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Abstract: The acute radiation syndrome is defined in large part by radiation injury in the hematopoi-
etic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI
injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman
primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were ex-
posed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy. At time points from 1
to 60 days after irradiation, plasma samples were collected and subjected to untargeted metabolomics.
With the limited sample size of females, different discovery times after irradiation between males
and females were observed in metabolomics pattern. Detailed analyses are restricted to only males
for the discovery power. Radiation caused an increase in fatty acid oxidation and circulating levels of
corticosteroids which may be an indication of physiological stress, and amino acids, indicative of a
cellular repair response. The largest changes were observed at days 9 and 10 post-irradiation, with
most returning to baseline at day 30. In addition, dysregulated metabolites involved in amino acid
pathways, which might indicate changes in the microbiome, were detected. In conclusion, abdominal
irradiation in a nonhuman primate model caused a plasma metabolome profile indicative of GI injury.
These results point to pathways that may be targeted for intervention or used as early indicators of
GI radiation injury. Moreover, our results suggest that effects are sex-specific and that interventions
may need to be tailored accordingly.

Keywords: acute radiation syndrome; partial body exposure; nonhuman primates; metabolites; plasma

1. Introduction

Acute radiation syndrome (ARS) is caused by total or partial body exposure to high
doses of ionizing radiation, generally over a relatively short period of time (seconds to
minutes). There are four subtypes of ARS: hematopoietic, gastrointestinal, cutaneous,
and neurovascular [1,2]. Exposed individuals typically present within 24 h with nausea,
vomiting, skin rashes, and confusion. A decrease in lymphocyte counts can be observed as
early as 8 h after exposure. Death results from multi-organ failure, including systemic in-
flammatory response syndrome and life-threatening infections secondary to bone marrow
failure [2]. Existing treatments include antimicrobial agents to control infections, cytokines
to stimulate hematopoiesis, blood transfusions, and in some cases, bone marrow transplan-
tation [1]. Despite these measures, most victims of high dose (>5.5 Gy) irradiation succumb
within 3 weeks of exposure. In addition, approximately 50% of victims receiving 3.5 to
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5.5 Gy does not survive past 2 months [1]. The development of more effective medical
countermeasures against radiation exposure requires well characterized animal models
that are as close as possible to humans, such as nonhuman primates (NHPs) [3]. To date,
development of countermeasures targeting amelioration of gastrointestinal (GI) ARS has
been limited by a lack of understanding of the natural history and disease sequelae of this
syndrome in a large animal model [4].

We developed a GI-specific ARS model in male and female Rhesus monkeys (Macaca mu-
latta) that received abdominal irradiation at single doses of 8 Gy, 11 Gy, 12.5 Gy, and 14 Gy
using 6 MV photons. In these NHPs, small intestine radiation injury was seen in the form of
a reduced mucosal surface area, crypt depth, and villus height [5]. Animals were monitored
up to 60 days after irradiation, when intestinal damage was still evident. To understand the
metabolic pathways involved in the response to radiation, plasma samples were obtained
from days 9 to 60 and subjected to metabolomics to obtain insights in molecular responses
in GI ARS. Univariate comparisons within each radiation dose group and within each time
point group were performed to identify metabolites that were significantly dysregulated in
each radiation dose and over time compared to the sham group. To our knowledge, this is
the first report on plasma metabolomics in an NHP model of abdominal irradiation. Our
study may point to novel targets for medical countermeasures and aid in the development
of predictive biodosimetry assays for delayed effects of acute radiation exposure.

2. Results and Discussion
2.1. Sex-Specific Patterns in Response to Abdominal Irradiation Were Observed in the Plasma
Metabolomics Data

