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Abstract: Cellular metabolic changes reflect the characteristics of patients with acute myeloid
leukemia (AML) caused by genetic variations, which are important in establishing AML treatment.
However, little is known about the metabolic profile of patients with genetic variation-induced AML.
Furthermore, the metabolites differ with disease progression. Here, metabolites in the bone marrow
serum of ten patients with AML and healthy individuals were analyzed using gas chromatography–
mass spectrometry. Compared with that in healthy individuals, expression of most metabolites
decreased in patients with AML; hydroxylamine, 2-hydroxybutyric acid, monomethylphosphate,
and ethylphosphate expression was unusually increased in the patients. We further examined se-
rial metabolite changes across the initial diagnosis, postremission, and relapse phases. Patients
with relapse showed increased metabolite expression compared with those in the diagnostic phase,
confirming that patients with AML had aggressively modified leukemic cells. However, a clear
difference in metabolite distribution was not observed between the diagnosis and complete remis-
sion phases, suggesting that the metabolic microenvironment did not change significantly despite
complete remission. Interestingly, metabolite profiles differed with genetic variations in leukemic
cells. Our results, which were obtained using paired samples collected during AML progression,
provide valuable insights for identifying vulnerable targets in the AML metabolome and developing
new treatment strategies.

Keywords: acute myeloid leukemia; cell metabolism; bone marrow serum; metabolomics

1. Introduction

Acute myeloid leukemia (AML) is a malignant hematologic disease with a high risk
of fatality. Although a highly intensive treatment strategy involving the combination of
induction, consolidation, and allogeneic hematopoietic stem cell transplantation has been
applied in patients with AML for more than 30 years, the prognosis of AML remains poor.

Massive genomic research on cancerous samples has provided us with the important
information that every cancer has oncogenic driver mutations [1,2], which has resulted in
the era of precision medicine. Chronic myeloid leukemia, another form of leukemia that is
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extremely homogeneous in view of pathogenic genetic aberrations, is representative of the
dramatic success with molecular targeted agents [3], whereas no such advancements have
been observed for AML partially due to its high heterogeneity. Fms-like tyrosine kinase 3
(FLT3) inhibitors, which target the most commonly mutated genes in AML, and Bcl-2
inhibitors, which target a universal oncogenic signaling pathway, are the first molecular
targeted drugs developed in precision medicine with respect to AML treatment [4,5], along
with many other drugs. These drugs have now changed the clinical landscape of AML
treatment, but determining the cure for AML still has a long way to go.

Similar to other cancers, AML shows obvious genetic mutations and reprogramed
nutrient acquisition and metabolic pathways to meet the needs of bioenergy, biosynthesis,
and oxidation reduction [6]. In general, cancer cells metabolize ATP by converting pyruvate
to lactate, rather than through the tricarboxylic acid cycle or mitochondrial oxidation [7,8],
to meet the increased nutritional demand. Recently, however, it has been found that aer-
obic metabolism of sugars and enzymes is actively involved in cancer cell growth and
division [9]. Each cell contains different types of metabolites because of the presence of
individualized metabolic mechanism based on the fate of the cell. Thus, metabolic profiling
has attracted considerable attention as an approach that can immediately detect dynamic
cell changes and conditions, as well as early development [10]. Oncogenic mutations
recurrently found in AML drive metabolic dysregulation, and dysregulated metabolism is
closely linked to oncogenic addiction and thus potential therapeutic targets for AML. For
example, mutation in the most common oncogene in AML, i.e., FLT3, is known to be asso-
ciated with glycolysis [10]. Other oncogenic driver mutations, such as those in MYC and
RAS, have been studied to drive metabolic reprogramming, including increased glycolysis,
glutaminolysis, lipid synthesis, and mitochondrial biogenesis, which are important for
AML cell proliferation and survival [11–13]. Furthermore, AML cells can hinder glucose
uptake by normal tissues through desensitization to insulin by increasing the levels of
serum insulin-like growth factor binding protein 1 [14]. Oxidative phosphorylation is acti-
vated in AML cells as compared to normal hematopoietic stem/progenitor cells [10]. Thus,
AML cells have metabolic vulnerabilities depending on specific bioenergy sources [15].
The bone marrow microenvironment might experience dynamic changes in metabolic
components based on the leukemic progression and chemotherapeutic agents during active
induction chemotherapy. Accordingly, the vulnerability of leukemic cells, which can be a
target of anticancer therapy, may also change continuously. However, such serial changes
in patients with AML have not yet been investigated.

Based on metabolomics analyses of AML cells, we reasoned that metabolic profiling
of bone marrow (BM) serum samples obtained from patients with AML could lead to
a detailed understanding of the altered metabolism in the leukemic microenvironment.
Skewed metabolism, including glutaminolysis, glycolysis, and lipid biosynthesis, could
lead to the depletion of specific metabolites in the AML microenvironment. Recently,
the concept of targeting the tumor microenvironment has become an inevitable aspect of
decoding cancer cell survival [16].

Herein, we performed a metabolomics analysis in BM-derived serum samples of
patients with AML at the time of initial diagnosis, postremission therapy, and relapse to
investigate the changes in AML metabolome based on the treatment course and disease
progression. Our findings could shed light on identifying potential therapeutic targets in
the AML metabolome and devising appropriate treatment strategies.

