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Abstract: Progressive accumulation of damaged cellular constituents contributes to age-related
diseases. Autophagy is the main catabolic process, which recycles cellular material in a multitude
of tissues and organs. Autophagy is activated upon nutrient deprivation, and oncogenic, heat or
oxidative stress-induced stimuli to selectively degrade cell constituents and compartments. Specificity
and accuracy of the autophagic process is maintained via the precision of interaction of autophagy
receptors or adaptors and substrates by the intricate, stepwise orchestration of specialized integrating
stimuli. Polymorphisms in genes regulating selective autophagy have been linked to aging and
age-associated disorders. The involvement of autophagy perturbations in aging and disease indicates
that pharmacological agents balancing autophagic flux may be beneficial, in these contexts. Here,
we introduce the modes and mechanisms of selective autophagy, and survey recent experimental
evidence of dysfunctional autophagy triggering severe pathology. We further highlight identified
pharmacological targets that hold potential for developing therapeutic interventions to alleviate
cellular autophagic cargo burden and associated pathologies.

Keywords: age-related disease; aging; aggrephagy; mitophagy; neurodegeneration; nucleophagy;
pexophagy; rapamycin; selective autophagy

1. Introduction

Cellular garbage disposal is critical for recycling defective cell constituents, such as
proteins and organelles, towards the maintenance of cellular homeostasis. One of the main
degradative molecule pathways is autophagy, which is a physiological catabolic process
shared by all eukaryotes. Derived from the Greek words ‘auto’ meaning self, and ‘phagy’,
meaning eating, autophagy, it was initially considered to be a bulk degradation process,
while now its highly selective nature is increasingly appreciated. This self-digestive mecha-
nism relieves the cell from proteotoxic, genotoxic, oxidative and nutrient stress [1]. It is
accomplished in an intricate stepwise manner, which leads to clearance of damaged cell
constituents, in the degradative organelle, the lysosome. Failure to complete this procedure
has been implicated in many age-related diseases. Three main types of autophagy have
been characterized in detail: macro-autophagy, henceforth referred to as autophagy, which
invariably entails the formation of a double membrane vesicle that fuses with the lyso-
some; micro-autophagy, where there is direct interaction between the autophagic substrate
and the lytic organelle, and chaperone-mediated autophagy (CMA), where autophagic
substrates are targeted by chaperones and guided to specific receptors on the lysosome,
for degradation.

2. Main Text
2.1. General Autophagy

Autophagy involves three main, consecutive steps: initiation, elongation and au-
tophagosomal/lysosomal fusion. Although basal autophagy occurs at different levels,
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depending on the tissue, particular stimuli, such as, protein aggregation, DNA damage, re-
active oxygen species (ROS), and nutrient deprivation activate or upregulate the autophagic
response [2]. Initially, early autophagic structures form, at the pre-autophagosomal
site (PAS), where there is nucleation of the initiation membrane, forming the ’moon-
shaped’ phagophore. Expansion of the phagophore leads to PI(3)P-rich omegasome for-
mation, which when sealed, forms the double membrane vesicle, the autophagosome.
Although the endoplasmic reticulum is the main site for autophagosome formation, ER-
mitochondria/plasma membranes contact sites, the plasma membrane itself, the Golgi
complex, and recycling endosomes have emerged as autophagosomal biogenesis sites [3,4].

The ULK1 (Unc-51-like kinase 1) and PIKC3-C1 signaling complexes are activated
during autophagic induction [5]. Physiologically, phosphorylated ULK1 and ATG13 are in-
active and bound to mTORC1 (master cell growth regulator). During amino acid starvation,
ULK1 is dephosphorylated and released from mTORC1, which in turn activates ATG13 and
FIP200 [6]. Moreover, TFEB is disinhibited upon starvation to upregulate autophagy genes,
as well as, lysosomal and lipid catabolism [7]. Next, phagophore expansion involves ATG8
family proteins, which are cleaved by the ATG4 protease at their C-terminus, and then lipi-
dated. Activation of lipidated ATG8s is performed by ATG7 with the aid of ATG5-ATG12.
This activity is localized at the phagophore by ATG16L, ultimately leading to phagophore
expansion. However, the requirement for ATG8 lipidation for autophagosome assembly
has been recently challenged [8].

