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Abstract: Noninvasive biomarkers of kidney allograft status can help minimize the need for standard
of care kidney allograft biopsies. Metabolites that are measured in the urine may inform about
kidney function and health status, and potentially identify rejection events. To test these hypotheses,
we conducted a metabolomics study of biopsy-matched urine cell-free supernatants from kidney
allograft recipients who were diagnosed with two major types of acute rejections and no-rejection
controls. Non-targeted metabolomics data for 674 metabolites and 577 unidentified molecules, for
192 biopsy-matched urine samples, were analyzed. Univariate and multivariate analyses identified
metabolite signatures for kidney allograft rejection. The replicability of a previously developed
urine metabolite signature was examined. Our study showed that metabolite profiles can serve
as biomarkers for discriminating rejection biopsies from biopsies without rejection features, but
also revealed a role of estimated Glomerular Filtration Rate (eGFR) as a major confounder of the
metabolite signal.

Keywords: metabolomics; kidney transplantation; allograft rejection; urine analytics; association
study; eGFR

1. Introduction

Kidney transplantation is the treatment of choice for patients who are diagnosed
with irreversible kidney failure. However, the full benefits of kidney transplantation
are undermined by both immune factors and non-immune complications. Among the
immune factors, allograft rejection is the foremost complication, and is a major contributor
to allograft failure and the death of the transplant recipient. Among the non-immune
factors, infections and malignancy are life-threatening complications. With the introduction
of potent immunosuppressive regimens, viral infections have emerged as a major threat,
with infection with the cytomegalovirus (CMV) and BK virus being the two leading viral
infections in the post-transplant period. Effective anti-viral therapy for treating CMV, but
not for BK virus, is currently available. Thus, BK virus-associated nephropathy (BKVN) is
an important cause of kidney allograft dysfunction and failure.

The kidney allograft biopsy is the current diagnostic tool for identifying kidney
allograft dysfunction. This invasive procedure has become safer over the years, and
the interpretation of biopsy findings has been standardized by almost yearly updates of
the Banff classification schema. Nevertheless, bleeding, and even death, are documented
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complications of kidney allograft biopsy, and biopsy interpretation still suffers from its semi-
quantitative nature and inter-observer variability, even among experienced pathologists.
Importantly, the immune response that is directed at the allograft is dynamic, and repeat
biopsies to capture the kinetics of the anti-allograft repertoire are neither practical nor safe.

The kidney is a major excretory organ, and the glomerular filtration rate (GFR) is
either measured or estimated to evaluate kidney function. Multiple factors, including
water-soluble drugs and metabolites, are filtered and excreted by the kidneys, and the
dosages of drugs are adjusted based on the GFR. Indeed, plasma metabolite concentration
may be a more sensitive indicator of the GFR than the clinically used serum creatinine [1].

Noninvasive assessment of kidney allograft status is a major goal in kidney trans-
plantation. Our laboratory pioneered urinary cell mRNA profiling, and demonstrated
that the urinary cell levels of mRNAs encoding immunoregulatory proteins and mRNAs
encoding cytotoxic proteins are biomarkers of acute cellular rejection (ACR). In the earlier
investigation, and in the current one, ACR or acute T-cell-mediated rejection are used as
interchangeable terms. Our single-center studies led to a multicenter clinical trials of trans-
plantation (CTOT)-04 study of 485 prospectively enrolled kidney allograft recipients [2].
In the CTOT-04 study, we discovered and validated a urinary cell three-gene signature,
consisting of CD3E mRNA, IP-10 mRNA, and 18S rRNA (CTOT-04 signature), which is
diagnostic and prognostic of ACR. In a multimodal interrogation of the CTOT-04 study
cohort, we identified that a composite signature of the CTOT-04 three-gene signature, and
ratios of 3-sialyllactose to xanthosine (3-SL/X) and quinolinate to X-16397, outperform
either the mRNA signature or the metabolite signature in diagnosing ACR [3].

Metabolite profiles have also been associated with kidney allograft status by others.
Ho et al. [4] analyzed samples from adult kidney transplant recipients, using a targeted
metabolomics platform, and demonstrated that urinary metabolites distinguished patients
with no rejection, sub-clinical rejection, or clinical rejection from each other. Sigdel et al. [5]
applied gas chromatography–mass spectrometry (GC-MS) to analyze biopsy-matched urine
samples from a pediatric cohort of kidney allograft recipients, and generated metabolite
panels to detect graft injury phenotypes.