2. Results
2.1. Patients’ Characteristics

In total, 10 patients diagnosed with AML were enrolled in this study. The median
age of patients with AML was 54 years (range, 18–68 years), and half of the patients
were female. RUNX1-RUNX1T1 translocation was detected in three patients, and internal
tandem duplication (ITD) or tyrosine kinase domain (TKD) mutations in FLT3 (hereafter
referred to as FLT-ITD and FLT-TKD, respectively) were detected in four patients. The
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percentage of leukemic blasts among the total nucleated cells was 68.4% (range 20.4–
84.7%) (Tables S1 and S3). Most patients (80%) were treated with standard induction
chemotherapy (seven days of cytarabine arabinoside and three days of idarubicin), and
70% of the patients achieved complete remission (CR) after the first cycle of induction
treatment. All patients in this study experienced relapse, with a median time to relapse of
11.3 months. Salvage chemotherapies of various combinations were applied to patients
with AML relapse (Table S2).

2.2. Metabolic Differences in BM Microenvironment between Patients with AML and
Healthy Individuals

The metabolites in the BM-derived serum samples of patients with AML were ana-
lyzed using gas chromatography–time of flight–mass spectrometry (GC–TOF–MS), and
19,210 mass spectral variables were used for further multivariate analysis of each feature.
The relative number of metabolites in each patient group was quantified and compared
with that in all groups combined. We performed principal component analysis (PCA) and
partial least squares–discriminant analysis (PLS–DA) to visualize the metabolic differences
between patients with AML and healthy individuals. The PCA identified the distribution
of metabolites between healthy individuals and patients with AML but did not show a
marked difference between patients in the initial diagnosis and those in the CR or relapse
phases (Figure 1A). To analyze variables that were not reflected in the PCA, PLS–DA was
conducted to determine the distribution of metabolites within each sample. The PLS–DA,
with a model value of R2X (cum) = 0.214, R2Y (cum) = 0.587, and Q2 (cum) = 0.185, dis-
played the model’s suitability and prediction accuracy. PLS–DA showed that the metabolite
distribution in patients with AML relapse was clearly distinct from that in patients initially
diagnosed with AML or in remission (Figure 1B and Figure S1). Unexpectedly, the metabo-
lite distribution in patients in the initial diagnosis and remission phases showed unclear
distinction, which suggested that the BM microenvironment in patients with AML did not
change significantly even after achieving CR.
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Figure 1. Metabolic differences between patients with acute myeloid leukemia (AML) and healthy individuals. (A) Prin-
cipal component analysis (PCA) and (B) partial least squares–discriminant analysis (PLS-DA) score plots obtained using 

Figure 1. Metabolic differences between patients with acute myeloid leukemia (AML) and healthy individuals. (A) Principal
component analysis (PCA) and (B) partial least squares–discriminant analysis (PLS-DA) score plots obtained using the
dataset from gas chromatography–time of flight–mass spectrometry analysis of serum samples from healthy individuals
(control) and patients with AML. Red dots, control group; orange dots, initial diagnosis group; green dots, remission group;
blue dots, relapse group.

Based on the PLS–DA model, variable importance in projection (VIP) scores, which
differed with the patient group, greater than 1.0 were used for metabolic analyses. VIP
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scores are important parameters for detecting the probable pathways, including potential
metabolic marker candidates and diseases, which reflect the correlation between various
biological states and metabolites. Statistical significance was determined using p < 0.05,
which was derived from a Student’s t-test [17]. The selected metabolites were identi-
fied by comparing the mass spectral fragment patterns with the commercial standard
compounds, and the National Institutes of Standards and Technology library, Human
Metabolome Database (http://www.hmdb.ca/; accessed on 12 June 2021), and a variety
of other databases. A total of 40 metabolites, including 17 amino acids, 4 organic acids, 6
fatty acids/lipids, 2 sugars/sugar alcohols, and 5 unknown metabolites, were identified
with VIP > 1.0 as metabolites that differed significantly among the experimental groups
(Table 1).

Table 1. Significantly different metabolites between the control group and patients with acute myeloid leukemia.

No. Ret
(min) a VIP1 VIP2 Metabolites b Unique

Mass (m/z) MS Fragment Pattern (m/z) ID c

Amino Acids

1 5.48 0.26 1.54 Alanine 116 116, 73, 147, 117, 59, 100, 103, 190, 79, 148 STD/MS
2 6.65 0.30 1.17 Valine 218 73, 144, 218, 147, 100, 145, 59, 146, 219 STD/MS
3 7.19 0.49 1.08 Leucine 158 73, 158, 147, 117, 103, 205, 75, 59, 133 STD/MS
4 7.41 1.41 1.10 Isoleucine 158 73, 158, 142, 75, 147, 218, 100, 74, 159, 59 STD/MS
5 7.46 1.12 1.26 Proline 142 142, 73, 147, 75, 59, 70, 74, 66, 144, 216 STD/MS
6 7.54 0.59 1.70 Glycine 174 73, 174, 86, 147, 100, 59, 248, 133, 176 STD/MS
7 8.04 1.30 1.65 Serine 204 73, 204, 218, 100, 147, 205, 116, 188, 219 STD/MS
8 8.30 1.79 1.89 Threonine 219 73, 117, 101, 219, 218, 147, 75, 100, 129 STD/MS
9 9.06 0.55 1.29 Aminomalonic acid 218 73, 147, 218, 86, 133, 59, 174, 100, 320, 148 STD/MS

