 2.3, MeOH was supplemented with 0.2 μM do-
decylphosphorylcholine-d38 (Merck), added as an internal standard to assess technical 
error resulting from sample preparation and analysis. Samples were vortexed for 2 min 
and then centrifuged (1500× g, 4 °C) for 20 min. Either 200 μL of the supernatant was 
transferred to a 1.75 mL glass vial (experiments discussed in Section 2.1) or 100 μL of the 
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supernatant was transferred to 200 μL conical glass inserts (experiments described in Sec-
tions 2.2 and 2.3). Extracts were then dried by nitrogen blowdown for 10 min. Dried ex-
tracts were stored at −80 °C prior to analysis. 

3.4.3. Resuspension of Dried Extracts 
Dried intracellular polar metabolite extracts were resuspended in either 25 μL 4:1 

(v/v) MeOH/H2O containing 0.25% (v/v) formic acid (98%, Honeywell) or 25 μL 4:1 (v/v) 
MeOH/25 mM aqueous ammonium acetate (≥99.9% trace metal basis, Honeywell), for 
positive and negative ion metabolomics, respectively, and then centrifuged (20,000× g, 4 
°C) for 10 min. For the experiment described in Figure S1, dried extracts were resuspended 
in 20 μL 4:1 (v/v) MeOH/H2O containing 0.25% (v/v) formic acid. Dried intracellular lipid 
extracts were resuspended in 35 μL 2:1 (v/v) 7.5 mM methanolic ammonium acetate/chlo-
roform for lipidomics in positive and negative ionisation and then centrifuged (1500× g, 4 
°C) for 10 min.  

Technical replicates for each sample class in the experiments described in Section 2.1 
were generated from a pool of aliquots from the resuspended biological replicates per 
sampling approach. For the experiment described in Section 2.2, intra-study QCs per sam-
ple biomass were derived from a pool of aliquots from the resuspended extracts of sam-
ples with equivalent biomass. Intra-study QCs for experiments described in Section 2.3 
were derived from a pool of additional biological control extracts. 

Either 15 μL or 20 μL of the resuspended intracellular polar metabolite or lipid ex-
tracts, respectively, including biological samples, process blanks and intra-study QCs, 
were transferred to a 384-well plate (Eppendorf twin.tec PCR plate) for analysis. 

3.4.4. Data Acquisition by nESI-DIMS 
Data were acquired using an Orbitrap Elite mass spectrometer (Thermo Fisher Sci-

entific, Hemel Hempstead, UK) with an nESI source (TriVersa Nanomate, Advion, Ithaca, 
USA) and the spectral-stitching nESI-DIMS method and parameters reported previously 
[28], with some modifications. Mainly, each sample was infused once, with each m/z win-
dow collected four times, generating ‘internal replicate’ measurements [29]. 

3.4.5. Processing and annotation of nESI-DIMS data 
Data were processed using DIMSpy tools [41] via the Galaxy interface as described 

previously [28], with some modifications. Mainly, in place of the replicate filter, only fea-
tures measured in ≥75% internal replicates were retained per sample.  

Samples for which electrospray ionisation failed were excluded, based on ion injec-
tion times and total peak count (as calculated after DIMSpy peak picking, spectral stitch-
ing and internal replicate filtering). For the metabolomics (positive and negative ionisa-
tion) and lipidomics (positive ionisation only) nESI-DIMS datasets described in Section 
2.3, samples were additionally filtered based on the response of the internal standard (L-
tryptophan-indole-d5 and dodecylphosphorylcholine-d38 for metabolomics and lip-
idomics, respectively), whereby samples with an outlying internal standard peak intensity 
(after DIMSpy peak picking, spectral stitching and internal replicate filtering) were re-
moved (Figure S12). The remaining samples were aligned using 3 ppm mass error toler-
ance for data presented in Sections 2.1 and 2.2, and 2 ppm for data presented in Section 
2.3, and data matrices of peak intensities for m/z features vs. samples were constructed. 
Features whose intensities in ≤80% non-blank samples were <10× their median intensity 
in process blanks were removed. For data presented in Section 2.3, the sample filter 
DIMSpy tool was also applied, removing any feature present in ≤80% across all biological 
samples and intra-study QCs.  

Further data pre-processing was carried out using the R/Bioconductor package 
structToolbox [42]. Sample filters of 75% and 80% were applied across biological and tech-
nical replicates/intra-study QCs per sample class (either sample biomass or sampling 
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methodology) for data presented in Sections 2.1 and 2.2, respectively, generating separate 
peak matrices for each sample class. For data presented in Section 2.3, samples with >30% 
missing values were removed from the peak matrix, and data were corrected for signal 
drift by quality control-robust spline correction (QC-RSC) [43]. All peak matrices were 
probabilistic quotient normalised (PQN), using the mean intra-study QCs as the reference. 
For data presented in Figure 2, the peak matrix generated by the DIMSpy ‘Align Samples’ 
tool was filtered so that only features present in 100% of the ‘no washing’ samples were 
retained. No further data pre-processing was applied. 