In this investigation, we examined whether the metabolites that we previously iden-
tified as being associated with ACR are also associated with ACR when urine cell-free
supernatants from an independent cohort of kidney allograft recipients are profiled with a
new metabolomics platform that is capable of identifying a boarder spectrum of metabo-
lites than in our earlier study (1276 metabolites vs. 749 metabolites). We also investigated
whether the metabolite profiles that are associated with ACR are also associated with
the other major type of acute rejection, which is the antibody-mediated rejection (AMR).
In view of the clinical significance of polyomavirus-associated nephropathy (PVAN), it
might of be of interest to explore the metabolite profile of PVAN. While we include all the
available samples from this new study in the statistical analysis, to increase the statistical
power, we shall address the detailed biomarker analysis of PVAN in a future paper, as its
biology is quite different.

In our earlier investigation, we observed a weak association between the metabolite
signature and eGFR, but did not have access to the required phenotype data to further
investigate this link [3]. In this investigation, we explored this relationship further, includ-
ing whether eGFR confounds the association between the metabolites and acute rejection.
First, we computed linear models for each metabolite with all the available and potentially
relevant covariates, including, in particular, eGFR and the CTOT-04 mRNA signature. Then,
we computed a range of relevant contrasts, which were defined as differences between the
combined estimated means of the selected rejection types, and we have provided the full
statistics as supplementary data, so that everything that we do not cover in this paper can
be looked up by the interested reader. To include the largest possible number of samples,
we focus our discussion on the difference between acute rejection samples, which are a
combination of ACR, AMR, and mixed rejection, and non-rejection samples, which are a
combination of ATI and normal biopsy samples. As there are more analyses that could be
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conducted with this dataset than what can be covered in a single paper, we also make the
metabolomics data freely available for further analysis by other investigators. Finally, we
evaluate the potential of a multi-parameter model to predict the presence of acute rejection
in human kidney allografts.

2. Results
2.1. General Features of This Study

This study was conducted at the NewYork-Presbyterian/Weill Cornell Medical Center
(NY-WCM) in New York, NY, USA. The study participants were transplant patients, who all
received their kidney transplants at NYP-WCM, and underwent either clinically indicated
(for-cause) or surveillance biopsies of their kidney allografts. Urine samples were collected
on the day of, and prior to, the biopsy. After the exclusion of samples with incomplete
records, 192 samples from 153 unique kidney recipients were included in the statistical
analysis. The kidney allograft biopsies were classified as acute cellular rejection/T-cell-
mediated rejection (ACR), acute antibody-mediated rejection (AMR), mixed rejection (the
presence of both ACR and AMR), acute tubular injury (ATI), or polyomavirus-associated
nephropathy (PVAN) (Table 1, Tables S1 and S2). Some of the study participants contributed
more than one biopsy sample (up to four), which were generally from different time points,
and sometimes represented different biopsy diagnoses. For simplicity, and as there were
only few patients that provided multiple samples, all the analyses were conducted on a
per-sample basis.

Table 1. Summary of sample characteristics and patient demographics. Additional details are
provided in Tables S1 and S2.

Kidney Allograft Biopsy Diagnosis Biopsy (n)

ACR 22
AMR 16

Mixed rejection 14
ATI 51

Normal/no rejection 53
PVAN 36

Total N of samples 192
Demographics of kidney

Transplant recipients
Diabetes: yes/no 44/109
Sex: male/female 99/54

Ethnicity: black/non-black 47/106
Donor: living/dead 73/80

Induction: ATG */other 126/27
Maintenance: SS **/standard 105/48

Total N of unique patients 153
* Anti-thymocyte globulin; ** steroid-sparing maintenance regimen.