During autophagosome maturation, the autophagosomal membrane is targeted to the
lysosomal membrane by ATGs, the cytoskeleton, mainly microtubule-related kinesins, and
the fusion machinery. The fusion machinery comprises SNAREs, both on the autophago-
somal, syntaxin 17 (STX17), synaptosomal-associated protein (SNAP29) and lysosomal
membrane (VAMP8), with the aid of the homotypic fusion and protein sorting (HOPS)
complex, for membrane tethering during fusion [9,10].

2.2. Selective Autophagy

Selective autophagy degrades a plethora of autophagic cargo, which is targeted upon
specific cellular insults. Defective mitochondria (mitophagy), protein aggregates (ag-
grephagy) or pathogenic bacteria (xenophagy) are selective autophagy triggers. Atg8
proteins interact and recruit selective autophagic receptors, which contain LIR (LC3-
interacting) motifs (W/F/Y-X-X-L/I/V), with upstream negatively charged residues for
higher affinity interactions, as well as, post-translational modifications, such as phosphory-
lation [11]. These receptors are recruited upon induction of selective autophagy, which is, in
turn, directed to specific autophagic substrates by other tags, such as K27-linked mono-or
K63 poly-ubiquitination events. Autophagic receptors such as p62, NBR1 (a neighbor of
BRCA1 gene 1), OPTN1 (optineurin) contain both LIR and UBA binding motifs [12]. ULK1
controls selective autophagy independently of mTOR. Recent evidence suggests that ULK1
interaction with huntingtin is required for activation. Subsequently, huntingtin aids the
LC3-p62-autophagic cargo interaction [13,14].

2.2.1. Mitophagy and Aging

Homeostatic mechanisms that respond to mitochondrial damage are less efficient
during aging. Mitophagy is a physiological eukaryotic pathway, which involves the
degradation of superfluous or damaged mitochondria [15]. When perturbed, normal
mitochondrial function is hindered, resulting in the production of excessive ROS [16]. This
ultimately leads to cellular dysfunction and tissue damage.

A multitude of mitophagic regulators and receptors have been identified that are
cargo content and stress-dependent. Phosphatase and tensin homologue (PTEN)-induced
putative kinase 1 (PINK1) and 1-E3 ubiquitin ligase Parkin-mediated mitophagy is the
predominant type of autophagic degradation of mitochondria. Under non mitophagy-
inducing conditions, PINK is transferred to the inner mitochondrial membrane, where
it is cleaved by proteases and subsequently degraded by the proteasome [17,18]. Upon
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membrane depolarization, PINK1 phosphorylation and Parkin-mediated ubiquitination
of outer mitochondrial membrane proteins initiates a series of intricate events, which
ultimately leads to autophagic machinery recruitment, for whole mitochondria degrada-
tion [17]. In addition, PINK1 indirectly activates dynamin-related protein 1 (DRP1), which
in turn promotes fission of defective mitochondria to facilitate mitochondrial autophagic
degradation [19].

Although Parkin-dependent mitophagy accounts for a large percentage of mitochon-
drial recycling, there are other Parkin-independent pathways that involve different ubiqui-
tin ligases. These enzymes generate ubiquitin chains to recruit autophagic adaptors such as
optineurin (OPTN), nuclear dot protein 52 (NDP52) and p62, which directly interact with
LC3 through their LIRs [14,15]. Moreover, core autophagic components such as the Unc-
51-like autophagy activating kinase 1, (ULK1) and the double FYVE-domain containing
protein 1 (DFCP1), are also localized close to mitochondria to alleviate mitoaggregation [20].
Outer mitochondrial membrane proteins can act as mitophagy receptors themselves, dur-
ing cellular homeostasis, differentiation and hypoxia, specifically, NIX (NIP3-like protein
X), BNIP3 (BCL2 interacting protein 3) and FUNDC1 (FUN14 domain-containing pro-
tein) [21–23]. Importantly, NIX and BNIP3 regulate Parkin recruitment, highlighting the
interplay between the PINK1-Parkin pathway and mitophagy receptors [24].