10 9.48 1.36 1.33 Methionine 176 73, 156, 147, 176, 128, 75, 100, 157, 218 STD/MS
11 9.49 1.75 1.54 Aspartic acid 232 73, 156, 232, 147, 75, 100, 157, 176, 218 STD/MS
12 9.53 1.08 1.51 5-oxoproline 156 156, 73, 147, 157, 75, 230, 258, 59, 84, 158 STD/MS
13 9.80 1.13 0.90 Cysteine 220 73, 115, 147, 100, 143, 220, 218, 116, 171 STD/MS
14 10.37 0.59 1.49 Glutamic acid 246 73, 246, 128, 84, 147, 156, 247, 100, 230, 129 STD/MS
15 10.42 2.10 1.68 Phenylalanine 192 73, 218, 192, 100, 147, 219, 193, 220, 130, 120 STD/MS
16 10.84 1.62 1.33 Asparagine 116 73, 103, 116, 147, 132, 217, 119, 117, 231, 188 STD/MS
17 12.17 1.84 1.66 Ornithine 142 73, 142, 174, 86, 59, 143, 100, 200, 175, 128 STD/MS

Organic Acids

18 7.56 0.01 1.61 Succinic acid 133 147, 73, 174, 148, 79, 55, 86, 149, 247, 133 STD/MS
19 7.85 1.04 0.77 Fumaric acid 245 147, 73, 245, 148, 99, 52, 149, 133, 143, 241, 117 STD/MS
20 9.21 0.16 1.33 Malic acid 233 73, 147, 133, 55, 233, 163, 207, 148, 101 STD/MS
21 12.28 1.85 1.51 Citric acid 273 73, 147, 273, 117, 129, 133, 211, 148 STD/MS

Fatty Acids and Lipids

22 7.97 0.47 1.46 Nonanoic acid 215 73, 117, 204, 215, 55, 132, 129, 131, 218, 147 MS
23 9.30 1.73 1.28 Hexanedioic acid 115 73, 100, 115, 147, 75, 117, 128, 111, 243 MS
24 10.55 1.90 1.41 Dodecanoic acid 257 73, 117, 129, 132, 257, 131, 145, 211 STD/MS
25 12.32 1.60 1.28 Myrisitic acid 117 73, 117, 147, 129, 132, 285, 133, 211 STD/MS
26 14.64 0.22 1.20 Palmitic acid 313 75, 117, 73, 55, 132, 129, 145, 57, 69, 313 STD/MS
27 17.26 2.12 1.56 Stearic acid 341 117, 73, 75, 132, 55, 129, 145, 131, 341, 133 STD/MS

Sugars and Sugar Alcohols

28 9.42 0.50 1.05 Saccharide 1 217 73, 147, 217, 103, 117, 205, 133, 189, 129 MS
29 12.55 1.85 1.36 Saccharide 2 217 73, 147, 217, 191, 129, 103, 218, 133, 117, 101 MS

Others

30 5.61 1.92 1.46 Hydroxylamine 146 73, 133, 146, 119, 59, 147, 86, 79, 88, 74, 155 STD/MS

31 5.74 2.16 1.60 2-Hydroxybutyric
acid 133 73, 131, 147, 75, 66, 74, 148, 133, 132, 81, 149 MS

32 6.30 1.61 1.27 Monomethylphosphate 241 241, 79, 73, 163, 133, 242, 211, 135, 243 MS
33 7.29 0.76 1.12 Phosphoric acid 211 73, 299, 133, 74, 300, 75, 193, 207, 59, 314, 211 STD/MS
34 9.60 1.60 1.26 Ethylphosphate 299 73, 147, 156, 79, 84, 299, 211, 133, 155, 315, 343 MS
35 9.82 1.04 0.93 Creatinine 115 115, 73, 143, 100, 147, 116, 171, 329, 114, 144 STD/MS

Unknowns

36 4.82 1.21 1.03 N.I. 1 152 73, 207, 79, 208, 123, 152, 93, 50, 295, 209 - d

37 4.91 1.21 1.62 N.I. 2 138 79, 50, 52, 78, 73, 69, 51, 140, 147, 77, 80, 110 -
38 6.59 0.10 1.64 N.I. 3 228 73, 144, 228, 110, 69, 77, 58, 134, 184, 74, 147 -
39 8.93 1.31 1.28 N.I. 4 128 73, 147, 128, 75, 59, 100, 115, 350, 129, 133 -
40 9.08 0.27 1.38 N.I. 5 232 73, 147, 232, 100, 59, 133, 148, 233, 131, 155 -

a Retention time; b metabolites selected based on variable importance in projection (VIP > 1.0) scores using the partial least squares-
discriminant analysis model; c identification; d not detected. STD/MS, comparison with standard compounds analyzed under the same
conditions and comparison of mass spectra with that in Human Metabolome Database, National Institutes of Standards and Technology
library, and Wiley 9 database.

http://www.hmdb.ca/
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2.3. Hierarchical Clustering of Metabolites among the AML Initial Diagnosis, Relapse, and
Remission Groups

Expression of many metabolites was decreased in patients with AML compared with
healthy individuals, whereas levels of hydroxylamine, 2-hydroxybutyric acid,
monomethylphosphate, and ethylphosphate were elevated in patients with AML (Figure 2A).
To determine the expression of metabolites based on the degree of leukemia progression,
we performed an orthogonal partial least squares discriminant analysis (OPLS–DA) of the
control and experimental groups. The OPLS–DA score plot derived from GC–TOF–MS
dataset showed distinct patterns by OPLS1 (18.68%) (Figure S2a). Based on this model,
the metabolites that differed significantly between the control and initial diagnosis group
were selected using the variable importance in projection value (VIP > 1.0). A heatmap
was generated to analyze the patterns of changes in the relative metabolite content for each
metabolite family, showing a difference in expression between the groups. The relative
metabolite content in the experimental groups was presented in terms of fold change with
respect to that in the control group (Figure 2B). Levels of amino acids, except for glycine,
alanine, and glutamic acid, tended to decrease in the initial diagnosis group compared with
the control group. The degree of decrease was the highest for glutamine. Levels of fatty
acids and lipids, except for glycerophosphate, tended to be decreased in all patient groups
compared with the control group, with the level of stearic acid being the most reduced.
Levels of pyruvic acid and succinic acid, as organic acids, tended to increase, whereas that
of citric acid tended to decrease in all patient groups compared with the control group.
Propanoic acid, hydroxylamine, and monomethylphosphoric acid levels tended to increase
in the initial diagnosis group compared with the control group.
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metabolites significantly differed between the control and patient group.