Principal component analysis was conducted to identify potential outliers (none were
removed), and to visualize the major contributors to the variation in the metabolomics data
(Figure 1, Tables S3–S5). The difference in eGFR was a major contributor to the variation in
the metabolome. In general, the different rejection types could not be separated from each
other on the PCA plot. As the normal/no rejection biopsies were from patients with normal
eGFR values, they clustered together, but also overlapped with the rejection samples that
had similar eGFR values. Figure 2 shows box-and-whisker plots of the eGFR stratified by
biopsy diagnosis. As expected, the biopsies showing ACR, AMR, mixed rejection, ATI, or
PVAN, exhibited graft dysfunction, and the eGFR values were less than the eGFR values
that were observed in the patients with normal biopsies.
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ing whether they are living or deceased, the type of induction (ATG vs. other) and mainte-
nance immunosuppressive therapy (steroid sparing vs. standard), diabetes (yes/no), and 
the CTOT-4 urinary cell three-gene signature, as described in [2]. Note that limma pro-
vides estimates for each of the individual biopsy readings, and that it then allows us to 
aggregate these estimates into so-called contrasts, in order to compute p-values between 
the groups of categorial variables. To increase the statistical power, and to remain con-
sistent with our previous work, we decided to focus our analysis on the contrast between 
the samples with acute rejection (ACR + AMR + mixed) vs. no-rejection samples (normal 
+ ATI). The contrasts and full summary statistics for pairwise rejection-type comparisons 
are provided in Table S6. 
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with sex, or glucose with diabetes state, confirm the integrity of the dataset. Several un-
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and are therefore likely to be biochemically related to these drugs. This observation may, 
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horizontal line).

2.2. Metabolite Associations with Co-Variates

Linear models, with normalized metabolite levels as the dependent variable, were
fitted using limma (see Methods). The independent variables were the biopsy reading
(diagnosis as categorial variable), patient age, sex, ethnicity, eGFR, and donor status,
including whether they are living or deceased, the type of induction (ATG vs. other) and
maintenance immunosuppressive therapy (steroid sparing vs. standard), diabetes (yes/no),
and the CTOT-4 urinary cell three-gene signature, as described in [2]. Note that limma
provides estimates for each of the individual biopsy readings, and that it then allows us to
aggregate these estimates into so-called contrasts, in order to compute p-values between
the groups of categorial variables. To increase the statistical power, and to remain consistent
with our previous work, we decided to focus our analysis on the contrast between the
samples with acute rejection (ACR + AMR + mixed) vs. no-rejection samples (normal +
ATI). The contrasts and full summary statistics for pairwise rejection-type comparisons are
provided in Table S6.

Figure 3 shows volcano plots for the associations of all the metabolites with selected
co-variates. Biologically expected associations, such as epiandrosterone and androsterone
with sex, or glucose with diabetes state, confirm the integrity of the dataset. Several
unknown (X-nnnnn) metabolites are associated with the immunosuppressive drug therapy,
and are therefore likely to be biochemically related to these drugs. This observation may, in
the future, be used to reveal their identity and help extend the metabolite knowledgebase
of the Metabolon platform.
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The strongest associations were with eGFR measured at the time of the biopsy
(Figure 3c). Multiple metabolites from the guanidino and guanine pathways, including
1-methylguanidine and guanidinosuccinate, displayed an inverse correlation with eGFR,
whereas 4-guanidinobutanoate, 7-methylguanine, guanidinoacetate, and guanine, showed
a positive correlation with eGFR (Figure 4). These observations are in agreement with
previous reports that found guanidinosuccinate and methylguanidine to be substantially
increased in the plasma and erythrocytes of patients with kidney dysfunction [6]. Other
strong associations of eGFR were found with several unknowns, and with retinol. The
list of significant associations also included blood metabolites that have previously been
reported to correlate with kidney function, such as C-glycosyltryptophan (later identified
as C-mannosyltryptophan), N-acetylalanine, and N-acetylcarnosine [1,7]. As kidney func-
tion is impaired in most instances of allograft rejection, confounding with eGFR comes as
no surprise, and the associations that are reported here might partially be interpreted as
coming from a metabolomics study of eGFR at the extreme end of dysfunctional kidneys.
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2.3. Replication of Earlier Metabolite Associations with ACR