Defective mitophagy is evident in a variety of age-related pathologies such as neu-
rodegeneration, metabolic syndromes and myopathies (Figure 1) [25]. In Alzheimer’s
disease (AD), PINK1 expression is extremely low, while mitochondrial numbers and ox-
idative stress increase [26]. Mutations in PINK1/Parkin have been identified in familial
Parkinson’s disease, while overexpression of NIX upregulates mitophagy in PINK1/Parkin
deficient neurons [27]. Mutations the homologues of these proteins cause decreased lifes-
pan, dopaminergic neuronal death and muscle atrophy, in Drosophila [28]. Defective
mitophagy has also been found to induce autoimmune responses, in a cell non autonomous
manner. In the absence of PINK1/Parkin, immune cells trigger an immune response by
expressing MHC-class I at their plasma membrane [29]. Additionally, retinal ganglion
cell axons have been shown to extrude their mitochondria that are then degraded by
neighboring astrocytes [30]. In Huntington’s disease, mutant huntingtin appears to perturb
mitophagic function [31]. Mitophagy is also essential for cardiac function, and protects
against high fat diet, diabetic induced, cardiomyopathy [32]. Recently, PINK1 and parkin
have also been associated with mitochondrial genome mutations; mitophagic levels are
inversely proportional to mitochondrial DNA mutations especially in neurons [33].

With regard to therapeutic intervention, several pharmacological compounds have
been shown to activate mitophagy and alleviate symptoms of age-related diseases, de-
pendent on dysfunctional mitochondria. Similar to aggrephagy, rapamycin activates
AMPK, while blocking mTOR, maintaining energetic demands and preventing neurologi-
cal symptoms, such as neuroinflammation [34,35]. Metformin and pifithrin induce Parkin
by inhibiting p53 activity and alleviating diabetic phenotypes [36–38]. Resveratrol, mainly
found in grape skin, as well as, NAD+ precursors found in natural compounds activate
mitophagy and mitochondrial biogenesis through the sirtuin 1 (SIRT1)-PGC-1α axis [39,40].
Urolithin A, an intestinal microbiome-derived metabolite from dietary intake, induces both
mitochondrial degradation and biogenesis, and increases health span of model organisms
such as C. elegans and mice (Table 1) [41].

2.2.2. Aggrephagy and Age-Related Disease

Aggrephagy degrades aggregation-prone proteins via targeted macro-autophagy, in
addition to CMA and the proteasomal pathway. These proteins typically form aggresomes
near the nucleus, which are surrounded by intermediate filament cytoskeleton, and are
further processed to be degraded by autophagy. Protein aggregation usually occurs due to
misfolding and can cause, among others, dysregulation of calcium homeostasis, inflam-
mation, neurotoxicity [42]. Normal λy, in unstressed cells, the proteasome is the main
degradative pathway for ubiquitin-tagged proteins; however, protein aggregation and over-
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load requires activation of autophagy [1]. Specific neurodegenerative diseases represent
prominent examples of dysfunctional aggrephagy. In AD, Parkinson’s disease, amyotrophic
lateral sclerosis and polyglutamine diseases, autophagy is perturbed (Figure 1) [43,44]. In
the context of these pathologies, defective proteins accumulate in aggresomes, which are
identified by their ubiquitination status and the selective autophagic receptor p62, for
autophagosomal targeting [45].
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Pharmacological compounds, which can upregulate autophagy, with the aim of amelio-
rating pathology in neurodegenerative diseases, have been identified. In AD, amyloid-beta
aggregates in oligomers, autophagy is defective and synapse formation and function are
perturbed. The size and solubility of aggregates determines the extent of cellular toxicity
effects [46]. AVN-211, Lu AE58054, SB-742457 which are antagonists of the mTOR activator,
5-HT6R, significantly delay memory impairment in AD, with the second reaching Phase
III clinical trials, while the latter reaching Phase II, but eventually failing to show the
expected efficacy (Table 1) [47–49]. Recently, alborixin was identified as an autophagy
inducer in both neuronal and glial cells, through the upregulation of several autophagic
mediators such as Beclin-1, ATG5 and ATG7, by inhibiting the AKT pathway [50]. Oral
administration of a recombinant AAV/Aβ, which alleviated Aβ overload, was also found
to activate autophagy [51]. Moreover, rapamycin inhibits mTOR, while resveratrol activates
AMPK to induce autophagy. The latter has reached Phase III trial [52]. Lithium, which
is used in psychiatric disorder treatments, acts via GSK-3β inhibition to delay cognitive
decline [53]. AUTEN-67, an inhibitor of MTMR14, which is antagonistic to autophagosome
membrane formation, promotes autophagy, longevity and prevents neuronal cell death,
in both in vitro and in vivo AD and Huntington’s disease models [54]. Nicotinamide,
which enhances autophagosome/autolysosome acidification, promotes autophagic flux
and, hence, ameliorates AD pathology, in mouse disease models [55].