Sex is a confounding variable that must be taken into accounts for metabolite biomarker
discovery and validation. Sex differences in plasma metabolomics data have been re-
ported [6]. However, the effects of sex on the response to partial radiation exposure in NHP
models remain understudied. First, we examined the sex-specific pattern of changes in
metabolomic profiles across radiation doses and time points through principal component
analysis (Figure S1). No pattern of significant differences between female (Figure S1A) and
male (Figure S1B) groups was observed in baseline metabolomic profiles at 1 and 5 days
prior to irradiation (D-5/D-1 (time point 1 (TP1) in Table 1) for all treatment groups. At
days 9 and 10 after irradiation (D9/D10 (TP2) in Table 1), female and male groups showed
similar patterns, where samples at TP2 diverged from samples at TP1. Interestingly, at
D28/D29 (TP3 in Table 1) and D59/D60 (TP4 in Table 1), female plasma metabolomic
profiles returned to their initial state, whereas male plasma metabolomic profiles remained
different from baseline. Principle component analysis (PCA) revealed that female and male
NHPs might have different recovery times in response to radiation (Figure S1). However,
we did not have enough female samples in the experimental groups for a robust statistical
analysis (Table 1). Therefore, for remaining statistical analyses, we considered only the
male samples.

Table 1. Number of plasma samples collected by radiation dose and pre- and post-irradiation days. Two cohorts were
combined after examining global metabolomic profiles by ordination analysis that did not show much differences between
cohorts. D-5 and D-1 were grouped into the group TP1 (pre-exposure), D9 and D10 into TP2, D28 and D29 into TP3, D59
and D60 into TP4 to power for a robust statistical analysis. Only male samples were included for downstream analysis after
gender-specific patterns in the metabolomic data were observed.

Group TP1 (Pre-Exposure) TP2 TP3 TP4

Day D-5 a D-1 b D9 a D10 b D28 b D29 a D59 a D60 b

Sex M M F M M F M F M M M F
Sham 4 1 2 4 2 2 1 2 4 4 2 2
8 Gy 0 6 6 0 5 5 4 3 0 0 2 2

11 Gy 12 6 6 12 6 5 4 3 11 10 1 1
12.5 Gy 12 0 0 11 0 0 0 0 7 6 0 0
14 Gy 0 6 6 0 3 4 2 1 0 0 2 0

a Samples collected in 2016, males only b Samples collected in 2017, males and females Abbreviations: D, day; F, female; M, male;
TP, time point.
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2.2. Radiation Dose-Dependent and Time-Dependent Metabolic Alterations in the Plasma
Metabolomics Data Were Observed

We performed PCA analysis of only male samples for each given time point (Figure 1A),
and for each radiation dose (Figure 1B). As expected, no segregation between different
radiation treatment groups was observed before radiation (TP1). After radiation exposure,
PCA analysis revealed that all irradiated groups were well segregated as doses increased.
The comparison between the closest time points before and after irradiation (TP1 and
TP2) showed the largest variation, demonstrating that radiation exposure indeed induced
metabolomic changes. Next, a PCA of the global metabolite profiles showed segregation
between before irradiation (TP1) and after irradiation (TP2, TP3, TP4) for all radiation
doses. Even the sham group presented noticeable metabolic changes between the various
time points. Therefore, time varying confounders can lead to bias in metabolite biomarker
discovery, and adjusting for time is necessary. We observed that segregation between
before and after irradiation was clearer as radiation doses increased, demonstrating a
dose-dependent effect of irradiation at the metabolome level. Samples in the TP2 group (9
and 10 post-irradiated days) were the most separated from TP1 (pre-irradiated days) group.
Interestingly, segregation between TP2, TP3, and TP4 was also clearer as radiation dose
increased. However, the 14 Gy group did not have enough samples to justify segregation in
those comparisons. In short, plasma metabolomics data in NHPs showed dose-dependent
and time-dependent metabolic changes in response to abdominal irradiation (Figure 1).
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Figure 1. PCA plots. (A) comparison of radiation doses at different time points and (B) comparison
of time points at different radiation doses. Overall, the highest segregation was observed for dose
group 12.5 Gy and time group TP2. Note that only male samples were included in this PCA analysis.
PC, principal component.

