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Abstract: Lung cancer continues to be a significant burden worldwide and remains the leading
cause of cancer-associated mortality. Two considerable challenges posed by this disease are the
diagnosis of 61% of patients in advanced stages and the reduced five-year survival rate of around
4%. Noninvasively collected samples are gaining significant interest as new areas of knowledge
are being sought and opened up. Metabolomics is one of these growing areas. In recent years, the
use of metabolomics as a resource for the study of lung cancer has been growing. We conducted
a systematic review of the literature from the past 10 years in order to identify some metabolites
associated with lung cancer. More than 150 metabolites have been associated with lung cancer-altered
metabolism. These were detected in different biological samples by different metabolomic analytical
platforms. Some of the published results have been consistent, showing the presence/alteration of
specific metabolites. However, there is a clear variability due to lack of a full clinical characterization
of patients or standardized patients selection. In addition, few published studies have focused on the
added value of the metabolomic profile as a means of predicting treatment response for lung cancer.
This review reinforces the need for consistent and systematized studies, which will help make it
possible to identify metabolic biomarkers and metabolic pathways responsible for the mechanisms
that promote tumor progression, relapse and eventually resistance to therapy.

Keywords: lung cancer; metabolomics; immunotherapy

1. Introduction

Lung cancer is still a burden in modern societies [1], and remains the leading cause of
death by cancer worldwide. With 2.2 million new cases in 2020, or 12% of all diagnosed
cancers, it is the second most commonly diagnosed form of the disease. Despite a small
decline in the Western world, lung cancer incidence and mortality statistics are still increas-
ing. Although smoking is one of the main risk factors, accounting for 25% of cases, 15% of
lung cancers in men and 53% in women are not smoking-related [2].

When the cancer is diagnosed at an early stage, the five-year survival of patients is
about 50%. However, more than 61% of patients are diagnosed in later stages (III and IV),
when therapeutic options are limited. In this setting, the five-year survival can be as low as
4%. These statistics provide a strong motivation for the search for biomarkers that could
aid the early detection of lung cancer or the provision of personalized treatments which
take into consideration the treatment regimens available. To date, no such biomarkers have
been clinically utilized, though it is a hot topic of research.
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For many years, lung cancer therapy has been based on classical chemotherapy (CT)
regimens, as well as radiotherapy and surgical therapy, depending on the stage of the
disease. More recently, tyrosine kinase inhibitors (TKI) have emerged, revolutionizing the
therapeutic regimens. The relationship between cancer and the immune system has been
the subject of recent studies, which have brought to light the molecular mechanisms used
by cancer cells to incorporate certain T-cell receptors, preventing the cytotoxic response
which enables the defense from the antitumor immune attack [3]. ICIs are among the
most significant improvements of the last decade in cancer treatment. Results obtained
with programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1)
inhibitors have demonstrated remarkable and durable clinical activity in patients with
advanced non-small cell lung cancer (NSCLC). Such impressive responses have led to
changes in the ongoing therapeutic algorithm of advanced NSCLC, with a new first-line
treatment option for patients with tumors positive for PD-L1 [4] and a second-line option
after an initial CT regimen. In recent years, randomized trials using ICIs showed positive
results compared with standard CT. Although responses are surprising and durable, they
are observed in 20–25% of unselected patients, which highlights the need for predicting
factors and biomarkers for efficacy [3].

As described in 2000 by Hanahan and Weinberg, tumor development involves a
complex network of events, including oncogene activation, insensitivity to anticancer
signaling and evasion of apoptosis, high replicative potential, sustained angiogenesis and
metastasis, and metabolic dysregulation [5]. These authors called these characteristics
the hallmarks of cancer. More recently, two additional hallmarks were established in
the pathogenesis of some and perhaps all cancers. The altered metabolism of cancer
cells, which has been recognized as an emergent hallmark of cancer, is due to changes
in signaling pathways, protein expression and other molecular mechanisms, along with
specific biochemical adaptations during the carcinogenic process, which involve extensive
interconnected events and important feedback loops. This means that the metabolic status
of tumor cells gives them survival advantages in the process of tumor development. The
second new hallmark allows malignant cells to bypass immunological destruction by T-
and B-lymphocytes, macrophages and natural killer cells [5].

Tumor cells are characterized by consuming more glucose than regular cells and
by their higher glycolytic capability and lactate production rate, even in the presence of
oxygen. It is known that malignant cells reprogram their energy-production mechanisms,
by using glycolysis even in normoxic conditions, leading to a state of “aerobic glycolysis”.
This phenomenon is referred to as the “Warburg effect”. Various metabolomic changes in
cancer cells being well-documented, of particular interest is the upregulated glycolysis, glu-
taminolysis and amino acid and fatty acid synthesis pathways. These metabolic pathways
take advantage of the available cellular and environmental material to obtain energy and
produce biomass to support the large-scale biosynthesis necessary for increased growth
and proliferation [6].

As has already been said, there are numerous pathways involved in carcinogenesis, in
addition to glycolysis. Glutaminolysis, which catabolizes glutamine in order to generate
ATP and lactate, is one of those important pathways. Metabolic precursors are used by tu-
mor cells for the synthesis of cellular blocks, essential for the maintenance of their increased
proliferative capacity. One emblematic example includes the glycolytic intermediates used
in the pentose phosphate pathway (PPP), as well as the nonessential amino acids used for
nucleotide biosynthesis and derived from glucose and glutamine catabolism [7].

Over the last few years, the interest of metabolomics for the study of lung cancer has
increased. One of the advantages of this technique is the possibility of using different
types of samples, such as cultured cells, tissues and biofluids (e.g., blood plasma and
serum, urine, bronchial aspirate, pleural fluid and exhaled breath condensate). More than
150 metabolites have been related to lung cancer-altered metabolism. In these studies,
several biological samples and different metabolomic analytical platforms were used. Some
results have been consistent in several published studies, showing the presence/alteration
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of specific metabolites. However, there is a clear variability due to lack of a full clinical
characterization of patients or the selection of standardized patients. In addition, few
studies have focused on the effect of cancer therapy on the evolution of the metabolomic
profile—information that would be useful in developing personalized treatments.

In this systematic literature review, the authors reviewed the available evidence from
published observational studies on the association between metabolites identified through
metabolomics studies and lung cancer risk.

2. Methods
2.1. Literature Search Strategy

This systematic literature review was based on the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) guidelines [8] (Appendix A). And a
review protocol was entered into the Prospero database (registration number 274188).
A search in PubMed database was conducted which covered the past 10 years, until
January of 2021. The search terms used included “metabolomics”, “lung cancer” and
its variants (Appendix B). The research strategy was constructed considering the “PICO”
method (Population/Patients, Intervention, Comparison, Outcome). The studies included
evaluated patients (P) with NSCLC, and were studied in order to identify metabolomic
alterations (I). In most of the articles, the results were compared with a healthy population
(C). The outcome (O) was then evaluated in order to identify possible biomarkers, or
differences which could facilitate the NSCLC diagnosis and treatment.

Only articles written in English were considered. Titles and abstracts were screened
before searched articles were considered as potentially relevant for further evaluation. The
full text was then evaluated before making the decision to include the study. Additional
articles that emerged during the systematic analysis of the publications initially considered
were also included.