Putative annotation of m/z features was achieved by application of the Python pack-
age BEAMSpy (Birmingham mEtabolite Annotation for Mass Spectrometry, v0.1.0, avail-
able at https://github.com/computational-metabolomics/beamspy, accessed on 4th July 
2019), by accurate mass matching to HMDB (Human Metabolome Database) [44], KEGG 
(Kyoto Encyclopedia of Genes and Genomes) [37] and Lipid Maps [45] metabolite and 
lipid databases, using a 5 ppm mass error window. 

3.5. UHPLC-MS(/MS) Untargeted Metabolomics and Quantification of Sunitinib 
3.5.1. Extraction of Polar Metabolites from Culture Medium 

Samples of spent culture medium were prepared as described previously [46], with 
some minor changes. Samples were thawed on ice and briefly vortexed (5 s). An amount 
of 50 μL of medium was mixed with 150 μL ice-cold 1:1 (v/v) acetonitrile/MeOH (LC-MS 
grade, VWR international). Samples were vortexed and centrifuged (20,000× g, 4 °C, 20 
min), and 100 μL was transferred to an HPLC vial (Chromatography Direct, UK) for anal-
ysis. Process blanks were generated from 50 μL H2O, in place of media. Intra-study QC 
samples were created by pooling an aliquot of each sample, vortexing (30 s) and then 
splitting into several 50 μL aliquots. Each aliquot was prepared as for the samples. 

3.5.2. Preparation of Sunitinib Calibration Standards, Toxicokinetic QCs and Blanks 
Duplicate sunitinib calibration standards with final concentrations of 0.0625, 0.125, 

0.25, 0.5, 1, 2, 4 and 8 μM were prepared in fresh microtissue culture media containing 
0.1% DMSO from an initial stock solution of 50 mM sunitinib in DMSO (Honeywell). Du-
plicate sunitinib calibration quality control samples (‘toxicokinetic (TK) QCs’) with final 
nominal concentrations of 0.1875, 0.75 and 6.25 μM (high, mid and low TK QCs, respec-
tively) were also prepared in media containing 0.1% DMSO. Triplicate ‘TK blanks’ were 
prepared as 0.1% DMSO in media. Then, 50 μL aliquots of the calibration standards, TK 
QCs and TK blanks were prepared for analysis as described in Section 3.5.1. 

3.5.3. Data Acquisition by UHPLC-MS(/MS) 
Samples were analysed using an existing method [46] implemented on an Orbitrap 

ID-X Tribrid mass spectrometer (Thermo Fisher Scientific) coupled to a Vanquish Horizon 
UHPLC (Thermo Fisher Scientific), using an Accucore 150 Amide column (100 × 2.1 mm, 
2.6 μm, Thermo Fisher Scientific) with a pre-column UHPLC filter (2.1 mm ID × 0.2 μm 
filter cartridge, Thermo Fisher Scientific). Mobile phase A was 95% acetonitrile/water (10 
mM ammonium formate, 0.1% formic acid), and mobile phase B was 50% acetonitrile/wa-
ter (10 mM ammonium formate, 0.1% formic acid) for the positive ionisation mode. For 
the negative ionisation mode, mobile phase modifiers were 10 mM ammonium acetate 
and 0.1% acetic acid, in place of ammonium formate and formic acid, respectively. The 
gradient was as follows: t = 0.0, 1% B; t = 2.1, 1% B; t = 4.1, 15% B; t = 7.1, 50% B; t = 10.1, 
95% B; t = 11.0, 95% B; t = 11.5, 1% B; t = 15.0, 1% B. All changes were linear (curve = 5). 
The flow rate was 0.4 mL/min, and the column temperature was 35 °C. Analysis was per-
formed in positive and negative ionisation modes separately at a resolution of 120,000, 
between 70 and 1050 m/z. Ion source parameters are detailed in Table S7. The sample in-
jection volume was 2 μL.  
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MS/MS fragmentation data were collected by applying the AcquireX intelligent data 
acquisition workflow (‘DeepScan mode’, Thermo Fisher Scientific). Briefly, an initial in-
clusion list consisting of protonated or de-protonated ion forms of toxicologically relevant 
metabolites was built manually. This was added to by AcquireX using full scan data ac-
quired from an injection of an intra-study QC. AcquireX also generated an exclusion list 
using full scan data acquired from an injection of a process blank. MS/MS data were then 
acquired using HCD with stepped normalised collision energies (NCEs) of 20, 40 and 
100% and 40, 60 and 130% for positive and negative ionisation, respectively, from 3 itera-
tive injections of an intra-study QC using the inclusion and exclusion lists, which were 
modified by AcquireX after each iterative injection. Analysis was performed at a resolu-
tion of 60,000 and 30,000 for full scan (MS1) and MS/MS, respectively, over a scan range of 
m/z 70–1050. 