2.3. Global Metabolomic Profiles Identify Radiation Dose-Dependent and Time-Dependent
Biochemical Signatures

The present study identified 696 compounds of known identity in this plasma sam-
ple set. Following volume-based normalization, imputation of missing values with the
minimum observed value, and log transformation, we performed analysis of variance
(ANOVA) and calculated fold change to identify biochemicals that are significantly differ-
ent between experimental groups. Table 2 used fold change >2 and a significance level of
p < 0.05 or a significance level of Benjamini–Hochberg (BH)-adjusted p < 0.05. Univariate
analysis results and multivariate PCA results showed similar trends as a whole. Samples
obtained before irradiation (TP1), as would be predicted, showed few differences between
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the various groups that were eventually given sham, low, or high dose radiation. This
indicates that the groups had similar metabolomic profiles prior to dosing. The comparison
between the closest time points before and after exposure showed the largest number of
changes, demonstrating that radiation exposure does indeed cause detectable metabolomic
changes, and that the sham treatment had minimal effects. Interestingly, fewest changes
were observed over time after 8 Gy exposure. The dose of 12.5 Gy showed the largest
changes at TP2, which decreased to some extent over time. This suggests the dosing regi-
men and response caused detectable metabolic changes, potentially reflecting a restoration
of organismal homeostasis in surviving animals by the end of the experiment. However,
metabolic alterations after 11 Gy were not restored over the 60day time course of the study,
suggesting that high doses of radiation could have long-term effects on the metabolome.

Table 2. Differential abundance analysis. The table represents the number of metabolites that showed
significant changes for pairs of groups for radiation dose (A) and time point (B) where a fold change
of 2 and p value < 0.05 were used as the cutoff. The numbers in parentheses represent the number of
differentially abundant metabolites with a fold change > 2 and BH-adjusted p value < 0.05.

(A)

Radiation TP1 vs. TP2 TP1 vs. TP3 TP1 vs. TP4
0 Gy 36 (0) 54 (0) 82 (6)
8 Gy 12 (0) 9 (0) 25 (3)
11 Gy 116 (112) 86 (70) 122 (116)

12.5 Gy 173 (150) 58 (11) 94 (51)
14 Gy 122 (29) 34 (5) 22 (0)

(B)

Time 0 Gy vs. 8 Gy 0 Gy vs. 11 Gy 0 Gy vs. 12.5 Gy 0 Gy vs. 14 Gy
TP1 7 (0) 6 (0) 4 (0) 2 (0)
TP2 37 (0) 92 (64) 154 (112) 128 (34)
TP3 18 (0) 25 (4) 23 (2) 51 (0)
TP4 43 (0) 13 (0) 26 (1) 54 (4)

2.4. Metabolite Alterations in Plasma Indicate Radiation-Induced GI Injury

We applied orthogonal partial least squares discriminant analysis (OPLS-DA) (vari-
ables importance for the projection [VIP] > 1) and subpathway enrichment analysis (hy-
pergeometric p value < 0.05), which narrowed down the list of significantly dysregulated
metabolites with a p value < 0.05 in Table 2. Figure 2 presents the number of common
and distinct dysregulated metabolites (for more information in Table S1). To handle time
varying confounders, metabolites, which were identified as differentially abundant be-
tween TP1 and TP2, TP1 and TP3, TP1 and TP4 for 0 Gy were manually filtered out for
corresponding time point comparisons for 11 Gy and 12.5 Gy. First, the OPLS-DA results
showed similar patterns to univariate analysis results in discriminant metabolites (data
not shown). Second, 8 Gy showed different patterns in metabolite alterations from 11 Gy,
12.5 Gy, and 14 Gy. No single significant metabolite common in all radiation doses was
identified. Third, only a couple of metabolites were identified as common in TP2, TP3, TP4
when comparing 11 Gy and 12.5 Gy with 0 Gy. Figure 2A indicates that the number of
metabolites whose concentration changed in radiation dose- and time-dependent ways.
Figure 2B represents the same information in Figure 2A, but at the subpathway level. Note
that Venn diagrams before removing metabolites due to time varying confounders were in-
cluded as Supplementary Materials (Figure S2). The number of dysregulated subpathways
was increased when radiation dose increased from 11 Gy to 12.5 Gy. Interestingly, nicotinate
and nicotinamide metabolism was identified as a significantly dysregulated subpathway
for all radiation dose groups, where three metabolites (nicotinamide [niacin; vitamin B3],
quinolinate, and N1-Methyl-2-pyridone-5-carboxamide) were responsible for the identi-
fication of the subpathway. Specifically, nicotinamide (down-regulated) and quinolinate
(up-regulated) were identified for 8 Gy and 11 Gy, nicotinamide (down-regulated) and N1-
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Methyl-2-pyridone-5-carboxamide (up-regulated) for 12.5 Gy, quinolinate (up-regulated)
and N1-Methyl-2-pyridone-5-carboxamide (up-regulated) for 14 Gy.
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Figure 2. Venn diagrams highlighting common and distinct significantly dysregulated (A) metabolites and (B) subpathways,
where metabolites and subpathways were excluded if they were also identified as markers for 0 Gy indicating non-radiation-
induced markers. For both (A,B), comparisons between TP1 and TP2, TP3, TP4 and comparisons between 0 Gy and 8 Gy,
11 Gy, 12.5 Gy, 14 Gy were considered. The four statistical strategies (univariate analysis with p value < 0.05, fold change > 2,
OPLS-DA with VIP values > 1, subpathway enrichment analysis with p value < 0.05) were applied to identify significantly
dysregulated metabolites and subpathways.