2.2. Study Selection Criteria

Observational studies were included in this review if they reported at least one altered
metabolite; if they reported either the estimated hazard ratio (HR), the odds ratio (OR), the
risk ratio (RR) or the area under curve (AUC) for the association between the levels of the
metabolite and any type of lung cancer; and if they reported the difference between the
concentration of the metabolite in lung cancer patients compared to the controls. Studies
were excluded if they were non-clinical studies, if sufficient data for analysis were not
provided, or if they were not published in English.

2.3. Data Extraction

For the eligible studies, data were selected in a systematic way and using a previously
elaborated registration form. For each study, significant data were registered, such as
study design, the characteristics of participants, the type of identified metabolites, the
type and stage of lung cancer, the type of biological samples collected for the quantifica-
tion/identification of the metabolite, the analytical techniques used and the number of
participants. When the studies reported an association between levels of a given metabolite
and lung cancer, the HR/OR/RR/AUC and 95% confidence interval (CI) were analyzed. In
some studies, relevant data were presented in graphical form. In these cases, the data were
calculated based on the graphical data presented in the paper. Data were then grouped
according to the identified metabolite and the type of biological sample.

3. Results
3.1. Eligible Studies

The literature search process is presented in Figure 1. The literature search strategy
allowed the identification of 647 studies, from which 79 were included for full-text review.
During this process, 36 publications were excluded (for various reasons), and another
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9 publications were added after consulting the references of the studies already included. In
the final process, a total of 52 studies were included in the initial systematic literature review.
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Figure 1. Flowchart of the literature search process and selection of studies.

After the initial analysis of these 52 studies, it was concluded that a reduction of the
search spectrum would be beneficial for the systematization of the results. Considering the
volume of information obtained, it was decided to restrict this systematic review to studies
that included only the results of the metabolomic profiles of the blood, plasma and serum
of patients. As a result, 28 studies were classified as eligible.

The modified Newcastle-Ottawa Quality Assessment Scale for cross-sectional studies
was used to assess the risk of bias for the included studies [9] (Table 1). The methodolog-
ical quality score was calculated based on three domains: Selection, Comparability, and
Exposure. To the assessment of each domain, a series of multiple-choice questions were
answered after the reading of each study. A study could be classified with a maximum of
one point for each numbered item within the Selection (four items), Exposure (three items)
and Comparability (two items). Therefore, the scores could vary from a minimum of zero
to a maximum of nine points.

Table 1. Risk of bias for the included studies, using the modified Newcastle-Ottawa Quality Assessment Scale adapted for
cross-sectional studies [9].

Authors, Year Selection (0–4) Comparability (0–2) Exposure (0–3) Risk of Bias (0–9)

Xie et al., 2021 [10] 4 2 2 8

Mazzone et al., 2015 [11] 4 2 2 8

Li et al., 2013 [12] 4 2 2 8

Chuang et al., 2014 [13] 3 2 2 7

Puchades et al., 2016 [14] 4 2 2 8
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Table 1. Cont.

Authors, Year Selection (0–4) Comparability (0–2) Exposure (0–3) Risk of Bias (0–9)

Klupczynska et al., 2017 [15] 3 2 2 7

Zhang et al., 2020 [16] 4 2 2 8

Miyagi et al., 2011 [17] 3 2 3 8

Terlizzi et al., 2018 [18] 3 2 2 7

Shingyogi et al., 2013 [19] 3 0 2 5

Yu et al., 2017 [20] 4 2 2 8

Skaaby et al., 2014 [21] 3 2 3 8

Ni et al., 2016 [22] 3 2 2 7

Ni et al., 2019 [23] 3 2 2 7

Larose et al., 2018 [24] 2 2 2 6

Pietzke et al., 2019 [25] 2 0 2 4

Klupczynska et al., 2019 [26] 2 2 2 6

Sun et al., 2018 [27] 4 2 1 7

Faharmann et al., 2015 [28] 4 2 2 8

Singhal et al., 2019 [29] 3 2 1 6

Wang et al., 2015 [30] 3 2 2 7

Fanidi et al., 2018 [31] 3 2 2 7

Ros-Mazurczyk et al., 2017 [32] 4 2 1 7

Maosheng et al., 2017 [33] 3 2 2 7

Tian et al., 2018 [34] 3 2 2 7

Hao et al., 2020 [35] 2 1 2 5

Hao et al., 2016 [36] 3 1 2 6

Ghini et al., 2020 [37] 3 2 2 7

3.2. Study Characteristics

Studies published between 2011 and 2021 were included (Table 2). A total of 28 studies
were included in this systematic review. The majority of the studies included a healthy
control group (n = 23). These studies were conducted in order to compare the metabolomic
profiles of NSCLC patients and healthy patients. The five studies that did not include a
healthy control aimed to evaluate the effect of therapy on the evolution of the metabolomic
profile. However, in order to achieve this objective, these studies included two groups: a
discovery group and a validation group (which was used as a control group).

Table 2. Summary of the characteristics of the studies included in the review.

Subject Groups (No.
of Samples) Analytical

Technique

Objective of the Metabolomic Profile Analysis
Reference

Healthy
Controls

NSCLC
Patients

Compare Cancer
vs. Control

Distinguish
Histological Types

Disease
Staging Other

Blood, Serum and/or Plasma

43 110 LC-MS × Biomarker Xie et al., 2021 [10]

190 94 LC-MS,
GC-MS × × Mazzone et al.,

2015 [11]

71 72 NS × Early
diagnosis Li et al., 2013 [12]



Metabolites 2021, 11, 630 6 of 25

Table 2. Cont.

Subject Groups (No.
of Samples) Analytical

Technique

Objective of the Metabolomic Profile Analysis
Reference

Healthy
Controls

NSCLC
Patients

Compare Cancer
vs. Control

Distinguish
Histological Types

Disease
Staging Other

Blood, Serum and/or Plasma

893 1748 LC-MS, GC-MS × Biomarker Chuang et al.,
2014 [13]

114 182 NMRs × × Puchades et al.,
2016 [14]

25 50 LC-MS × Biomarker Klupczynska
et al., 2017 [15]

60 156 LC-MS × × Zhang et al.,
2020 [16]

200 996 ESI-MS × Early
diagnosis

Miyagi et al.,
2011 [17]

79 125 ELISA ×
Overall
survival,

Biomarker

Terlizzi et al.,
2018 [18]

86 323 ESI-MS × Early
diagnosis

Shingyogi
et al., 2013 [19]

147 199 ESI-MS × × Yu et al.,
2017 [20]

10,485 126 UPLC-MS,
Immunoassay × Skaaby et al.,

2014 [21]

40 100 LC-MS × Ni et al.,
2016 [22]

17 30 LC-MS × Ni et al.,
2019 [23]

5364 5364 LC-MS × Biomarker Larose et al.,
2018 [24]

56 50 LC-MS, GC-MS × Pietzke et al.,
2019 [25]

20 20 MS × × Klupczynska
et al., 2019 [26]

29 31 GC-MS × Sun et al.,
2018 [27]

74 95 GC-MS × Faharmann
et al., 2015 [28]

29 57 LC-MS ×
Treatment

monitoring
tool

Singhal et al.,
2019 [29]

100 100 LC-MS × × Wang et al.,
2015 [30]

5364 5364 LC-MS, GC-MS × Risk factors Fanidi et al.,
2018 [31]

300 100 LC-MS ×
Ros-

Mazurczyk
et al., 2017 [32]
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Table 2. Cont.