Next, we asked whether the previously identified associations between specific
metabolites and ACR biopsy diagnosis are reproducible when they are investigated using
an independent cohort of kidney allograft recipients with different types of acute rejection
and a new metabolomics platform, with an expanded number of identifiable analytes [3].
Because eGFR was found to be strongly associated with metabolite profiles, and may
confound the relationship between the metabolites and acute rejection diagnosis, we per-
formed additional analyses to test the associations, by including eGFR as a covariate to the
prediction model. Almost all the associations (22 out of 24) that we previously reported
(Table 2) were concordant in the current study, with respect to their directionality, that is,
the metabolite being higher or lower in the patients with acute rejection compared to those
without also being higher or lower in this replication study. Eleven of the 24 associations
were significant at a nominal level (p-value < 0.05). Four associations were considered to
be fully replicated at a Bonferroni level of significance (p-value < 0.05/24), conservatively
accounting for multiple testing of the 24 associations. However, only two of the associ-
ations, quinolinate and the ratio of quinolinate with the unnamed metabolite X—16397,
remained nominally significant after including eGFR into the model. We therefore conclude
that, while the previously reported signature appears to remain valid in discriminating
between rejection and non-rejection samples, part of the signal might be driven by the
general decline in kidney function in the cases of allograft rejection.

Table 2. Replication of associations reported in [3]. Associations displaying identical directionality of the association
with acute rejection (same trend), nominal (p-value < 0.05) or Bonferroni (p-value < 0.05/24) significance, and nominal
significance after accounting for eGFR as a co-variate are marked by a cross (“X”).

Label Beta (N)
JASN

p-Value 1

JASN Beta (N) p-Value 2 p-Value 3,
Incl. eGFR

Same
Trend Nominal Bonferroni Incl. eGFR

quinolinate/X—16397 0.89 (248) 7.3 × 10−9 0.59 (156) 5.5 × 10−4 6.7 × 10−3 X X X X
quinolinate/

4-hydroxymandelate 0.88 (248) 1.1 × 10−8 0.44 (125) 0.022 n.s. X X

neopterin/xanthosine 0.9 (234) 2.0 × 10−8 0.29 (154) n.s. n.s. X
3-sialyllactose/xanthosine 0.86 (242) 5.0 × 10−8 0.23 (154) n.s. n.s. X

neopterin/X—16570 0.84 (235) 9.7 × 10−8 0.18 (156) n.s. n.s. X
neopterin/N1-

methylguanosine 0.83 (238) 1.2 × 10−7 0.41 (154) 0.014 n.s. X X

3-sialyllactose/X—16397 0.77 (247) 5.9 × 10−7 −0.10 (156) n.s. n.s.
proline 0.63 (245) 4.9 × 10−5 0.44 (156) 0.013 n.s. X X

quinolinate 0.59 (247) 1.8 × 10−4 0.76 (156) 1.1 × 10−5 3.6 × 10−3 X X X X
isoleucine 0.58 (244) 2.1 × 10−4 0.19 (155) n.s. n.s. X
X—13723 −0.57 (235) 3.7 × 10−4 −0.31 (156) n.s. n.s. X
X—12117 0.55 (242) 4.9 × 10−4 0.40 (156) 0.014 n.s. X X

1,2,3-benzenetriol sulfate
(1) −0.55 (241) 5.8 × 10−4 −0.21 (139) n.s. n.s. X

leucine 0.52 (246) 9.9 × 10−4 0.24 (154) n.s. n.s. X
pipecolate 0.52 (239) 1.1 × 10−3 0.57 (136) 2.2 × 10−3 n.s. X X

paraxanthine −0.63 (158) 1.1 × 10−3 −0.61 (119) 1.9 × 10−3 n.s. X X X
1,5-anhydroglucitol

(1,5-AG) 0.57 (197) 1.1 × 10−3 0.11 (136) n.s. n.s. X

kynurenate 0.51 (245) 1.3 × 10−3 −0.15 (156) n.s. n.s.
neopterin 0.51 (240) 1.4 × 10−3 0.048(156) n.s. n.s. X

myo-inositol 0.49 (248) 1.7 × 10−3 0.48 (156) 6.4 × 10−3 n.s. X X
gentisate −0.5 (243) 1.8 × 10−3 −0.56 (154) 4.9 × 10−4 n.s. X X X

valine 0.49 (243) 1.9 × 10−3 0.15 (155) n.s. n.s. X
4-acetaminophen sulfate 0.58 (175) 2.5 × 10−3 0.36 (150) 0.034 n.s. X X

arabitol/xylitol −0.47 (248) 2.6 × 10−3 −0.15 (156) n.s. n.s. X

1 beta: effect size, N: number of samples with non-missing data, p-value from [3].2 Summary statistics from this study, using identical data
preprocessing as in [3]. 3 p-value from the same model, but including eGFR as additional co-variate.