Quinolinate and nicotinamide are precursors of the coenzymes nicotinamide-adenine
dinucleotide (NAD+) and its reduced form nicotinamide-adenine dinucleotide phosphate
(NADH). As a precursor for NAD+, quinolinate can redirect tryptophan catabolism in order
to replenish cellular NAD+ levels in response to inflammation and infection [7]. However,
dysregulation of the kyrunenine pathway can lead to accumulation of quinolinate and
can be a cause of inflammation through the increase of intermediate metabolites such as
kynurenine, kynurenic acid, and quinolinate [8]. Nicotinamide has anti-inflammatory
properties and plays important roles in host immunity [9]. Nicotinamide, a vitamin, is
obtained from diet and can be also produced by the bacterial microflora in the intestines.
Therefore, serious imbalance of the gut flora, which may occur after intestinal radiation
damage, could lead to deficiency of this metabolite. Nicotinamide is the primary precursor
of NAD+, an essential coenzyme for ATP that contributes to DNA repair and the sole
substrate of the nuclear enzyme poly-ADP-ribose polymerase-1 (PARP-1)—an important
enzyme in the DNA repair pathway [10,11]. Therefore, radiation-induced nicotinamide
down-regulation may contribute to compromised DNA-repair and subsequent death of
intestinal mucosal epithelial cells, leading to reduction in mucosal surface area, villus
height, and crypt depth. Levels of nicotinamide concentration have been measured in-
directly using the intermediary and end products of nicotinamide metabolism including
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N1-Methyl-2-pyridone-5-carboxamide. N1-Methyl-2-pyridone-5-carboxamide may accu-
mulate under disease conditions resulting in accelerated DNA damage and retention of
catabolic products [12].