Subject Groups (No.
of Samples) Analytical

Technique

Objective of the Metabolomic Profile Analysis
Reference

Healthy
Controls

NSCLC
Patients

Compare Cancer
vs. Control

Distinguish
Histological Types

Disease
Staging Other

Blood, Serum and/or Plasma

0 220 LC-MS

Overall
survival,

Treatment
efficacy

Maosheng
et al., 2017 [33]

0 354 LC-MS

Overall
survival,

Treatment
efficacy

Tian et al.,
2018 [34]

0 774
LC-MS,

UPLC-MS,
NMRs

Treatment
efficacy

Hao et al.,
2020 [35]

0 25 NMRs, GC-MS × Prognosis Hao et al.,
2016 [36]

0 50 NMRs Treatment
efficacy

Ghini et al.,
2020 [37]

NSCLC: Non-Small Cell Lung cancer; CE–MS: Capillary electrophoresis—mass spectrometry; LC–MS: Liquid chromatography—mass
spectrometry; GC–MS: Gas chromatography—mass spectrometry; NS: Non-specified; NMRs: Nuclear magnetic resonance spectrometry;
ELISA: Enzyme-linked immunosorbent assay; ESI–MS: Electrospray ionization—mass spectrometry; MS: Mass spectrometry; UPLC–MS:
Ultra-high performance liquid chromatography—mass spectrometry.

Regarding the analytical method used to study the metabolomic profiles, eleven studies
used liquid chromatography–mass spectrometry (LC–MS), two used gas chromatography–
mass spectrometry (GC–MS), two used nuclear magnetic resonance spectrometry (NMRs),
three electrospray ionization–mass spectrometry (ESI–MS), and one was an enzyme-linked
immunosorbent assay (ELISA). Eight studies used more than one technique and one study
did not specify the technique used.

In Table 3, the main results from each study are summarized. The majority of the
enrolled studies included patients with a mean age over 60 years old (n = 16). In 21 of
the studies included in this review, the population was mostly male. Regarding smoking
habits, the majority of patients were current or former smokers. The studies were carried
out in several countries, namely, China (n = 7), USA (n = 4), European countries (n = 9),
Japan (n = 2), Canada (n = 2), Singapore (n = 1), and also in more than one country (n = 3).
The metabolomic results of the enrolled studies are discussed in detail in the next section.



Metabolites 2021, 11, 630 8 of 25

Table 3. Characteristics of the included studies, with the main alterations in metabolites/metabolomic profiles identified.

Subject Groups Place Where
the Study Was

Carried Out

Identified Metabolites
Measure of
Association Effect Size ReferenceAge

Mean
Gender

Male (%)
Smoking

Status Amino Acids Lipids Others

NS NS NS China

Proline

AUC

0.989

Xie et al.,
2021 [10]

l-kynurenine spermidine
amino-hippuric acid Sensitivity = 98.1%

palmitoyll-carnitinetaurine Specificity = 100.0%

67 52% S or FS 97% USA
10 amino acids had higher
values in lung patients and

12 had lower values

44 different
lipids had

higher values
in lung

patients and
24 had lower

values

Differences in
12 peptides,

4 carbohydrates,
5 nucleotides and

30 xenobiotics
between healthy

controls and lung
cancer patients

Mazzone
et al., 2015

[11]

65 33% S–14%
N–6%

USA 13-protein lung
cancer classifier

Negative
predictive value

(NPV) of 90% Li et al., 2013
[12]

specificity of
44 ± 13%

59 62% S–59%
N–11%

Europe Tryptofan Kynurenine
OR

0.88
(0.59–1.30) Chuang

et al., 2014
[13]OR 1.30

(0.92–1.84)

63 87%
S–44%
N–7%

Spain

Specific increase in the serum
concentrations of lysine

(13.16%), valine (21.05%) and
phenylalanine (52.10%)

P 0.0025 Puchades
et al., 2016

[14]
P 0.0000

P 0.0000

64 ± 6.9 64% S–48%
N–51% Poland Panel of 12 compounds,

including some amino acids

Panel of
12 compounds,

including
acylcarnitine,
organic acids

AUC 0.836
(0.722–0.946)

Klupczynska
et al., 2017

[15]
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Table 3. Cont.

Subject Groups Place Where
the Study Was

Carried Out

Identified Metabolites
Measure of
Association Effect Size ReferenceAge

Mean
Gender

Male (%)
Smoking

Status Amino Acids Lipids Others

42–79 38% S–19%
N–11% China

β-hydroxybutyric
acid, LysoPC 20:3,
PC ae C40:6, citric
acid, fumaric acid

AUC >0.9 Zhang et al.,
2020 [16]

65 ± 10 62.5% S–42%
N–30% Japan Profile of plasma free

amino acids AUC 0.75 Miyagi et al.,
2011 [17]

60 ± 10 66% Italy
Higher levels of

Caspase 4
in NSCLC

Sensitivity:
97.07–100%

Terlizzi et al.,
2018 [18]

specificity 88.1%

positive predictive
value of 92.54%

accuracy of 95.19%

AUC of 0.971

67.8 ± 8.2 43% S–34%
N–21% Japan Profile of plasma free amino

acids AUC 0.731–0.806
Shingyogi
et al., 2013

[19]

67 ± 8 54% All S or FS China and USA

Four lipid
markers

(LPE(18:1),
ePE(40:4),

C(18:2)CE and
SM(22:0))

AUC 82.3% Yu et al.,
2017 [20]

18–71 48% S–37%
N–35% Denmark Vitamin D HR 0.98 (0.91–1.05) Skaaby et al.,

2014 [21]

51–83 65% China Panel of 13 amino acids Panel of 8
acylcarnitines

Ni et al.,
2016 [22]
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Table 3. Cont.

Subject Groups Place Where
the Study Was

Carried Out

Identified Metabolites
Measure of
Association Effect Size ReferenceAge

Mean
Gender

Male (%)
Smoking

Status Amino Acids Lipids Others

66.7 65% S–23%
N–47% China

Glycine, valine, methionine,
citrulline and arginine

p

0.033

Ni et al.,
2019 [23]

0.378

0.067

0.039

0.015

60 54%
S–47%
N–25%

Europe, USA,
China Cotinine OR

S: 1.39
(1.32–1.47)

Larose et al.,
2018 [24]

FS: 1.17
(1.07–1.28)

N: 1.64
(1.10–2.30)

66 ± 9 87.5% S–50%
N–50% Europe

Formate levels
higher in lung
cancer patients

Pietzke et al.,
2019 [25]

62 ± 5 55% S–60% Poland

Lysophosphatidylcholine
aC26:0 AUC 0.87 (0.73–0.96)

Klupczynska
et al., 2019

[26]

Lysophosphatidylcholine
aC26:1 AUC 0.84 (0.68–0.95)

Phosphatidylcholine
aaC42:4 AUC 0.81 (0.65–0.93)

Phosphatidylcholine
aaC34:4 AUC 0.82 (0.65–0.94)

54.1 ± 9.9 67.7% S–71% China

Erythritol,
indole-3-lactate,

adenosine-5-
phosphate,

paracetamol,
threitol

AUC 0.9 Sun et al.,
2018 [27]
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Table 3. Cont.