In PD, Beclin 1 gene transfer and overexpression of TFEB have been shown to in-
crease degradation of α-synuclein, and generate promising therapeutic results in mouse
models [56,57]. Interestingly, curcumin, prevents oxidative stress and inflammation, while
blocking α-synuclein aggregation [58]. The NRF2 activator, dimethyl fumarate (DMF),
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already used for treatment of multiple sclerosis, was shown to alleviate α-synuclein tox-
icity [59]. In polyglutamine disorders, mutant forms of several proteins such as ataxin-1
and huntingtin contain expanded polyglutamine repeats, which are cleared out by au-
tophagy [60]. Notably, mutant huntingtin perturbs autophagy, aggravating general protein
and microRNA regulator Argonaute 2 clearance defects, causing global dysregulation of
miRNA expression [61]. Similarly to AD, AUTEN-67 and rapamycin have been shown
to have therapeutic effects in PD animal experimental models [62]. Moreover, trehalose
and calpastatin have been shown to alleviate symptoms in rodent models, with calpastatin
acting as a calpain inhibitor and activator of autophagy [63,64]. Nevertheless, translational
efforts aiming to bring these research results to the clinic have been met with limited success.

2.2.3. Pexophagy and Aging

Recycling of peroxisomes is also regulated by autophagy. These small dynamic
single membrane organelles regulate fatty acid oxidation, production of bile acid and
other lipids, while also producing reactive oxygen species (ROS), which is neutralized by
catalase [65]. Moreover, peroxisomes interact with a multitude of other cellular constituents,
such as lipids, the ER and mitochondria [66]. Peroxisome biogenesis can be stimulated by
oleic acid, methanol or amines in different yeast species [67,68]. In addition, pexophagy
is triggered by feeding yeast with peroxisome-independent carbon sources, while it is
inhibited when long fatty acids are abundant [69]. In mammals, ubiquitin acts as a tag
for peroxisomal proteins, such as PEX3 and PEX5, that are then recognized by autophagic
receptors, including p62 and NBR1, initiating peroxisome lysosomal degradation [70,71].
The PEX2-PEX10-PEX-12 complex functions as an E3 ubiquitin ligase that mediates PEX5
receptor recycling. Depletion of the PEX2-PEX10-PEX-12 complex abrogates starvation-
induced pexophagy [72].

Pexophagy and peroxisome biogenesis have recently been implicated with disease.
During aging, peroxisomal targeting signal 1 (PTS1) protein import deteriorates and cata-
lase function is diminished. Peroxisomes become more abundant and PEX5 accumulates
on their membranes. This causes increased production of ROS, which further blocks per-
oxisomal protein import and contributes to aging (Figure 1) [73]. Additionally, catalase
is gradually excluded from peroxisomes, during cellular senescence [74]. Increased ROS
production is a common denominator of perturbations in both peroxisomal recycling
and mitophagy, during aging [75]. However, specific induction of intraperoxisomal ROS
production causes mitochondrial fragmentation, while catalase inhibition disturbs mito-
chondrial redox potential. Peroxisome dysfunction may precede mitochondrial dysfunction
in certain age-related diseases [76]. Moreover, recent high throughput mass spectrometry
analyses showed that 30 peroxisomal proteins decrease with age in C. elegans [77].