The largest number of metabolic changes compared to 0 Gy and TP1 occurred with a
treatment of 12.5 Gy and at time point TP2, which might correlate with radiation-induced
normal tissue toxicity. Figure 3 shows significantly up- (red) and down- (blue) regulated
metabolites after 12.5 Gy at time point TP2 where the x-axis represents subpathways
for each superpathway. First, there is elevation of many different amino acids and as-
sociated intermediates from their metabolic pathways, which may be a response to the
increased polyamines and predicted increased cell growth needed to repair the intesti-
nal lining. Increased urea might be a consequence of the gut inflammation and might
indicate disruption or dysfunction of the intestinal barrier, which leads to the increased
intestinal permeability [13,14]. Increased creatine and N-acetylputrescine could help the
cell proliferation needed to repair the damaged intestinal lining. The elevated level of
urea could be driving increased carbamoylation of lysine generating the elevated homoc-
itrulline observed. Methylhistidines were also noted with increased concentration, which
may indicate muscle breakdown or proteolysis. Dysregulated metabolites associated with
tryptophan and indoles could reflect radiation-induced changes in the gut microbiome
at 9 and 10 days after 12.5 Gy exposure [15]. Radiation caused a decrease in citrulline, a
non-proteinogenic amino acid that has been identified as a biomarker for radiation-induced
injury associated with GI ARS [16]. The decrease in citrulline suggests a decrease in entero-
cyte mass in the gut that might indicate potential benefit of citrulline supplementation on
the radiation-induced gut toxicity. The concentration of citrulline was restored at TP3 and
TP4, suggesting a recovery of the intestinal tissue (Figure 4). We also observed a decrease
in citrulline at TP2 and its restoration at TP3 and TP4 with 11 Gy and 14 Gy. Low plasma
concentrations of homoarginine are associated with an increased risk of cardiovascular
events [17], and irradiation decreased homoarginine at TP2 with 12.5 Gy exposure. Genti-
sate has antioxidant and radioprotective properties and carries protection of the human
erythrocytes against irradiation [18,19]. In our model, irradiation decreased gentisate levels.
Indolepropionate is one of the serum metabolites reflecting gut microbiome alpha diversity
in type 2 diabetes [20]. The reduced concentration of indolepropionate in our model might
indicate a reduced alpha diversity due to radiation-induced changes in the gut microbiome.
Most of the xenobiotic significant metabolites were down-regulated, whereas most of the
metabolites in the categories of carbohydrates, cofactors and vitamins, and nucleotide
metabolism were up-regulated (except for threonate, dihydroorotate, nicotinamide, and
2-deoxyuridine). The decrease in nicotinamide may suggest elevated lysine catabolism and
excitotoxic activity [21], and thus dietary nicotinamide supplementation could mitigate
radiation-induced injury [22]. As might be expected of animals with distressed GI tracts,
there were indications that irradiated animals had different eating habits compared to
the sham group. N-palmitoyl glycine, which is a novel endogenous lipid that acts as a
modulator of calcium influx and nitric oxide production in sensory neurons [23], was
decreased. Most of the fatty acid metabolism pathways were down-regulated. On the other
hand, 3-hydyroxybutyrylcarnitine, which can be produced from either intermediate of fatty
acid β-oxidation or ketone body metabolism in human skeletal muscle, was up-regulated.
We speculate that it is likely related to the disruption of the intestinal lining by irradiation,
that causes a change in nutrient absorption from the diet. This is consistent with the finding
of a decrease in most xenobiotic metabolites. Both observations support a decrease in oral
feeding derived nutrient uptake in irradiated animals. Decreases in lysophospholipids and
plasmalogens may be the result of sloughing of intestinal cells directly into the intestine
rather than through cell lysis and/or remodeling processes. Phosphatidylcholine- (PC),
phosphatidylethanolamine- (PE), and phosphatidylinositol- (PI) derived lipids showed
lower levels in plasma that could be associated with characteristics of unfavorable car-
diometabolic risk profiles [24]. Irradiation also caused increases in multiple corticosteroids,
cortisol and corticosterone, likely from physiological stress. Note that metabolites from
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energy metabolism pathways (including the tricarboxylic acid cycle), primary bile acid,
and secondary bile acid did not pass our filtering steps. Choline is involved in osmoregula-
tion and detoxification and may alleviate gastrointestinal injury [25]. We identified three
significantly increased metabolites, choline, phosphoethanolamine, and choline phosphate,
that were involved in phospholipid metabolism, but not trimethylamine N-oxide, which is
generated in the host liver from trimethylamine and produced as a result of gut microbial
metabolism of choline and could be associated with a radiation-induced cardiometabolic
risk profile [24].

Among the metabolites involved in the amino acid and lipid superpathways in
Figure 3, some showed changes according to the radiation dose level although those
changes are not linear (Figure 4). These metabolites may be used for effective triage after
unexpected irradiation.
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3. Materials and Methods
3.1. NHP System