Subject Groups Place Where
the Study Was

Carried Out

Identified Metabolites
Measure of
Association Effect Size ReferenceAge

Mean
Gender

Male (%)
Smoking

Status Amino Acids Lipids Others

65.9 ± 9.7 62% USA
Aspartate
Glutamate

Sensitivity: 67.5%
Faharmann
et al., 2015

[28]

specificity 95.4%

Sensitivity: 70.9%

specificity 74.4%

52 53% USA and
Canada Valine

LysoPhosphatidylcholine
acyl C18:2

AUC 0.97 (0.875–1.0) Singhal et al.,
2019 [29]

decadienyl-L-
carnitine

phosphatidylcholine

acyl-alkyl C36:0

phosphatidylcholine
diacyl C30:2

spermine

iacetylspermine

57.1 ± 8.6 52%
S–48%

China
25(OH)D deficiency
→ related to higher

risk of NSCLC
P 0.03 Wang et al.,

2015 [30]N–32%

60 54%
S–47%

Singapore
Vitamin B6 and

folate elevated→
decreased risk

OR
0.88 (0.78–1) Fanidi et al.,

2018 [31]N–25% 0.86 (0.74–0.99)

Poland

Increased levels in
lung cancer

patients: phos-
phatidylcholines,
diacylophospho-

lipids and
sphingomyelins;
decreased levels

of lysophos-
phatidylcholines

AUC 0.88

Ros-
Mazurczyk
et al., 2017

[32]
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Table 3. Cont.

Subject Groups Place Where
the Study Was

Carried Out

Identified Metabolites
Measure of
Association Effect Size ReferenceAge

Mean
Gender

Male (%)
Smoking

Status Amino Acids Lipids Others

60.2 56.3%
S–44%

USA

Caffeine

P <0.05
Maosheng
et al., 2017

[33]

paraxanthine

stachydrine

N–16% methyl
glucopyranoside (αβ)

37–84 86%
N–55%

China

Hypotaurine

AUC 0.912
Tian et al.,
2018 [34]

uridine

dodecanoylcarnitine

choline

dimethylglycine

niacinamide

FS–45% L-palmitoylcarnitine→
longer PFS

Canada

Elevated blood
2-hydroxybutyrate, glycine,

sphingomyelin and formate were
positively associated with

better OS

Hao et al.,
2020 [35]

64 60% Canada

Hydroxylamine, tridecan-1-ol

P <0.05
Hao et al.,
2016 [36]

octadecan-1-ol→ better survival
Tagatose

hydroxylamine

glucopyranose

54%
S–34%

Italy
Alanine and pyruvate→

responders were characterized
by lower serum levels

threonine→ progression P <0.05
Ghini et al.,

2020 [37]N–5%

SD—Standard deviation; S—current smoker; N—Never smoker; FS—former smoker; CI—Confidence Interval; OR—Odds ratio; AUC—Area under curve; HR—Hazard ratio; PFS—Progression free survival;
OS—Overall survival.
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4. Discussion

Neoplastic disease is mainly characterized by a chronic and often uncontrolled cell
proliferation, which depends on the deregulated control of cell proliferation and on the
adjustments of energy metabolism needed to surpass the critical metabolic requirements
for cell growth and division. In general, metabolism in these cells has many different
particularities, for example, it is characterized by increased rates of glycolysis and/or
glutaminolysis and biosynthetic processes that afford essential building blocks.

Metabolomics is a unique approach that attempts to decipher the interactions among
transcriptional- and translational-level data, with a focus on the end result. Each type of cell
and tissue has a characteristic metabolic composition that is uniquely altered in response
to physiological and pathophysiological stimuli. These particular compositions reflect
the collective effects of epigenetic factors, heterogeneous distributions of molecules and
differential reaction rates. The metabolome of a sample—that is, the concentrations of the
metabolites at a given time—can be thought of as a metabolic “fingerprint” representative
of the state of the organism at a certain time. Metabolomics involves the quantification of
metabolites, often in a temporal manner, to track the developing response to a stimulus [38].

The metabolome has the advantage of being much more dynamic than the proteome
or genome, since metabolomics allows the detection of alterations in metabolites resulting
from physiological and/or environmental events in shorter times [39]. Metabolomics inte-
grates the effects of exogenous exposures (dietary intake, medication, lifestyle, variability
in sample handling and preparation) [40], endogenous metabolism (e.g., co-morbidities
such as diabetes and cardiovascular diseases) and genetic variations. Metabolomics is
thus a powerful approach for detecting temporal physiological changes in real time and
for monitoring potential environmental insults, disease progression and pathways that
contribute to disease development, and for predicting the risk of disease or drug response.
The level of detail that metabolomics provides could be particularly important in the efforts
to obtain reliable and reproducible biomarkers [41–43].

As has already been mentioned, the interest in metabolomics for the study of cancer
has grown over the years. The first studies to be developed included the analysis of
tissue samples, while over the past several years more studies have been performed using
biofluid analysis. The most studied biofluids are urine and blood serum/plasma. As far as
the analytical techniques employed are concerned, most studies have used NMR, while
biofluids have been examined using MS methods, due to their higher sensitivity. In the
past decade, a considerable number of metabolomic studies have been performed that
have aimed at making a tentative approach to identify potent and reliable biomarkers
for lung cancer diagnosis. These studies used mainly plasma, serum, or urine. This
systematic literature review aimed to provide a summary of the ongoing understanding of
the association between metabolites and lung cancer risk, as well as the possibility of using
new emergent biomarkers in lung cancer diagnosis.

4.1. Amino Acids

Several studies have been published focusing on the variation of amino acids in the
metabolism of lung cancer cells. Kami et al. published that tumor concentrations of malate,
fumarate and succinate were significantly higher in lung cancer patients than in normal
individuals [44]. Xie et al. tried to identify probable biomarkers to diagnose lung cancer
earlier. A combination of six metabolites was identified in this work. These metabolites
were note-worthy for enabling the discrimination between stage I lung cancer patients and
healthy individuals. The metabolites identified were proline, l-kynurenine, spermidine,
amino-hippuric acid, palmitoyll-carnitine and taurine, with significant values of specificity
and sensitivity [10]. Ni et al. conducted a similar study and identified glycine, valine,
methionine, citrulline and arginine as amino acids with a strong ability to identify lung
cancer [22,23]. Mazzone et al. also published results showing differences in 22 amino
acids between healthy controls and lung cancer patients. Ten amino acids had higher
values in lung patients (e.g., aspartate, N-acetylalanine, N-acetylmethionine . . . ) and
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12 had lower values (e.g., sarcosine, alanine, histidine, tyrosine, tryptophan . . . ) [11].
Shingyogi et al. [19] and Miyagi et al. [17], also identified plasma free amino acid profiles
that could be important in identifying lung cancer, including cancers at an early stage.