According to the OPLS–DA of the control and remission groups, there was a significant
difference of 16.46% in the expression of metabolites (Figure S2b). Based on this model,
different metabolites were screened (VIP > 1.0). Levels of all amino acids were reduced in
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the serum of patients in the remission group compared with that in healthy individuals
in the control group. Levels of lactic acid and pyruvic acid (organic acids) and glycerol
and glycerophosphate (fatty acids and lipids) were slightly increased in the serum of
patients in the remission group compared with the individuals in the control group. Levels
of saccharides (sugars and sugar alcohols), hydroxylamine, monomethylphosphate, and
phosphoric acid were increased in the remission group compared with the control group
(Figure 2C).

OPLS–DA of the control and relapse groups revealed a significant difference of 19.16%
in metabolite expression (Figure S2c). Accordingly, different metabolites were screened
(VIP > 1.0). The metabolite expression pattern in the relapse group was different from
that in the remission and initial diagnosis groups, compared with the expression in the
control group (Figure 2D). Concerning the initial diagnosis and remission groups, levels of
amino acids were mostly reduced in these groups compared with the control group. Levels
of amino acids in the relapse group were similar to those in the control group, whereas
levels of some metabolites (alanine, valine, glycine, and glutamic acid) were increased in
the relapse group compared with the control group. Levels of palmitic acid (fatty acids
and lipids), glyceric acid and threonic acid (sugars and sugar alcohols), propanoic acid,
hydroxylamine, and monomethylphosphate were increased in the serum of patients in the
relapse group compared with that in the individuals in the control group. These results
indicated that different expression characteristics of metabolites reflected the degree of
AML progression and metabolic system change.

2.4. Serial Metabolic Changes from AML Diagnosis to Relapse

Non-paired analysis might lead to the loss of clinically relevant information originating
from individual diversity. Therefore, we performed a paired-sample analysis, wherein each
patient sample from the initial diagnosis, remission, and relapse groups in the study had
serial paired samples for age/sex-matched healthy individuals. After performing PLS–DA
on patients with AML, we additionally conducted spared PLS–DA (sPLS–DA) to determine
if the metabolite profiles in patients significantly changed depending on their pathologic
status. sPLS–DA enables the selection of the most predictive or discriminative features in
the data to help classify the samples [18]. The analytical method helps predict a patient’s
disease state using a selected variable. In addition, the calculation efficiency of sPLS–DA
combined with graphic display confers stronger advantages in the multiclass case than
the variable selection approach. Therefore, we applied sPLS–DA to determine whether
the differential metabolites found in PLS–DA would be involved in changing the patients’
pathologic state. Samples from healthy individuals were distinguished from those of
patients in the initial diagnosis, relapse, and remission groups by differential expression of
29% of the total metabolites (Component 1). Furthermore, patients in the initial diagnosis,
relapse, and remission groups were predicted by differential expression of 11% of the total
metabolites (Component 2) (Figure 3A). In the case of Component 1, the metabolite profile
of the serum of patients in the remission group differed from that of individuals in the
control group. In the case of Component 2, 11% of the total metabolites showed upregulated
expression in the serum of patients in the initial diagnosis and relapse groups, whereas
the remission and control groups showed similar characteristics. Therefore, it was found
that the metabolites expressed after the initial diagnosis phase (component 2) were related
to AML progression. Additionally, the metabolites contributing to each pathological state
were identified after categorizing them into four quarters based on the zone representing
each pathological state. The metabolites divided into four regions separated by the zero
intersection point of each axis indicated a strong correlation between disease progression
and metabolite levels (Figure 3A).



Metabolites 2021, 11, 586 7 of 14

Metabolites 2021, 11, x  8 of 15 
 

 

 
Figure 3. Spared partial least squares–discriminant analysis (sPLS–DA) of metabolite expression in patients with acute 
myeloid leukemia (AML) and healthy individuals. (A) sPLS–DA plot showing the combined distribution of metabolite 
expression in the initial diagnosis, remission, relapse, and healthy control groups. (B) Correlation circle plot displaying 
the correlation between the metabolite levels and disease progression. The metabolites in the inner circle of point are 
strongly correlated with the disease progression. The individual contribution of each metabolite to the progression of 
disease is represented at a distance away from the center in the correlation circle plots. 