MS1, retention time and MS/MS fragmentation data of sunitinib, hypoxanthine, ino-
sine and L-glutamine were also collected from chemical standards prepared in 1.5:1.5:1.0 
acetonitrile/MeOH/H2O using identical methods and instrumentation, as detailed above. 

3.5.4. Processing and Annotation of UHPLC-MS(/MS) Untargeted Metabolomics Data 
Vendor format raw data files (.RAW) were converted to mzML file format using Pro-

teoWizard software [47]. Full scan (MS1) data deconvolution was performed by XCMS 
(v3.6.1) operated in Galaxy [48], as reported previously [46]. XCMS parameters were as 
follows: ppm (12), min. peak width (3), max. peak width (30), mzdiff (0.001), bw (0.25), 
minfrac (0.5), mzwid (0.01), orbiwarp retention time correction (negative ionisation data 
only). A data matrix of peak intensities for metabolite features (m/z–retention time pairs) 
vs. samples was constructed.  

Prior to data analysis, datasets were filtered as follows: any features whose median 
intensity in biological samples is <20× its median intensity in process blank samples were 
removed; features with RSD ≥ 30% across the intra-study QC samples were removed; sam-
ples with >50% missing values were removed; features which were missing in ≥10% QCs 
and/or ≥50% of all samples were removed. Data were corrected for signal drift by QC-RSC 
[43]. Peak matrices were then PQN normalised using the mean intra-study QC samples as 
the reference. These steps were executed using the R/Bioconductor package structToolbox 
[42].  

Putative metabolite annotation was performed using BEAMSpy (v1.1.0) operated in 
Galaxy [48], using a 5 ppm mass error and 5 s retention time tolerance window for feature 
grouping. More robust compound annotations were generated through matching of 
MS/MS data to the mzCloud spectral database using Compound Discoverer 3.2 (Thermo 
Fisher Scientific). Annotations were graded by the HighChem HighRes algorithm and 
aligned to XCMS outputs using the R programming language, using 5 ppm mass error 
and 20 s retention time tolerance window. Further confidence in metabolite annotations 
was achieved by comparison of the MS1 accurate m/z, Rt and MS/MS spectrum of the spe-
cific adduct to data acquired for chemical standards using the same analytical method and 
instrumentation. Metabolite identification was confirmed using the following criteria: ac-
curate mass error < 5 ppm, retention time tolerance ± 30 s and MS/MS spectrum similarity 
score (dot product cosine) > 0.9, as calculated using the R package, OrgMassSpecR [49], 
with a baseline threshold of 10% and m/z alignment tolerance of 0.001 Da. 

3.5.5. Quantification of Sunitinib 
The concentration of sunitinib in spent culture medium of cardiac microtissues was 

quantified using TraceFinder (Thermo Fisher Scientific). Absolute quantification was per-
formed using the peak area of the [M + H]+ ion form of sunitinib, with the identity of this 
peak confirmed by matching of accurate m/z, retention time and MS/MS fragmentation 
spectra to those of an analytical standard of sunitinib, measured as part of the same ana-
lytical sequence, i.e., Metabolomics Standards Initiative (MSI) Level 1 identification [50]. 
The response of sunitinib was calibrated against an 8-point calibration curve, using linear 
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regression with 1 𝑥⁄  weighting to fit the curve (Figure S3). Accuracy of the calibration 
was deemed sufficient with the calculated amount of all but 1 of the 8 duplicated calibra-
tion points < 20% of their theoretical amount. Sufficient accuracy and precision of the cal-
ibration were confirmed, with the calculated amount of 5 of 6 TK QCs < 20% of their the-
oretical amount (accuracy) and the coefficients of variation (CVs) per TK QC level < 15% 
(precision). 

3.6. Statistical Analysis 
Supervised (PLS-DA) and unsupervised (PCA) multivariate analyses of nESI-DIMS 

metabolomics and lipidomics data were performed using the R/Bioconductor package 
structToolbox [42]. Prior to the analyses, the peak matrices were missing value imputed 
using the k-nearest neighbour algorithm (k = 5) and glog transformed, also using the 
structToolbox package [42]. 