Data published by Puchades-Carrasco et al. showed that NSCLC patients exhibit
higher serum levels of leucine/isoleucine, N-acetyl-cysteine and glutamate (37.65%) in com-
parison with healthy control individuals, in addition to lower levels of glutamine, threonine
and histidine when compared with healthy individuals. These alterations were described
in the serum metabolomic profiles of NSCLC patients at early as well as at advanced stages
of the disease. The specific decrease of serum threonine and histidine levels observed in
NSCLC patients can be attributed to the upregulation of the glycine/serine/threonine
and pyrimidine metabolic pathways. Therefore, and corroborating previously published
data, these molecular alterations are considered as metabolic hallmarks of NSCLC tumor-
initiating cells as stated before. Furthermore, disease progression was found to be associ-
ated by these authors with a specific increase in the serum concentrations of lysine (increase
of 13.16%), valine (21.05%) and phenylalanine (52.10%) [14].

4.1.1. Carnitine and Cadaverine

Zhang et al. [16], reported in NSCLC patients increased plasma carnitine levels in
all tumor stages. The increased production of this metabolite is described as a significant
marker present in plasma, tumor tissue and in other types of biofluids collected from
NSCLC patients. Furthermore, this metabolite has been already identified in patients with
other types of cancer, such as bladder, breast and colorectal cancer [15]. Carnitine is rapidly
utilized by tumor cells for acetyl-CoA synthesis and can be also used for lipid synthesis
via glutamine metabolism. Zhang et al. reported another product of lysine metabolism,
cadaverine, that is significantly increased in stage IIIB and IV NSCLC plasma patients.
Influencing lysine metabolism, the abnormal carnitine and cadaverine increase confirms the
hypothesis that lysine metabolism dysregulation is a common feature of NSCLC, especially
in the advanced stages [16].

4.1.2. Methionine

The ongoing studies characterizing the role of methionine in cancer cell proliferation
are important. It is well known this metabolite is involved in various important activities in
cancer cells, such as nucleotide biosynthesis via the one-carbon metabolism pathway and
protein synthesis. Relating specifically to lung cancer, several published studies suggested
that plasma methionine concentration is decreased [45].

4.1.3. Tryptophan

As with methionine, the plasma levels of tryptophan have been described as low in
lung cancer patients. In the kynurenine pathway, Tryptophan is a precursor molecule which
synthesizes several metabolites that have immunosuppressive properties. The supression
of T-cell proliferation and the transformation of natural killer cells were identified functions.
Work carried out by Heng et al. [46] discovered that increased expression of indoleamine-
2,3-dioxygenase 1 (IDO1) is positively correlated with worse lung cancer prognosis. This
enzyme is involved in the synthesis of kynurenine from tryptophan, tryptophan and the
kynurenine/tryptophan ratio being associated with a higher lung cancer risk, particularly
after adjusting these values for established risk factors [13].

4.1.4. Proline

This metabolite, a source for cellular energy production and an intermediate between
the urea cycle and Krebs cycle, was identified in lung cancer patients’ plasma. Although the
biochemical context of proline increase is unclear, the role of proline in lung carcinogenesis
is an area of active research [47]. Several studies have identified that overexpression of
proline dehydrogenase promotes cancer progression, however, more research is needed to
characterize the role of this metabolite in cancer promotion and progression [48–50].
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4.1.5. Glutamine

Berker et al. compared serum profiles of prolonged and short survival groups of
NSCLC patients. The data obtained showed that the prolonged survival cases demonstrated
increased levels of glutamine, valine and glycine, and lower expressions of glutamate and
lipid droplets. Glutamine is an essential metabolite for anabolic metabolism in cancer cells,
and a higher consumption of glutamine has been described in cancer cells.

Tumor cells use the enzyme glutaminase to convert glutamine to glutamate and to
produce precursors for the glutathione synthesis pathway, as well as using it in fatty acid
production, which stimulates tumorigenesis. Regarding this metabolite, it is important
to note that glutamine is an important energy source for cancer cells, particularly when
glucose availability is scarce. Cancer cells use this metabolite as a supply for tumor growth,
particularly in the short survival cases characterized by a rapid-growing lung cancer, which
can explain the decreased levels of glutamine in short survival individuals [51,52].

The finding of higher glutamine levels in prolonged survival patients coheres with
our knowledge of carcinogenesis and the biology of cancer. When analyzed, the blood of
healthy individuals is found to contain high levels of glutamine as a ready source of carbon
and nitrogen to sustain biosynthesis, energetics, and cellular homeostasis [52].

4.1.6. Valine and Glycine

Several studies showed that NSCLC is associated with a significant increase in valine
uptake. The increased blood valine concentration observed in the prolonged survival cases
can be explained by the lower uptake of valine when compared with short lung cancer
survival cases. The same hypothesis can be shared with glycine metabolites, respecting the
increase of serum glycine levels when comparing the prolonged with the short survival
cases. Glycine provides the carbon units to fuel the one-carbon metabolism for the synthesis
of nucleic acids, proteins or lipids. Similar data reporting the association between higher
levels of glycine and poorer prognoses were also reported for other types of cancer, such as
human breast cancer, by Mahong Wu et al. [52].

4.2. Proteins

Li et al. developed a 13-protein lung cancer classifier from a panel of 371 protein
candidates, previously identified in 143 plasma samples obtained from patients with
benign and malignant lung nodules. This 13-protein classifier included proteins such as
COIA, BGH3, LRP1, TSP1 and TETN, which were identified on an independent set of
plasma samples (n = 104), with 90% negative predictive value and a specificity value of
44 ± 13% [12].

4.3. Lipids

Lipids, especially phospholipids and sphingolipids, play an essential structural and
regulatory role in the formation of cellular membranes. Of particular interest, lipids also act
as mediators in intra- and intercellular communications. Therefore, the lipidome is a crucial
source of biomarkers for identifying a number of human diseases, including cancer [17].

Lower plasma lipid metabolites have been associated with lung cancer progression,
since they influence tumor cell proliferation, progression and even dissemination. In a study
by Terlizzi et al., reduced lipid contents were found in NSCLC patients’ blood. Higher
levels of lipid contents were also observed in NSCLC patients caspase-4-positive [18].
Both circulating and tissue-associated caspase-4 were described by the authors as a di-
agnostic tool for NSCLC patients, since these patients had elevated levels of circulating
caspase-4 [53]. It was found that 82.7% of plasma caspase-4 positive NSCLC patients had
elevated levels of plasma lactate dehydrogenase (LDH). LDH is an enzyme recognized as a
marker associated with tumor progression and prognosis, and which is also associated with
tumor cell necroptosis or the anaerobic pattern established in the tumor mass. Circulating
caspase-4 was, according to some authors, correlated with an increase in LDH. However,
this effect was not described for all caspase-4 positive tumor tissues. In some cases, fatty



Metabolites 2021, 11, 630 16 of 25

acid biosynthesis was favored via malonic acid and palmitic acid production. It has been
concluded by Terlizzi et al. that the caspase-4 positive subpopulation of NSCLC patients is
characterized by a specific lipidomic profile associated with alternative pathways, which
guarantee glucose metabolism in favor of tumor cell proliferation [18].