2.5. Differences in Metabolite Profiles with Genetic Variations in AML 
We further classified patients in the initial diagnosis group into three experimental 

groups: the patient group with AML caused by RUNX1-RUNX1T1 translocation (n = 4), 
the group with AML caused by FLT3-ITD/TKD mutation (n = 4), and the group with AML 
induced by other causes. Through PLS–DA, the RUNX1-RUNX1T1 group and the other 
two groups were categorized according to PLS1 (14.01%), and the FLT3-ITD/TKD and the 
other two groups were categorized according to PLS2 (11.03%) (Figure 4A). Based on the 
PLS–DA model, metabolites in each group were analyzed, and eight amino acids, four 
organic acids, four fatty acids and lipids, and three sugars and sugar alcohols were de-
tected as differentially expressed metabolites (Table 2). A heatmap was generated to ana-
lyze the patterns of changes in the relative metabolite content in each metabolite family. 
The changes in content were presented as the fold change with respect to the mean value 
of each metabolite. In the case of amino acids, levels of valine, leucine, isoleucine, and 
ornithine tended to be relatively higher in the RUNX1-RUNX1T1 group than in the other 
two groups; levels of alanine, glycine, threonine, and aminomalonic acid tended to be rel-
atively higher in the FLT3-ITD/TKD group than in the other two groups. In the case of 
organic acids, the level of citric acid tended to be relatively higher in the FLT3-ITD/TKD 
group than in the other two groups; levels of pyruvic acid, succinic acid, and fumaric acid 
tended to be relatively higher in the FLT3-ITD/TKD group than in the other two groups; 
level of succinic acid tended to be relatively higher in the RUNX1-RUNX1T1 group than 
in the other two groups. In the case of fatty acids and lipids, the level of hydroxyvaleric 
acid tended to be relatively higher in the RUNX1-RUNX1T1 group than in the other two 
groups; levels of nonanoic acid and glycerophosphate tended to be relatively lower in the 
RUNX1-RUNX1T1 group than in the other two groups; the level of palmitic acid tended 
to be relatively lower in the FLT3-ITD/TKD group than in the other two groups. In the 
case of sugars and sugar alcohols, levels of saccharides 1 and 2 tended to be relatively 

Figure 3. Spared partial least squares–discriminant analysis (sPLS–DA) of metabolite expression in patients with acute
myeloid leukemia (AML) and healthy individuals. (A) sPLS–DA plot showing the combined distribution of metabolite
expression in the initial diagnosis, remission, relapse, and healthy control groups. (B) Correlation circle plot displaying the
correlation between the metabolite levels and disease progression. The metabolites in the inner circle of point are strongly
correlated with the disease progression. The individual contribution of each metabolite to the progression of disease is
represented at a distance away from the center in the correlation circle plots.

According to the analysis, healthy individuals are identifiable with the quantitative
increases in the levels of hexanedioic acid, isoleucine, creatinine, phenylalanine, dodecanoic
acid, asparagine, and stearic acid; patients in the initial diagnosis phase are identifiable
by 2-hydroxybutyric acid, hydroxylamine, monomethylphosphate, and ethylphosphate;
patients in remission are identifiable by nonanoic acid, saccharide 1, and phosphoric acid;
and patients with relapse are identifiable by alanine, valine, leucine, proline, glycine, serine,
threonine, aspartic acid, 5-oxoproline, cysteine, glutamic acid, ornithine, succinic acid,
aminomalonic acid, malic acid, citric acid, myrisitic acid, palmitic acid, and saccharide 2.
Metabolites contributing to each pathologic state showed significant and specific differences
compared with those in the healthy individuals (Figure 3B). Therefore, these findings
suggested that the BM-derived serum metabolite analysis could potentially predict AML
diagnosis and prognosis.

2.5. Differences in Metabolite Profiles with Genetic Variations in AML

We further classified patients in the initial diagnosis group into three experimental
groups: the patient group with AML caused by RUNX1-RUNX1T1 translocation (n = 4),
the group with AML caused by FLT3-ITD/TKD mutation (n = 4), and the group with
AML induced by other causes. Through PLS–DA, the RUNX1-RUNX1T1 group and the
other two groups were categorized according to PLS1 (14.01%), and the FLT3-ITD/TKD
and the other two groups were categorized according to PLS2 (11.03%) (Figure 4A). Based
on the PLS–DA model, metabolites in each group were analyzed, and eight amino acids,
four organic acids, four fatty acids and lipids, and three sugars and sugar alcohols were
detected as differentially expressed metabolites (Table 2). A heatmap was generated to
analyze the patterns of changes in the relative metabolite content in each metabolite family.
The changes in content were presented as the fold change with respect to the mean value
of each metabolite. In the case of amino acids, levels of valine, leucine, isoleucine, and
ornithine tended to be relatively higher in the RUNX1-RUNX1T1 group than in the other
two groups; levels of alanine, glycine, threonine, and aminomalonic acid tended to be
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relatively higher in the FLT3-ITD/TKD group than in the other two groups. In the case of
organic acids, the level of citric acid tended to be relatively higher in the FLT3-ITD/TKD
group than in the other two groups; levels of pyruvic acid, succinic acid, and fumaric acid
tended to be relatively higher in the FLT3-ITD/TKD group than in the other two groups;
level of succinic acid tended to be relatively higher in the RUNX1-RUNX1T1 group than
in the other two groups. In the case of fatty acids and lipids, the level of hydroxyvaleric
acid tended to be relatively higher in the RUNX1-RUNX1T1 group than in the other two
groups; levels of nonanoic acid and glycerophosphate tended to be relatively lower in the
RUNX1-RUNX1T1 group than in the other two groups; the level of palmitic acid tended to
be relatively lower in the FLT3-ITD/TKD group than in the other two groups. In the case
of sugars and sugar alcohols, levels of saccharides 1 and 2 tended to be relatively higher in
the FLT3-ITD/TKD group than in the other two groups; the level of xylitol tended to be
relatively higher in the RUNX1-RUNX1T1 group than in the other two groups (Figure 4B).
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Table 2. Differentially expressed metabolites between the patients categorized based on their causative acute myeloid
leukemia (AML) genetic variation.