Two NHP cohorts (studies performed in 2016 and 2017) were combined in the study
(Table 1). Animal housing, irradiation, and radiation dosimetry are described elsewhere [5].
In short, male and female adult animals were irradiated using a Clinac 21 EX 6 MV linear
accelerator (Varian, Palo Alto, CA, USA) with a dose rate at mid-line of 0.75 ± 0.05 Gy/min
in a field size of 20 × 20 cm, measuring inferiorly from the bottom of the last rib. Fifty
percent of the dose was administered anteroposterior (AP) and 50% posteroanterior (PA).
Animal care included monitoring environmental conditions, housing, diet and feed (PMI’s
LabDiet® Fiber-Plus® Monkey Diet 5049), drinking water (provided ad libitum), and
environmental enrichments (toys, soft toys, and a variety of appropriate treats). During in-
life clinical observations, food consumption, and clinical pathology findings were recorded.
All irradiated animals were administered the antibiotic enrofloxacin (5 mg/kg per day oral
or intramuscular) on days 5 through 30 after irradiation and the antidiarrheal loperamide
HCl (2 mg per day oral) on days 3 through 30. Analgesic support was provided on days 5
through 30 in the form of tramadol (25 mg per day oral) or buprenorphine (0.01 mg/kg
intramuscular) if they did not want to take the tramadol. Lastly, animals received antiemetic
ondansetron HCl (1.0 mg/kg intramuscular) as needed. An additional 4 animals (male)
received sham irradiation for the 2016 cohort, and 3 animals (1 male/2 female) received
sham irradiation over 60 days. The radiation groups consisted of sham (n = 7), 8 Gy (n = 12),
11 Gy (n = 24), 12.5 Gy (n = 12), and 14 Gy (n = 12). The 60 NHPs (in total) underwent
the experimental protocol in block subsets of 10, balanced on day-dose (but not sex) to
minimize variability in planned comparisons.

3.2. Plasma Sample Preparation and Instrumentation

Plasma samples were taken at various time points over a 60-day time course during
the acclimation phase (D-5, D-1) and the post-exposure phase (Day 9, 10, 28, 29, 59, and 60
after exposure) from the 2 cohorts (2016, 2017), and maintained at −80 ◦C until processed.
Samples were prepared using the automated MicroLab STAR® system (Hamilton, Reno,
NV, USA). To remove protein, dissociate small molecules bound to protein or trapped
in the precipitated protein matrix, and recover chemically diverse metabolites, proteins
were precipitated with methanol under vigorous shaking for 2 min (GenoGrinder 2000,
Glen Mills, Clifton, NJ, USA) followed by centrifugation. The resulting extract was di-
vided into 5 fractions: 2 for analysis by 2 separate reverse phase (RP) ultraperformance
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods with posi-
tive ion mode electrospray ionization (ESI), one for analysis by RP-UPLC-MS/MS with
negative ion mode ESI, one for analysis by hydrophilic interaction liquid chromatography
(HILIC)/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved for
backup. Samples were placed briefly on a TurboVap® (Zymark, Clackamas, OR, USA) to
remove the organic solvent. The sample extracts were stored overnight under nitrogen
before preparation for analysis. For global metabolomic profiling, all methods used Wa-
ters ACQUITY UPLC and Thermo Scientific Q-Exactive high resolution/accurate mass
spectrometer interfaced with heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer operated at 35,000 mass resolution. The sample extract was dried and then
reconstituted in solvents. Each reconstitution solvent contained a series of standards at
fixed concentrations to ensure injection and chromatographic consistency. The MS analysis
alternated between MS and data-dependent MSn− scans using dynamic exclusion. Raw
data were extracted, the peaks identified, quality controlled, metabolite quantification, and
data normalization processed using Metabolon’s in-house hardware and software.