Mazzone et al. also published results showing differences in 68 lipids, between healthy
controls and lung cancer patients. Forty-four different lipids had higher values in lung
patients and 24 had lower values [11]. Yu et al. described significant discriminatory lipid
species upregulated in lung cancer patients, such as lysophosphatidylethanolamine and
ether phosphatidylethanolamine, as well as some downregulated lipids, such as sphin-
gomyelins [20]. Another study by Ros-Mazurczy et al. identified phospholipid components
at increased levels in lung cancer patients, including phosphatidylcholines, diacylophos-
pholipids and sphingomyelins, as well as decreased levels of lysophosphatidylcholines [32].

Another study conducted by Klupczynska et al. presented choline-containing phos-
pholipids as a promising group of lung cancer biomarkers, namely, lysophosphatidyl-
choline aC26:0, lysophosphatidylcholine aC26:1, phosphatidylcholine aaC42:4 and phos-
phatidylcholine aaC34:4 [26].

4.4. Glucose and Its Metabolites

In a study developed by Wikoff et al., significant elevations in ribitol, arabitol, and
fucose/rhamnose in adenocarcinoma (AdC) tissues were observed, while a decrease in
glucose levels was observed in tumoral tissues compared to non-malignant tissues [54].
The observed two-fold reduction in glucose in AdC when compared with healthy con-
trols corroborates the Warburg effect theory. The study found that while glucose was
reduced, other members of the glucuronate and pentose interconversion pathway (ara-
bitol, ribitol, UDP-GlcNAc and xylitol) showed significant elevations in AdC compared
to non-malignant tissues, suggesting that in cancer patients there is a pentose phosphate
metabolism and an elevated glucuronidation activity. The pentose phosphate pathway is
involved in nucleotide synthesis for DNA replication as well as the provision of reducing
equivalents for several cellular reactions [55].

4.5. Smoking-Related Metabolites: Nicotine and Cotinine

Smoking is one of the most significant risk factors for lung cancer. From over 5000 com-
pounds identified in tobacco smoke, more than 70 compounds have been considered carcinogenic.

Cotinine is one of the most important metabolites from nicotine metabolism in humans,
being responsible for 70–80% of the metabolites produced in smokers [56,57]. Although the
association between nicotine and cotinine levels and lung cancer risk is known, they are
not considered carcinogenic. Several studies have shown that nicotine and cotinine did not
induce or influence lung carcinogenesis. However, some data published by Larose et al. [58]
on current smokers showed a significant positive association between cotinine and lung
cancer risk. Cotinine levels compatible with active smoking were found to be usual in former
smokers and never-smokers. Former and never-smokers with cotinine levels indicative of
active smoking also displayed an increased risk of lung cancer. The authors concluded
that there is a consistent association between circulating cotinine concentrations and lung
cancer risk for current smokers and an additional risk in former and never-smokers [59–63].

4.6. N–Acetylneuraminic Acid (NANA)

Several studies associated the increased of NANA concentrations with various cancer
types, including with higher lung cancer risk. NANA is involved in the formation of
glycans, which plays several important roles in cells, namely in proteins synthesis, cell
signaling and adhesion. Increased NANA levels may be a result of increased turnover and
shedding of tumor cells, which in turn results in the release of glycans into the serum [45].
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4.7. Folate and Vitamin B6

Fanidi et al. developed a case-control study with 5364 lung cancer patients and
5364 control subjects. Control participants were individually matched to lung cancer
patients by age, sex, cohort and smoking status. This study concluded that participants
with higher circulating concentrations of folate and vitamin B6 had a modest decreased
overall risk of lung cancer [31].

4.8. Published Results Including Groups/Panels of Discriminative Metabolites

Sun et al. carried out a study including 31 lung cancer patients and 29 healthy vol-
unteers, from which blood serum samples were collected. Levels of serum metabolites
were qualitatively described with GC–MS. The authors identified five significant metabo-
lites (erythritol, indole-3-lactate, adenosine-5-phosphate, paracetamol, and threitol) that
could be further studied as biomarkers. In addition, they also identified five significant
pathways, namely, pathways involving the metabolism of starch and sucrose, galactose,
purine, tryptophan, and fructose and mannose degradation. These pathways can be altered
and should be the subject of future in-depth studies, since they could serve to guide new
investigations [27].

Singhal et al. developed an analysis of some metabolites that could be used to
distinguish between lung cancer patients and healthy controls. The results reported by
these authors described unsurprising changes in the concentrations of certain identified
metabolites. For instance, lysophosphatidylcholines are membrane lipids, levels of which
can reveal pathophysiological changes and which can be upregulated in lung cancer
patients. Moreover, higher concentrations of several amino acids, such as valine, leucine
and isoleucine, are also usually detected during the development of lung cancer. Increased
levels of these amino acids are required for energy production through the Krebs cycle. It
was also found that the metabolite diacetylspermine, used in this study to discriminate
patients from controls, seems to be an excellent predictor of the diagnosis of NSCLC [29].

Mazzone et al. also showed differences between healthy controls and lung cancer
patients in 12 peptides, 4 carbohydrates, 5 nucleotides and 30 xenobiotics [11]. Some of
these metabolites presented higher values in lung cancer patients, while others presented
lower values.

Cancer-associated biochemical alterations were characterized in the study conducted
by Wikoff et al. In this study, current or former smokers with early stage (Stage IA–
IB) AdC were included, and 39 malignant and non-malignant lung tissue samples were
analysed by GC–MS. After analysis of 462 different metabolites, the main findings in-
cluded decreased glucose levels; changes in cellular redox status associated with higher
cysteine levels and levels of the antioxidants alpha- and gammatocopherol; increases in
nucleotide metabolites 5,6-dihydrouracil and xanthine, which may be related to increased
dihydropyrimidine dehydrogenase and xanthine oxidoreductase activity; higher 5′-deoxy-
5′-methylthioadenosine levels, suggestive of reduced purine salvage and increased de novo
purine synthesis; and elevations in glutamate and UDP-N-acetylglucosamine, suggesting
increased protein glycosylation [54].

Comparisons of results from lung cancer cases against control groups (using serum,
urine and bronchoalveolar lavage) revealed changes in 26 metabolites in serum, 32 in
urine and 16 in the bronchoalveolar lavage. Six metabolites were commonly altered in
the three fluids: malonic acid, palmitic acid, phosphoric acid, inositol, isocitric acid and
l-glycine. From these, only phosphoric acid presented good sensitivity and specificity for
lung cancer detection in the three fluids. In addition, this study showed alterations in
different metabolic pathways, namely, glycine, serine and threonine metabolism; arginine
and proline metabolism; inositol phosphate metabolism; alanine, aspartate and glutamate
metabolism; pyruvate metabolism; galactose metabolism; and cysteine and methionine
metabolism [64]. These are the main altered pathways in all the studies that have been
referred to previously.
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Results published by Rocha et al. showed that major characteristic alterations found
in AdC patients were related to phospholipid metabolism (proved by findings of elevated
levels of phosphatidylcholine, glycerophosphocholine and phosphatidylethanolamine)
and protein catabolism. On the other hand, Squamous Cell Carcinoma (SqCC) patients had
stronger glycolytic and glutaminolytic profiles (as shown by negative correlated variations
in glucose and lactate levels and positive correlated increases in glutamate and alanine
levels). This study provided new and clear evidence on the distinct metabolic signatures
for AdC and SqCC, which can in turn have important implications for the differential
diagnosis and selective definition of new targeted therapeutics [65].