No. Ret
(min) a VIP1 VIP2 Metabolites b

Unique
Mass
(m/z)

MS Fragment
Pattern (m/z) ID c

p-Value

Experimental
Group d

RUNX vs
FLT e

RUNX vs
Others f

FLT vs
Others g

Amino Acids

1 5.48 1.22 1.09 Alanine 116
116, 73, 147, 117,
59, 100, 103, 190,

79, 148
STD/MS 0.373 0.137 0.889 0.347

2 6.65 1.70 1.24 Valine 218
73, 144, 218, 147,
100, 145, 59, 146,

219
STD/MS 0.238 0.135 0.294 0.836

3 7.19 1.16 0.90 Leucine 158 73, 158, 147, 117,
103, 205, 75, 59, 133 STD/MS 0.513 0.255 0.654 0.652

4 7.41 1.11 0.86 Isoleucine 158
73, 158, 142, 75,

147, 218, 100, 74,
159, 59

STD/MS 0.526 0.421 0.308 0.774

6 7.54 0.37 1.61 Glycine 174
73, 174, 86, 147,

100, 59, 248, 133,
176

STD/MS 0.050 0.746 0.020 * 0.070

8 8.30 0.86 1.14 Threonine 219
73, 117, 101, 219,
218, 147, 75, 100,

129
STD/MS 0.351 0.244 0.722 0.248

9 9.06 0.75 1.30 Aminomalonic
acid 218

73, 147, 218, 86,
133, 59, 174, 100,

320, 148
STD/MS 0.196 0.264 0.177 0.183

17 12.17 1.90 1.45 Ornithine 142
73, 142, 174, 86, 59,
143, 100, 200, 175,

128
STD/MS 0.101 0.102 0.133 0.443

Organic Acids

42 5.89 1.72 1.27 Pyruvic acid 220
73, 147, 133, 59,
100, 86, 89, 220,

148, 103, 235
STD/MS 0.221 0.121 0.361 0.564

18 7.56 0.53 1.28 Succinic acid 247
147, 73, 174, 148,

79, 55, 86, 149, 247,
133

STD/MS 0.196 0.970 0.139 0.096

19 7.85 1.65 1.43 Fumaric acid 245
147, 73, 245, 148,
99, 52, 149, 133,

143, 241, 117
STD/MS 0.144 0.087 0.644 0.260

21 12.28 0.75 1.19 Citric acid 273 73, 147, 273, 117,
129, 133, 211, 148 STD/MS 0.244 0.571 0.211 0.287

Fatty Acids and Lipids

53 6.13 1.31 1.00 Hydroxyvaleric
acid 145

73, 79, 145, 147,
130, 128, 148, 146,

133, 131
MS 0.412 0.328 0.361 0.634

22 7.97 1.58 1.16 Nonanoic acid 215
73, 117, 204, 215,
55, 132, 129, 131,

218, 147
MS 0.303 0.177 0.429 0.639

43 11.86 1.75 1.28 Glycerophosphate 299
73, 299, 147, 357,

101, 103, 133, 129,
211

MS 0.214 0.088 0.232 0.779

26 14.64 0.10 1.03 Palmitic acid 313 75, 117, 73, 55, 132,
129, 145, 57, 69, 313 STD/MS 0.452 0.286 0.996 0.078

Sugars and Sugar Alcohols

28 9.42 1.10 1.13 Saccharide 1 217
73, 147, 217, 103,

117, 205, 133, 189,
129

MS 0.361 0.245 0.949 0.344

55 11.39 1.03 0.76 Xylitol 103
73, 103, 217, 147,

117, 129, 205, 218,
133, 243

STD/MS 0.613 0.445 0.559 0.502

29 12.55 1.95 1.46 Saccharide 2 217
73, 147, 217, 191,

129, 103, 218, 133,
117, 101

MS 0.374 0.365 0.669 0.069

Others

46 4.98 1.35 1.09 1,3
Propanediol 115

147, 73, 115, 130,
66, 59, 79, 148, 177,

131, 103
MS 0.335 0.326 0.155 0.620

30 5.61 1.14 0.88 Hydroxylamine 146
73, 133, 146, 119,
59, 147, 86, 79, 88,

74, 155
STD/MS 0.512 0.407 0.336 0.764

48 6.97 1.22 0.89 Urea 189
147, 189, 73, 171,
66, 74, 148, 99, 75,

59, 87, 100
STD/MS 0.509 0.298 0.508 0.961

33 7.29 0.85 1.42 Phosphoric
acid 211

73, 299, 133, 74,
300, 75, 193, 207,

59, 314, 211
STD/MS 0.117 0.724 0.124 0.034 *

34 9.60 0.59 1.09 Ethylphosphate 299
73, 147, 156, 79, 84,
299, 211, 133, 155,

315, 343
MS 0.351 0.355 0.552 0.181

35 9.82 0.95 1.14 Creatinine 115
115, 73, 143, 100,

147, 116, 171, 329,
114, 144

STD/MS 0.326 0.268 0.067 0.345
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Table 2. Cont.