2.4. Metabolite Associations with Kidney Allograft Rejection (Univariate Analysis)

Our primary aim was to identify urinary metabolites that can noninvasively dis-
criminate kidney allograft rejection from non-rejection samples. To increase the power,
statistical estimates for the samples with biopsy diagnosis of ACR, AMR, and mixed
ACR/AMR, were grouped together (called acute rejection from hereon) and compared to
the samples from patients with normal biopsies, and from the patients with ATI (called
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no-rejection from hereon). While PVAN samples were not directly used in the calcula-
tion of the contrasts, these data points were included in the limma linear model fit, and
thereby contributed to the estimation of the overall variance that was attributed to the
other covariates. We found that the association signals between the acute- and no-rejection
samples were generally weaker than what we observed in our previous study. As dis-
cussed above, this is mainly attributed to the confounding of eGFR with kidney rejection.
However, this also implies that the metabolites that remained significant after accounting
for covariates are likely to be biologically independent from the process that relates to
kidney function, as measured through glomerular filtration. The strongest association was
found with choline (p = 7 × 10−6), which is significant at a false discovery rate <1%. The
nominal associations (p < 0.05) included metabolites such as choline phosphate, acisoga
(N-Acetylisoputreanine-gamma-lactam), N1-Methyl-2-pyridone-5-carboxamide, inosine,
benzoylcarnitine, quinolinate, phosphoethanolamine, and several unnamed molecules
(Figure 5).
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2.5. Biomarker Potential (Multivariate Analysis)

As the individual metabolite associations with kidney allograft rejection were modest
overall, we then asked whether a combination of markers would be able to discriminate
acute-rejection from no-rejection samples. For this purpose, we pre-selected the 25 most
discriminating metabolites, using a random forest approach, and then further refined
the variable set using stability selection [8] (see Methods). The most predictive model
had an area under the curve (AUC) of 91.8% (95% CI: 87.6–95.9%), and consisted of
nine metabolites, most of which were also individually strongly associated with allograft
rejection (Figure 6). Of note is that we had added eGFR and the CTOT-04 mRNA signature
to the set of potentially discriminating variables, which allowed them to be selected by
the method, but neither was selected in the prediction model. Interestingly, the stress
marker cortisone was included in the multivariate marker selection, although its individual
association with allograft rejection was not significant.
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3. Discussion

In this investigation, we asked whether metabolites that were measured in biopsy-
matched cell-free urine supernatants distinguish kidney allograft recipient patients with
acute-rejection biopsies from patients with biopsies without histological features of acute
rejection. We found that kidney function, as measured by eGFR, is an important confound-
ing factor of metabolite profiles. Sekula et al. investigated the blood-based markers of
kidney function, using a non-targeted metabolomics platform [1]. Many of the metabolites
that they reported in that study were also found here, in urine. The metabolites that were
most strongly associated with eGFR were from the guanidino and guanine pathways.
Our examination of the replicability of our previously identified associations, from the
multi-center CTOT-04 study, identified quinolinate as a metabolite that remains significant,
even after accounting for all the available sources of variation, including ethnicity, age, sex,
diabetes, and medication used for the induction and maintenance of immunosuppression
and, importantly, eGFR. While the association of the ratio quinolinate/X—16397 also repli-
cated, it should be noted that the p-gain, that is, the increase in the strength of association
when using ratios [9], does not.