4.9. Metabolites and the Response to Treatment

There have been many publications presenting studies of the role of metabolomics
in lung cancer diagnosis, tumor characterization and progression. However, there is
little information about the relation between serum metabolomic profiles and the clinical
outcomes of advanced-stage lung cancer patients. To fill the gap, several studies have been
conducted, such as the one carried out by Maosheng et al., which intended to examine the
role of blood metabolites in predicting overall survival among advanced-stage NSCLC
patients who received platinum-based CT [33]. The authors found altered levels in four
metabolites, namely, caffeine, paraxanthine, stachydrine, and methyl glucopyranoside-
alpha and -beta, which levels differed significantly between NSCLC patients with poor
and good chances of survival. Interestingly, most of these metabolites are involved in
caffeine metabolism, two of these metabolites related to coffee intake. Although the
mechanisms remain unclear, the caffeine metabolism pathway was the only significant
pathway identified, exhibiting differences between NSCLC patients with poor and good
survival chances, after receiving platinum-based CT. These small metabolites may be useful
biomarkers in the process of identifying patients who may benefit from platinum-based
CT [33].

Animal experimental models reported an antineoplastic effect of caffeine, inducing
cell differentiation and inhibiting mitosis in tissue cultures. Three significant metabolites
involved in the caffeine metabolism pathway and identified by Guertin et al. have been
inversely associated with colorectal cancer, namely theophylline, caffeine and paraxan-
thine [66]. Moreover, caffeine and/or coffee intake has been negatively associated with
breast tumor differentiation, suggesting that they may slow tumor growth [67]. However,
there are very few published results about caffeine and its metabolites and lung cancer.

In addition, caffeine exposure may sensitize tumor cells to ionizing radiation [68].
Some authors published results showing that metabolites of the caffeine metabolism
pathway may deregulate cell cycle checkpoints and phosphorylation of p53 in NSCLC
patients who received CT and radiotherapy, influencing their survival. The underlying
mechanisms and the association between caffeine and its metabolites and the survival of
NSCLC patients treated with CT requires further study.

Tian et al. [34] recently reported interesting findings from metabolomic profiles from
a cohort of NSCLC patients treated with platinum-doublet CT. This study included pre-
treatment serum metabolomics profiling after first-line pemetrexed plus platinum doublet,
in order to explore a potential biomarker model predictive of treatment efficacy and
survival outcomes. The metabolite panel reported by Tian et al. included seven metabo-
lites (hypotaurine, uridine, dodecanoylcarnitine, choline, dimethylglycine, niacinamide,
L-palmitoylcarnitine). The presence of these metabolites in the pre-treatment serum was
associated with longer median progression free survival (10.3 vs. 4.5 months, p < 0.001).

In another work conducted by Hao et al., it was postulated that increased glutathione
synthesis resulting from upregulated methylation pathways could be associated with better
survival of CT-treated NSCLC patients [35,69]. The authors positively associated increased
blood levels of 2-hydroxybutyrate, glycine and formate with better overall survival. Sphin-
golipids were also positively associated with overall survival, namely sphingomyelin and
two ceramides. Considering the presented results, the authors hypothesized that elevated
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ceramide synthesis from membrane sphingomyelin may be indicative of better overall
survival and less aggressive tumorigenesis. The evaluation of metabolomic profiles from
pre-treatment samples, may be a promising approach to stratifying clinical outcomes for
NSCLC patients who will be receiving CT.

Another work published by Hao et al. evaluated the pre-treatment serum metabolomic
profiles of 25 lung cancer patients undergoing CT ± radiation to understand the useful-
ness of metabolites as temporal biomarkers of clinical outcomes [36]. Hydroxylamine,
tridecan-1-ol and octadecan-1-ol metabolites were suggestive of better survival, while
metabolites such as tagatose, hydroxylamine, glucopyranose and threonine were indicative
of tumor progression. These authors concluded that baseline samples, naive to treatment,
are potentially predictive of essential clinical parameters, like survival and progression, and
may reflect tumor pathophysiology (SqCC vs. AdC) and tumor stage.

More recently, Ghini et al. [37], used metabolomics to analyze sera samples from
50 patients with NSCLC treated with ICPIs. Significantly, this study showed that the
metabolomic profiling of serum could be used as a predictive “collective” biomarker to
ICPI response. Metabolomic profiling predicted, with >80% accuracy, the individual ther-
apy outcome. Significantly different levels of the amino acids alanine and pyruvate were
observed on nivolumab-treated patients, non-responder and responder subjects (p < 0.05).
Responders revealed lower serum levels of the two metabolites mentioned. Considering
pembrolizumab-treated patients, there was a tendency for pyruvate serum levels to be
lower in non-responders compared with responders.

4.10. Limitations of this Study

Various lung cancer metabolic markers have been studied, but the published studies
included only a limited number of clinical cases. Large-scale clinical validations, as well as
in vitro targeted studies are absent, so the role of metabolomics in lung cancer diagnosis
requires further study and validation. Most of the metabolites were screened by the com-
parison of values in lung cancer patients to those in healthy subjects, and the differentiation
of lung cancer and other diseases lacks validation [70].

This review summarizes the most recent data on the metabolomic profiles for serum,
blood or plasma of lung cancer patients. Despite the variety of metabolites associated with
changes in lung cancer, the limited quantity of evidence found for each metabolite suggests
that further studies are needed in order to validate the option of using them as biomarkers
for lung cancer. Moreover, most studies focused on a qualitative comparison, and therefore
quantitative analysis is lacking. Measure and report of absolute concentrations of the
metabolic markers in tissues, cells, blood and urine is also missing. These aspects largely
limit the clinical application of these results. As previously stated, there are few results
regarding the effect of the different therapeutic approaches (chemotherapy, immunotherapy,
combined therapies, radiotherapy) in metabolomic profiles, which leaves a gap in the
evaluation of the importance and influence of metabolomics in lung cancer research.

Heterogeneity was noted in the identified studies. It may be attributed to endogenous
and exogenous factors such as ethnicity, co-morbidities and smoking status, as well as di-
etary intake, medication, sampling collection and preparation. The results of a metabolomic
evaluation are profoundly affected by these factors, so they act as a bias across all the arti-
cles included in this review. Moreover, the analytical platforms and methodology used to
identify and quantify the metabolites should be further harmonized in order to standardize
the workflow adopted by researchers in metabolomics research.