No. Ret
(min) a VIP1 VIP2 Metabolites b

Unique
Mass
(m/z)

MS Fragment
Pattern (m/z) ID c

p-Value

Experimental
Group d

RUNX vs
FLT e

RUNX vs
Others f

FLT vs
Others g

Unknowns

56 4.45 0.07 1.30 N.I. 9 117
73, 117, 147, 66,
118, 59, 148, 81,

133, 149
- h 0.188 0.573 0.150 0.110

36 4.82 1.73 1.26 N.I. 1 152
73, 207, 79, 208,
123, 152, 93, 50,

295, 209
- 0.218 0.148 0.175 0.998

49 4.87 1.47 1.13 N.I. 6 123 123, 93, 55, 73, 125,
95, 79, 103, 75, 124 - 0.309 0.257 0.188 0.734

37 4.91 1.50 1.15 N.I. 2 138
79, 50, 52, 78, 73,

69, 51, 140, 147, 77,
80, 110

- 0.285 0.248 0.165 0.703

39 8.93 1.09 0.84 N.I. 4 128
73, 147, 128, 75, 59,
100, 115, 350, 129,

133
- 0.531 0.252 0.445 0.769

40 9.08 1.56 1.60 N.I. 5 232
73, 147, 232, 100,
59, 133, 148, 233,

131, 155
- 0.067 0.045 * 0.793 0.156

51 9.96 1.13 0.85 N.I. 8 247
73, 147, 129, 75,

247, 157, 203, 299,
349

- 0.545 0.351 0.177 0.916

a Retention time; b metabolites selected based on variable importance in projection (VIP > 1.0) scores using the partial least squares–
discriminant analysis model; c identification; d significantly different metabolites between initial diagnosis patient subgroups (one-way
ANOVA); e significantly different metabolites between RUNX1-RUNX1T1 and FLT3-ITD/TKD groups (t-test); f significantly different
metabolites between RUNX1-RUNX1T1 and others groups (t-test); g significantly different metabolites between FLT3-ITD/TKD and others
groups (t-test); h not detected. STD/MS, comparison with standard compounds analyzed under the same conditions and comparison of
mass spectra with that in Human Metabolome Database, National Institutes of Standards and Technology library, and Wiley 9 database.
* means a significantly different metabolites compared to the two patient groups.

3. Discussion

We selected 10 patients with AML and analyzed the changes in metabolites with
respect to the AML progression state by using BM-derived serum samples obtained at
initial diagnosis, during remission after chemotherapy, and after relapse. Our study
revealed profound depletion in the levels of various amino acids and a few fatty acids in
the BM microenvironment of patients newly diagnosed with AML. A similar phenomenon
was observed at the time of CR after the initial induction chemotherapy. CR is an important
clinical endpoint after induction chemotherapy, which predicts a good prognosis [19].
However, our study demonstrated that the metabolic and nutritional microenvironments
of AML did not significantly change despite the achievement of CR. This highlights the
easily forgotten fact that the state of CR is simply a log-scale reduction in the number
of leukemic cells rather than an eradication of leukemic cells. Interestingly, a reversal of
several amino acid depletions in the BM microenvironment of patients with AML relapse
suggested that energy metabolism might change with clonal evolution at the time of relapse.
Furthermore, glutamine and stearic acid were thought to be critical fuels for AML cells and
continuously required by them, considering the fact that the levels of these two metabolites
consistently decreased over the three states of disease progression. Hence, we postulate
that therapeutic strategies targeting altered metabolism in newly diagnosed patients with
AML and those with AML relapse should be discriminated based on the findings presented
in this study.

A recent report suggested that metabolites have prognostic implications in AML,
such that oncometabolite 2-hydroxyglutarate is associated with good prognosis, while
phosphocholine and phosphoethanolamine are associated with poor prognosis. Overex-
pression of glutathione and alanine has been observed in chemoresistant patients [20].
Our study too showed different metabolic profiles between patients with AML harbor-
ing a favorable molecular marker, RUNX1-RUNX1T1, and those with a poor prognostic
marker, FLT3-ITD/TKD. Levels of ornithine, palmitic acid, and xylitol were increased in
the RUNX1-RUNX1T1 variation-induced AML patient group compared with the other
patient groups. In the FLT3-ITD/TKD variation-induced AML patient group, levels of
aminomalonic acid, fumaric acid, glycerophosphate, and saccharide were increased. Given
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that metabolites were expressed differently depending on the causative genetic alterations
in AML, it is expected that the metabolite expression tendency would contribute to estab-
lishing a strategy for identifying the genetic causes and treatment of AML.

Previous studies have proposed that AML cells are dependent on glutamine for their
survival and proliferation [21], which is consistent with our observation that glutamine
was expressed irrespective of the disease status, i.e., treatment-naïve, post-remission, and
relapse. Our results suggested that stearic acid was also depleted in the BM microenviron-
ment of patients with AML, which is consistent with a previous study [20]. These findings
support the notion that AML cells depend on glutaminolysis and fatty acid oxidation.
Moreover, metabolic addiction of AML cells to specific metabolic pathways increases the
probability of identifying novel therapeutic targets. The AML microenvironment com-
monly undergoes pan-depletion of metabolites that are used as an energy source, including
glutamine and stearic acid, and further is deranged according to the genetic mutational
profile and disease status of AML.

Traditionally, metabolites are generated during the final disease stage to maintain vital
phenomena. By monitoring changes in the biological system in vivo, it is possible to pro-
vide dynamic snapshots for all physiological conditions, which cannot be analyzed through
genetic expression and proteomics analyses alone. However, in a variety of metabolomics
analyses of AML, it has been difficult to obtain consistent findings with respect to biomark-
ers, and their robustness has been dubious. Hence, in this study, by conducting a dynamic
metabolite analysis of patients with AML in the initial diagnosis, postremission, and re-
lapse stages, we offered more unswerving findings on the physiological conditions and
biomarkers in patients with AML. In additional research, it will be necessary to compare
the metabolite profiles in patients that fully recover through remission and those who
relapse and succumb to the disease after remission. The patients who participated in this
study died after initial diagnosis, remission, or relapse. The cell metabolism after remission
failed to return to the normal state, and hence, the patients relapsed and succumbed to
the disease. Moreover, the metabolite profile of the patients in relapse was different from
that of healthy individuals or newly diagnosed patients. This indicates that the AML cells
became increasingly malignant under relapse. In the future, a larger prospective study to
elucidate appropriate target metabolites for treating AML should be undertaken.