Post-mortem analysis of Parkinson’s disease patient brains showed a reduction in
polyunsaturated fatty acid content, including DHA and arachidonic acid, with concomitant
increase in saturated fatty acids, compared to healthy controls. Peroxisomal lipids such as
cholesterol are reduced in PD, while its oxidized derivatives correlate with PD pathogenesis
and progression. Drugs regulating cholesterol levels appear to alleviate PD symptoms
(Table 1). Ethanolamine plasmalogens are undetectable in the blood and brain of PD
patients, while supplementation with PPI-1011, which is an ethanolamine plasmalogen
precursor, reduces dopamine neuron loss in a PD mouse model [78–80].

2.2.4. Nucleophagy and Nuclear Alterations in Aging

Autophagic recycling of the nucleus, or nucleophagy, entails the degradation of
multiple compartments of the nucleus, from parts of the nucleolus to the nuclear lamina [81].
Nucleophagy has been described in the context of cancer and neurodegeneration, both of
which are also age-associated pathologies.

In yeast, nucleophagy is triggered physiologically, under nutrient stress. Autophagic
cargo includes the granular nucleolus, which is targeted by the micro-autophagy receptor
Nvj1 and the macro-autophagy receptor Atg39 [82]. Nucleolar size has been established as
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an accurate aging biomarker in C. elegans and mammals. Fibrillarin is a major component
of the nucleolus, and a nucleolar marker. Notably, reduction of fibrillarin levels causes
nucleolar contraction, and extends lifespan, in worms [83]. By contrast, increasing fibrillarin
expression, through inhibition of the fibrillarin translational repressor NCL-1, shortens
animal lifespan. Remarkably, long-lived C. elegans mutants, such as daf-2 and eat-2, display
smaller nucleoli, compared to wild type controls. These long-lived mutant animals are
also characterized by higher levels of general and cargo-specific autophagy. Genetic
downregulation of autophagy in these mutants abrogates their longevity. Consistently, in
Drosophila, pharmacological induction of autophagy by rapamycin reduces nucleolar size
in the intestine and fat body [84]. These findings outline an intricate relationship between
autophagy, nucleolar size, and longevity.

While nucleophagy has not been directly implicated in aging, severe nuclear envelope
and nucleoplasm alterations are observed in old animals. Aged nematodes display nuclear
loss or decreased DNA copy number in the intestine [85]. Nucleophagy has also been
observed under oncogenic stress, where nuclear LC3 directly interacts with the LIR motif
of lamin B. Both LC3 and lamin B are then transported together in the cytoplasm for lyso-
somal degradation [86]. Oncogenic stress is aggravated during aging. Nucleophagy may
serve as a mechanism for damage mitigation in this context. Indeed, lamins accumulate
in premature aging syndromes [87]. In addition, damaged DNA that progressively accu-
mulates during aging is recycled through autophagy and the lysosomal enzyme Dnase2a
(Figure 1) [88]. Thus, this type of nucleophagy could protect against DNA damage, which
directly contributes to aging.

In addition to cancer, nuclear lamina degradation has been implicated in neurode-
generative diseases, such as ataxias, which are characterized by defects in several types of
autophagy. In a mouse model of dentatorubral-pallidoluysian atrophy (DRPLA), a polyg-
lutamine repeat-associated ataxia, canonical autophagy is inhibited, while nucleophagy-
based Lamin B1 degradation and Golgi membrane-associated excretion is activated [89].
Thus, hijacking of the autophagic machinery causes nuclear defects that lead to cell atro-
phy and death. This is an example of nuclear lamina recycling deregulation, leading to
exacerbated nucleophagy and neurodegeneration.

2.2.5. Other Types of Selective Autophagy in Age-Related Disease

ER-phagy is the selective degradation of parts of the endoplasmic reticulum that
contributes to the maintenance of ER homeostasis and recovery after ER stress [90]. Spe-
cific receptors of ER-phagy have been identified, including FAM134B, SEC62, RTN3L,
CCPG1, ATL3 and TEX264. Lesions in FAM134B impair its autophagic receptor function,
facilitating, stress-induced apoptosis and degeneration of sensory neurons, which causes
severe sensory and autonomic neuropathy [91,92]. Polymorphisms in this gene have been
also associated with vascular dementia [93]. Moreover, ER-phagy was recently shown to
degrade mutant NPC1, a protein involved in intracellular lipid trafficking, which has been
implicated in Niemann-Pick type C, a fatal neurodegenerative disease, [94]. In addition,
ATL3 protects sensory neurons by regulating ER membrane-forming proteins, in the ab-
sence of which, axonal degeneration ensues [95]. Furthermore, RTN3 deficiency further
aggravates amyloid-β deposition, in an AD mouse model [96]. However, the mechanistic
association of ERphagy with the aging process itself is not well-understood.