As an interdisciplinary subject, metabolomics must be integrated with many related
areas, including analytical chemistry, molecular biology, biochemistry, bioinformatics and
computer big data science. Specifically for lung cancer, software tools, big data integration
and collection platforms that are able to integrate genomic, proteomic, metabolomic and
imagiologic data are still not available.
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5. Conclusions

Metabolomics is an emerging field compared with other, older technological method-
ologies, like genomics, transcriptomics and proteomics. Moreover, it has only been newly
applied to the study of lung cancer. Although there are several difficulties related to the
use of metabolomics in lung cancer research, some lung cancer metabolomic markers have
been identified. Its identification in a limited number of clinical cases urges the need for
large-scale clinical validations. Most of the metabolites identified as possible lung cancer
biomarkers were selected on the basis of comparisons of metabolites in lung cancer patients
and in healthy people, however, the differentiation of lung cancer and other diseases lacks
validation. Moreover, for most metabolic markers, quantitative analysis is lacking, as is the
testing of absolute concentrations of the metabolic markers. These factors largely limit the
clinical application of metabolomics in lung cancer research.

Despite all the limitations in already published studies, this review identified several
metabolites that are significantly associated with metabolic pathways responsible for
mechanisms that promote tumor progression, particularly in lung cancer. Certain amino
acids, proteins, smoking-related metabolites, folate and lipids are particularly promising,
and should be considered in further investigations for potential use as biomarkers in larger
populations, as well as in the study of relapse and resistance to therapy. It is also important
to highlight that larger and standardized studies (in vitro and in vivo) using some of the
metabolites already studied are needed in order to evaluate the influence of numerous
factors such as diet and lifestyle patterns, systemic responses of the host (e.g., inflammation
and response of the immune system) and the influence of and response to the different
available therapies.

The authors predict and hope that in the future, metabolomics will play a more
important role in the early diagnosis of lung cancer, in distinguishing between different
types of tumors, in molecular mechanism research and in precision/targeted medicine,
since it is an expanding branch of science and one that allows resort to the use of non-
invasive and easy-to-collect samples.
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Appendix A

Table A1. PRISMA checklist, retrieved from PRISMA website. Some items were not included (X) since this is a systematic
review and not a meta-analysis.

Section/Topic # Checklist Item Reported on Section

Title

Title 1 Identify the report as a systematic review,
meta-analysis, or both. Title
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Table A1. Cont.

Section/Topic # Checklist Item Reported on Section

Abstract

Structured summary 2

Provide a structured summary including, as
applicable: background; objectives; data sources;

study eligibility criteria, participants, and
interventions; study appraisal and synthesis

methods; results; limitations; conclusions and
implications of key findings; systematic review

registration number.

Abstract

Introduction

Rationale 3 Describe the rationale for the review in the context
of what is already known. Introduction

Objectives 4

Provide an explicit statement of questions being
addressed with reference to participants,

interventions, comparisons, outcomes and study
design (PICOS).

Introduction

Methods

Protocol and registration 5

Indicate if a review protocol exists, if and where it
can be accessed (e.g., Web address), and, if available,

provide registration information including
registration number.

X

Eligibility criteria 6

Specify study characteristics (e.g., PICOS, length of
follow-up) and report characteristics (e.g., years

considered, language, publication status) used as
criteria for eligibility, giving rationale.

Section 2.2

Information sources 7

Describe all information sources (e.g., databases
with dates of coverage, contact with study authors to

identify additional studies) in the search and date
last searched.

Section 2.1

Search 8
Present full electronic search strategy for at least one

database, including any limits used, such that it
could be repeated.

Appendix B Search 2

Study selection 9
State the process for selecting studies (i.e., screening,

eligibility, included in systematic review, and, if
applicable, included in the meta-analysis).

Section 2.2

Data collection process 10

Describe method of data extraction from reports
(e.g., piloted forms, independently, in duplicate) and

any processes for obtaining and confirming data
from investigators.

Section 2.3

Data items 11
List and define all variables for which data were
sought (e.g., PICOS, funding sources) and any

assumptions and simplifications made.
Section 2.3

Risk of bias in individual
studies 12

Describe methods used for assessing risk of bias of
individual studies (including specification of

whether this was done at the study or outcome
level), and how this information is to be used in any

data synthesis.

X

Summary measures 13 State the principal summary measures (e.g., risk
ratio, difference in means). Section 2.2

Synthesis of results 14

Describe the methods of handling data and
combining results of studies, if done, including

measures of consistency (e.g., I2) for each
meta-analysis.

X
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Appendix B

Literature search strategy used for electronic database PubMed. The search performed
was #1 AND #2, with the filter in the last 10 years→ Search 3.

Search 1: lung cancer Filters: in the last 10 years
(“lung neoplasms”[MeSH Terms] OR (“lung”[All Fields] AND “neoplasms”[All

Fields]) OR “lung neoplasms”[All Fields] OR (“lung”[All Fields] AND “cancer”[All Fields])
OR “lung cancer”[All Fields]) AND (y_10[Filter]).

Translations: lung cancer: “lung neoplasms”[MeSH Terms] OR (“lung”[All Fields]
AND “neoplasms”[All Fields]) OR “lung neoplasms”[All Fields] OR (“lung”[All Fields]
AND “cancer”[All Fields]) OR “lung cancer”[All Fields].

Search 2: metabolomics Filters: in the last 10 years
(“metabolome”[MeSH Terms] OR “metabolome”[All Fields] OR “metabolomes”[All

Fields] OR “metabolomics”[MeSH Terms] OR “metabolomics”[All Fields] OR “metabolomic”
[All Fields]) AND (y_10[Filter]).

Translations: metabolomics: “metabolome”[MeSH Terms] OR “metabolome”[All Fields]
OR “metabolomes”[All Fields] OR “metabolomics”[MeSH Terms] OR “metabolomics”
[All Fields] OR “metabolomic”[All Fields].

Search 3: (lung cancer AND (y_10[Filter])) AND (metabolomics AND (y_10[Filter]))
Filters: in the last 10 years

(“lung neoplasms”[MeSH Terms] OR (“lung”[All Fields] AND “neoplasms”[All Fields])
OR “lung neoplasms”[All Fields] OR (“lung”[All Fields] AND “cancer”[All Fields]) OR
“lung cancer”[All Fields]) AND “2011/03/03 00:00”:”3000/01/01 05:00”[Date–Publication]
AND (“metabolome”[MeSH Terms] OR “metabolome”[All Fields] OR “metabolomes”[All
Fields] OR “metabolomics”[MeSH Terms] OR “metabolomics”[All Fields] OR “metabolomic”
[All Fields]) AND “2011/03/03 00:00”:”3000/01/01 05:00”[Date–Publication])) AND
(y_10[Filter]).

Translations: lung cancer: “lung neoplasms”[MeSH Terms] OR (“lung”[All Fields]
AND “neoplasms”[All Fields]) OR “lung neoplasms”[All Fields] OR (“lung”[All Fields]
AND “cancer”[All Fields]) OR “lung cancer”[All Fields] y_10[Filter]: “last 10 years”[dp].

Metabolomics: “metabolome”[MeSH Terms] OR “metabolome”[All Fields] OR
“metabolomes”[All Fields] OR “metabolomics”[MeSH Terms] OR “metabolomics”[All
Fields] OR “metabolomic”[All Fields] y_10[Filter]: “last 10 years”[dp].
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