In conclusion, our study suggests that developing a therapeutic strategy to target
metabolic vulnerabilities in AML can be promising for potentiating leukemic cell death by
removing energy sources from the BM niche.

4. Materials and Methods
4.1. Patient Sample Collection

In total, 10 patients initially diagnosed with AML and treated with chemotherapy,
allogeneic hematopoietic stem cell transplantation, or both at Seoul National University
Hospital were enrolled in this study. Patients with mixed phenotypes of acute leukemia
and acute promyelocytic leukemia were excluded. Additionally, patients who did not
receive active treatment, including chemotherapy, did not experience relapse, or were lost
to follow-up were excluded. Serial BM-derived serum samples, collected at three time
points from each patient (initial diagnosis: patient’s serum samples were first diagnosed
with leukemia, remission: patient’s serum samples were after leukemia treatment, and
relapse: patient’s serum sample when diagnosed with leukemia again), were identical in
clinically paired diagnosis and were selected as well as prepared for metabolomics analysis.
Another 10 BM-derived serum samples collected as staging work-ups of sex- and age
(±2)-matched patients with stage I–II lymphomas, which were confirmed to not involve
bone marrow lymphoma, were used as normal controls. We carefully selected control cases
through a thorough review of clinical information and bone marrow reports. Only cases
obtained prior to chemotherapy—to exclude the possibility of a change in bone marrow
microenvironment due to chemotherapy as well as cases reporting normocellular marrow
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without involvement of hematologic diseases—were used as controls. BM-derived serum
samples from patients with AML were collected and stored at −20 ◦C.

4.2. Sample Preparation for Metabolite Analysis

The extraction of serum metabolites was performed using the methods described by
Park et al. [22]. Briefly, each serum sample (100 µL) was extracted with 100% methanol
(1 mL) and 10 µL of internal standard solution (2-chlorophenylalanine, 1 mg/mL in
water) using an MM400 mixer mill (Retsch®, Haan, Germany) at a frequency of 30 Hz for
10 min, followed by sonication for 10 min. Then, the extracted samples were incubated
for 1 h at 4 ◦C and centrifuged at 13,000 rpm for 10 min at 4 ◦C. The supernatants were
filtered using 0.2 µm polytetrafluorethylene filters (Chromdisc, Daegu, Korea). The filtered
samples were completely dried using a speed vacuum concentrator (Biotron, Seoul, Korea).
Dried samples were re-dissolved in 100% methanol to a final concentration of 1000 ppm
(10 mg/mL).

4.3. GC–TOF–MS Analysis

GC–TOF–MS analysis was performed using an Agilent 7890A GC system (Agilent
Technologies, Palo Alto, CA, USA) equipped with an L-PAL3 autosampler and Pegasus®

HT TOF-MS system (LECO Corp., St. Joseph, MI, USA). Metabolites were separated using
an RTX-5MS column (30 m length × 0.25 mm inner diameter × 0.25 µm particle size, Restek
Corp., St. Joseph, MI, USA) with a constant flow of helium (1.5 mL) as the carrier gas. For
analysis, all dried samples were oximated with 50 µL of methoxyamine hydrochloride
(20 mg/mL in pyridine) for 90 min at 30 ◦C and silylated with 50 µL of N-methyl-N-
(trimethylsilyl) trifluoroacetamide for 30 min at 37 ◦C. The derivatized samples (1 µL) were
injected into the GC column in splitless mode. The analytical program for sample analysis
was adopted from our previous study [22]. Moreover, metabolite analysis was performed
in a random manner to reduce bias and systematic errors.

4.4. Statistical Analysis

Mass spectral data processing and multivariate analysis were conducted as described
in our previous study [22]. Raw data derived from GC–TOF–MS analysis were transformed
into .cdf format using LECO Chroma TOF software (version 4.44, LECO Corp., St. Joseph,
MI, USA), and data processing including digitalization, peak selection, alignment, peak
intensity normalization, and baseline correction was conducted using the Metalign software
(RIKILT-Institute of Food Safety, Wageningen, The Netherlands). The processed data were
exported into Excel files (Microsoft Corp., Redmond, WA, USA). PCA, PLS–DA, and OPLS–
DA were performed to compare the metabolite profiles between the control and AML
patient groups using SIMCA-P+ software (version. 12.0; Umetrics, Umea, Sweden). The
significance of PLS–DA and OPLS–DA models was determined by analysis of variance
testing of cross-validated predictive residuals. Discriminative metabolites were selected
based on the VIP scores of the PLS–DA and OPLS–DA models. The different metabolites
obtained from GC–TOF–MS analysis were searched against various databases, including
the National Institute of Standards and Technology database (Version 2.0, 2001, FairCom,
Gaithersburg, MD, USA), the Human Metabolome Database (http://www.hmdb.ca/;
accessed on 12 June 2021), Wiley 9, and the in-house library, based on their retention
times, mass spectra, and mass spectral fragment patterns (m/z) with reference to standard
compounds analyzed under identical conditions. Significantly different metabolites were
identified by analysis of variance and Student’s t-test using Predictive Analytics SoftWare
(PASW) Statistics 18 software (SPSS Inc., Chicago, IL, USA). A p-value < 0.05 denoted
statistical significance.

http://www.hmdb.ca/
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