Univariate data analysis (ANOVAs with Tukey’s HSD), to discover metabolic/lipid 
features with significantly different intensities between sample classes, and Spearman’s 
correlation analysis, to evaluate the association between m/z feature intensities and sam-
ple biomasses, were performed using the PQN-normalised peak matrices with the R/Bio-
conductor package structToolbox [42]. The q-values were calculated by false discovery 
rate correction. 

ANOVAs with Tukey’s HSD, to test the significance between the number of features 
detected per sample class (washing protocol), and two-sided t-tests, to test the significance 
in changes to percentage response of ER stress and Δψm between sample classes, and the 
concentration of sunitinib between time points, were all performed using the R program-
ming language (https://www.R-project.org). 

K-means cluster analysis was executed using the R programming language 
(https://www.R-project.org). An elbow plot was generated to select the optimal value of 
k prior to execution of k-means cluster analysis using the log2 fold change for each m/z 
feature calculated per time point. 

Pathway over-representation analysis was performed using putative annotations of 
significantly perturbed m/z features as input to the ‘Pathway Analysis’ tool of MetaboAn-
alyst [51].  

4. Conclusions 
A filtration-based approach for the sampling of cardiac microtissues for nESI-DIMS 

untargeted metabolomics was shown to minimise handling times, reduce metabolic vari-
ation and, with an optimised washing protocol, sufficiently remove media. Furthermore, 
the nESI-DIMS analytical method was deemed sufficiently sensitive and reproducible to 
measure intracellular metabolic and lipid m/z features in samples consisting of as few as 
7 microtissues (ca. 3500 cells), while samples consisting of 28 pooled microtissues (ca. 
14,000 cells) resulted in higher feature counts and more reproducible data and thus were 
selected for our subsequent toxicology study. We also demonstrated an extensive metab-
olomics-based workflow incorporating untargeted intracellular metabolomics and lip-
idomics by nESI-DIMS, and UHPLC-MS(/MS) analysis of spent culture medium for un-
targeted measurement of metabolic footprints and absolute quantification of the exposure 
drug, together capable of discovering time-resolved cardiotoxin-induced perturbations in 
a highly relevant in vitro model, cardiac microtissues. The observed metabolic and lipid 
perturbations provide sufficient evidence to hypothesise toxicological modes of action, 
including perturbation of purine metabolism and a role for polyunsaturated fatty acids, 
and may be further characterised for use as molecular biomarkers of drug-induced struc-
tural cardiotoxicity.  
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Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/metabo11090644/s1, Figure S1: Graphical summary of two approaches for sampling car-
diac microtissues, incorporating isolation from culture medium, washing and quenching of metab-
olism, Figure S2: Box plots showing the relative change to a endoplasmic reticulum integrity and b 
mitochondrial membrane potential of cardiac microtissues, Figure S3: External calibration curve for 
sunitinib, Figures S4–S6: Violin plots displaying the distribution of feature intensity RSDs, Figure 
S7: Clusters of temporal response of annotated lipid features, Figure S8: Scores plots of PLS-DA 
models, Figure S9: Comparison of measured MS/MS fragmentation spectra for each annotated fea-
ture (top) and reference spectra for the corresponding metabolite from the mzCloud library, Figure 
S10: Extracted ion chromatograms (EICs) showing matching retention times (± 30 s tolerance) be-
tween each annotated feature, as measured in an intra-study QC sample and the corresponding 
reference standard, Figure S11: Comparison of average (across scans) raw MS/MS spectra, Figure 
S12: Peak intensity of internal standards, Table S1: Putatively annotated features whose intensities 
are significantly reduced in extracts of cell media residue on cell strainers after washing, Table S2: 
Performance metrics for PLS-DA models, Table S3: Putatively annotated intracellular metabolites 
or lipids from cardiac microtissues that changed intensity significantly upon exposure to high 
and/or low concentrations of sunitinib, relative to unexposed controls, Table S4: Results of over-
representation pathway analysis of metabolites significantly perturbed by sunitinib exposure in car-
diac microtissues, Table S5: Putatively annotated intracellular metabolites from cardiac microtissues 
that are important (VIP score > 1) in discriminating low sunitinib-concentration exposed microtis-
sues (negative ion metabolome) from time-matched controls at 2, 6 and 48 hrs, as determined by 
PLS-DA, Table S6: Putatively annotated intracellular lipids from cardiac microtissues that are im-
portant (VIP score > 1) in discriminating high sunitinib-concentration exposed microtissues (nega-
tive ion lipidome) from time-matched controls at 48 and 72 h, as determined by PLS-DA, Table S7: 
Ion source parameters for data acquisition by UHPLC-MS(/MS). 
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