Lysosomal disintegration occurs during aging. Apart from blocking the breakdown
of cellular compartments, defects in lysophagy, the recycling of lysosomes; can activate
diverse cell death pathways such as apoptosis, necroptosis, pyroptosis and ferroptosis [97].
Notably, in AD lysosomal pH is elevated, impairing the function of the organelle [98].
Moreover, lysosomal cathepsin D activity is required for efficient clearance of α-synuclein
in Parkinsons’ disease [99]. Several potential pharmacological compounds which modulate
lysophagy have been shown to ameliorate metabolic disorders, such as, diabetes and
associated kidney disease (Table 1) [100–106].
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Table 1. Association of selective autophagy inducers with disease therapy or aging.

Autophagy
Inducer

Type of
Autophagy Disease/Aging Organism Reference

Pifithrin Mitophagy Diabetes, PD Mouse [35]
Metformin Mitophagy Diabetes, PD Mouse, Human [36]
Urolithin A Mitophagy Aging Mouse [40]
SB-742457 Aggrephagy AD Human [46]

Lu AE58-54 Aggrephagy AD Human [47]
AVN-211 Aggrephagy AD Mouse [48]

rAAV Aggrephagy AD Mouse, Rat [50]

Resveratrol
Mitophagy,

Aggrephagy
Lysophagy

AD, Diabetic
kidney disease Human [38,51,99]

Rapamycin Mitophagy,
Aggrephagy AD Mouse [34,51]

Lithium Aggrephagy AD Human [52]
Nicotinamide Aggrephagy AD Human [54]

DMF Aggrephagy PD Mouse [58]

Curcumin Aggrephagy,
Lysophagy PD, Diabetes Mouse, Rat [57,104]

Beclin-1 and
TFEB

overexpression
Aggrephagy PD Mouse [55,56]

AUTEN-67 Aggrephagy
AD, PD,

Huntington’s
disease

Mouse [53,61]

Trehalose Aggrephagy PD Mouse [62]
Calpastatin Aggrephagy PD Mouse [63]

PPI-1011 Pexophagy PD Mouse [78]

Catalase Lysophagy Diabetic kidney
disease Human [100]

Tubastatin A Lysophagy Diabetic kidney
disease Rat [101]

Torin 1 Lysophagy Diabetes Mouse [102]
Tocopherol Lysophagy Diabetes Rat [103]

3. Conclusions

Extensive research has revealed the direct association of selective autophagy defects
and age-related disease. Initially thought to be non-selective, autophagy was considered
to be a highly promising therapeutic target. Diseases associated with physiological aging
such as neurodegeneration and metabolic disorders are the outcome of genetic inhibition
of selective autophagy, which also declines physiologically during aging. Experimental
evidence is increasingly showing the significance of autophagic degradation in maintaining
organismal homeostasis, particularly in highly specialized tissues such as the nervous
system. The intricacy and crosstalk of these selective autophagic pathways raises the
challenge of combinatorial drug treatment.

Selective autophagic induction by genetic intervention or chemical compound ad-
ministration is currently being investigated in multiple diseases as potential therapeutic
approach, although no drug has reached the clinic yet. Indeed, clinical studies concern-
ing druggable autophagy targets, remains limited. This highlights the complexity and
intricacies of selective autophagic pathways, which in humans, cannot be easily targeted
due to context-dependence and extensive crosstalk with other functional networks. Thus,
initial optimism has subsided, with research now focusing on specific compounds that
could target specific aspects of selective autophagy. An important objective of the collective
efforts of the research community and pharmaceutical companies is to achieve targeting
selective autophagy mediators, while not affecting other cellular processes. This would be
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an imperative step, minimizing adverse consequences to organismal physiology, towards
clinical trials in human patients.
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