The validated increase in quinolinate in patients with acute rejection biopsies is of
interest, since this metabolite has been considered a “double-edge” sword. Quinolinate
is an intermediate metabolite in the tryptophan metabolism contributing to the de novo
biosynthesis of nicotinamide adenine dinucleotide (NAD+), which is pivotal to energy and
critical cellular processes [10]. Importantly, de novo NAD+ biosynthesis impairment has
been linked to acute kidney injury in humans [11]. Thus, higher quinolinate levels may
reflect impaired NAD+ biosynthesis during an episode of acute rejection, and restoration of
NAD+ synthesis may be of benefit in this setting. It is also possible that the accumulation
of quinolinate, which is considered a toxic metabolite, may be a contributory factor to graft
dysfunction during an episode of acute rejection.

The current study was not designed to identify mechanisms for the alterations in
metabolite concentration, such as the increase in quinolinate. However, in our ongoing
RNA sequencing studies of human kidney allografts undergoing acute rejection, we iden-
tified that the mRNA for quinolinate phosphoribosyltransferase (QPRT) is significantly
reduced in acute rejection biopsies compared to biopsies without acute rejection changes.
The reduced expression of QPRT in the rejecting allograft is a biologically plausible mecha-
nism for increased quinolinate, since QPRT is central to NAD+ synthesis from quinolinate.
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This current study differs from our previous study, in considering both ACR and AMR
rejection instead of ACR alone, and using an updated version of the Metabolon (Durham,
NC) platform that includes metabolites that have not been investigated in the context of
kidney rejection before. We could therefore identify new associations that had not been
observed before, and assure that these metabolite profiles were most likely not the result of
impaired kidney function alone. Using a multivariate analysis with variable selection, we
affirm that the metabolites that were included in the prediction model discriminate acute-
from no-rejection samples, with an AUC of 91.8%.

Our investigation has several strengths. The biospecimens were collected from kidney
transplant patients who all received their kidney transplants at a single center and were
managed with standardized immunosuppressive protocols, thereby minimizing the vari-
abilities that are intrinsic to studies involving a multicenter study cohort. Each cell-free
urine supernatant that was analyzed in this study was matched to a kidney allograft
biopsy, ensuring “ground truth” about the kidney allograft status, where each biopsy
was interpreted by highly experienced kidney pathologists and classified using the Banff
classification schema, thereby minimizing the inter-observer variability in biopsy interpre-
tation. The urine cell-free supernatants were stored in a −80 ◦C biorepository, and were not
thawed prior to metabolomic profiling. It is noteworthy that unbiased metabolite profiling
was performed, using the highly robust and state-of-the-art Metabolon platform.

Our study also has several limitations. Kidney allograft function was defined using
estimated GFR, rather than measured GFR, and the “best” formula to be used to estimate
GFR is an area of evolving science. Importantly, the inclusion of race in the eGFR mea-
surement is being vigorously addressed by the professional societies, and in this study, a
substantial number of kidney transplant recipients were black recipients and the eGFR
was calculated using race as one the variables [12]. Then, there is always the issue of
association analysis, that is, whether the metabolite profile is altered by GFR or whether
the GFR is altered by metabolites, or both. With respect to the metabolites measured, the
measurements are relative in nature, and the translation of any marker signature would
benefit from the development of a targeted assay for absolute quantification, followed by
a reevaluation of the model coefficients using absolute values. While we included all the
covariates that might explain part of the variation, and that were available to us, other
non-identified factors are likely to co-exist. The variable selection methods depend on
multiple parameters, and may yield differing results. The prediction model we developed
here should, therefore, be interpreted as one of many possible ones. In order to allow others
to build on our study, and potentially develop additional accurate models for prediction,
we have provided the full dataset in Tables S3–S5.

As a correlate, the unknown metabolites that are associated here with the drugs used
for the maintenance of immunosuppression, are likely to be metabolites of immunosup-
pressive drugs. This information could be used in the future, to facilitate the identification
of unidentified molecules using a mass-spectrometry method, following the approach
suggested by Krumsiek et al. [13].