3.3. Statistical Analyses

A total of 696 compounds of known identity for the 2 cohorts (2016, 2017) were
detected in 200 plasma samples. Prior to any preprocess steps, normalization for plasma
volume was performed. Then, we excluded 118 metabolites which were not detected in
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more than 20% of samples, followed by log transformation and imputation of missing
values, if any with the minimum observed value for each compound were performed in
the preprocessing of metabolomics data. We first examined global metabolomic profiles
between the 2 cohorts for each time point and each radiation treatment that did not show
significant differences in three-dimensional ordination space so that we combined the
2 cohorts to increase statistical power. Due to the complex nature of the study design
(see Table 1), not all groups were powered well enough for a robust statistical analysis.
Hence, the main comparisons were between the pre-exposure (TP1) and post-exposure
(TP2, TP3, TP4) groupings for 0, 8 Gy, 11 Gy, 12.5 Gy and 14 Gy, and between sham (0 Gy)
and irradiated groups (8 Gy, 11 Gy, 12.5 Gy and 14 Gy) for time point TP1, TP2, TP3, and
TP4. Global metabolic profiles were determined from the experimental groups outlined in
Table 1. For univariate analysis, we calculated fold change defined as the ratio of 2 means of
a pair of groups of interest and performed two-sided Welch’s two-sample t-test to identify
significantly dysregulated metabolites between experimental groups. Further, the BH
multiple testing was applied to adjust the p-value from Welch’s t-test. A summary of
the number of metabolites that achieved statistical significance (p < 0.05, or BH-adjusted
p-value < 0.05) and fold change >2 is included in the analysis. For multivariate statistical
analysis, we performed PCA to examine the effect of radiation doses and timepoints
based on a qualitative visual inspection of the clustering pattern of plasma metabolomics
profiles. Subsequently, OPLS-DA supervised statistical analysis was performed to identify
metabolites responsible for the separation of the experimental groups. The quality of
the OPLS-DA model was evaluated by R2 (goodness of fit, how well the model fits the
data) and Q2 (goodness of prediction). Further, overfitting of the OPLS-DA model was
validated by cross validated ANOVA and a permutation test. A highly significant p-value
indicates the robustness and statistical significance of the model. In this study, we applied
10-fold cross validation if possible, otherwise 5-fold cross validation, depending on the
number of samples, and the default number of permutations was 100. The VIP value of
each metabolite in OPLS-DA models indicates its contribution to the classification. The
VIP values of metabolites >1.0 were considered significant. To investigate the effect of
dysregulated metabolites on subpathways, we calculated the p-value for significantly
dysregulated (under- or over-enriched) metabolites involved in a given subpathway based
on the cumulative distribution function of the hypergeometric distribution. Combining
univariate analysis (fold change, t-test), OPLS-DA, and subpathway enrichment analysis,
we finally selected metabolite biomarkers (fold change > 2, t-test p-value < 0.05, VIP > 1.0
from the validated OPLS-DA models) that belonged to the subpathways with at least
5 metabolites and subpathway p-value < 0.05 from hypergeometric test. All figures were
generated using custom R scripts.

4. Conclusions

This study used Rhesus monkeys as a NHP model of abdominal irradiation. The two
cohorts (and sham animals) irradiated at 0 Gy, 8 Gy, 11 Gy, 12.5 Gy, and 14 Gy exposure
were combined, with statistical analysis of timepoints and treatment effects. Radiation
exposure caused detectable metabolomic changes, especially for closest time-points before
and after irradiation. In accordance with prior studies [16], this study identified citrulline,
known as a biomarker for GI-ARS, with a decrease in concentration after irradiation
and showing a dose-dependent response and recovery time. It also caused increases
in multiple corticosteroids, likely from the physiological stress. The study identified
significant changes in multiple metabolic pathways involving cell growth and GI tract
health. There was evidence of increased fatty acid β-oxidation in the higher dose groups
up to 9 and 10 days after radiation exposure. This is consistent with GI tract dysfunction
caused by irradiation, leading to increased use of lipid stores for energy production. In
addition, dysregulated metabolites, including tryptophan, indoles, and indolepropionate,
which might indicate changes in the microbiome, were detected. This study of partial body
irradiation focused on the GI tract in NHPs has generated a panel of metabolites that may
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serve not only as candidate plasma biomarkers for radiation injury in the GI tract, but
also as a potential target for therapeutic intervention. Biomarkers that showed radiation
dose-dependent changes could be used as quantifiable biomarkers for measurement of
the presence and level of exposure in cases of unintentional irradiation and in radiation
emergencies. However, this study lists metabolic changes but does not link them directly to
the extent of GI damage in the same animals, for which further research is needed. Future
studies need to include both males and females at sufficient numbers to identify metabolic
profiles in each of the sexes with high power.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080540/s1, Figure S1. PCA plots. (A) female, and (B) male samples, Figure S2. Venn
diagrams highlighting common and distinct significantly dysregulated (A) metabolites and (B) sub-
pathways before removing metabolites and subpathways to adjust for the time factor, Table S1. List
of metabolites for intersections in Venn Diagrams in Figure 2A.
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