In summary, our investigation of the association between metabolite profiles and acute
rejection in human kidney allografts, in addition to replicating the directionality of the
22 of the 24 metabolites that have previously been associated with ACR [3], identified a
candidate signature model consisting of 9 metabolites that discriminated kidney allograft
recipients, with the biopsies showing acute rejection from the recipients without acute
rejection. The current study also emphasizes the importance of considering GFR in link-
ing metabolite concentrations to kidney allograft biopsy findings. We hypothesize that
metabolites, besides serving as biomarkers, may suggest novel therapeutics, such as the
use of nicotinamide adenine mononucleotide to promote NAD+ biosynthesis and improve
allograft function.
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4. Materials and Methods
4.1. Study Cohort, Biopsy Diagnosis and Biospecimens

The study cohort consisted of 153 unique kidney allograft recipients. All recipients
received their kidney allografts at the NewYork-Presbyterian/Weill Cornell Medical Center
and were managed with standardized immunotreatment protocols. Table S1 is a summary
of baseline characteristics of kidney allograft recipients stratified by biopsy diagnosis.
Among the 153 recipients, 99 were males (64.7%) and 54 were females (35.3%). Most
recipients were either white (45.1%) or black (30.7%) recipients. The major cause of kidney
disease resulting in end-stage kidney disease was diabetes mellitus. Among the recipients,
24 (15.7%) were repeat transplants, and 80 (52.3%) were recipients of deceased donor
kidneys and 73 (47.7%) were recipients of living donor kidneys.

A total of 273 urine samples were collected at the time of kidney allograft biopsies and
urine cell pellets and cell-free urine supernatants were prepared using a standard protocol
as previously reported and stored at −80 ◦C, as previously reported [2]. Metabolite analysis
was performed (see below) with aliquots of supernatants that were never thawed prior to
metabolite profiling.

Among the 273 biopsy-matched cell-free urine supernatants, 192 samples were in-
cluded in data analysis (see below). Table S2 is a summary of biopsy diagnosis and biopsy-
associated parameters. The biopsies were classified by highly experienced renal patholo-
gists using the Banff classification scheme and were masked for metabolite data. Among
the 192 biopsies, 22 biopsies from 22 recipients were classified as acute T-cell-mediated
rejection biopsies (ACR), 16 biopsies from 16 recipients as acute antibody-mediated re-
jection (AMR), 14 biopsies from 14 recipients as mixed rejection, a combination of both
ACR and AMR, 36 biopsies from 32 recipients as polyomavirus-associated nephropathy
(PVAN), 51 biopsies from 49 recipients as acute tubular injury (ATI) and 53 biopsies from
29 recipients as normal biopsies. Among the 192 biopsies, 137 were clinically indicated
biopsies (for cause biopsies) and the remaining 55 were surveillance biopsies. Time since
transplantation to biopsies, serum creatinine at the time of biopsy and Banff histological
semiquantitative scores are included in Table S2. Data regarding the presence or absence of
IgG donor HLA-specific antibodies at the time allograft biopsy are also provided there.

This is a single-center cross-sectional study of kidney allograft recipients enrolled at
the time of kidney allograft biopsy. The biopsies were performed between August 2005
and December 2014, and biopsy-matched urine cell-free supernatants were stored in our
IRB-approved biorepository prior to profiling.

4.2. Metabolomics

Then, 273 urine samples were submitted to Metabolon (Durham, NC, USA) for analysis
on their non-targeted HD4 platform. The Metabolon platform has been extensively used
and described in previous studies [14,15]. Briefly, prior to extraction, recovery standards
were added for QC purposes. Proteins were precipitated with methanol. Samples were
then split into four aliquots for liquid-phase mass-spectrometry analysis; there were two
for analysis by two separate reverse-phase (RP)/UPLC-MS/MS methods with positive-ion
mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative-
ion mode ESI, and one for analysis by HILIC/UPLC-MS/MS with negative-ion mode ESI.
Median relative standard deviation (RSD) of the internal standards was 4% and for pooled
patient samples the RSD was 6%.

After excluding samples with incomplete medical records, data for 1251 metabolites
measured in 192 samples were retained for statistical analysis. Further, 674 metabolites
were annotated using Metabolon’s proprietary methods and 577 were of unknown identity.
These samples were from 153 unique patients, whereof 128 provided a single sample
and 27 provided between two and four samples. Samples were processed by Metabolon
following established protocols and procedures. Raw metabolite values (ion counts) were
scaled by run-day, so that run-day medians equal the overall median (OrigScale). The
OrigScale values for each sample were then normalized by sample osmolality and scaled
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to set the median equal to 1. Lastly, missing values were imputed with the minimum of
each metabolite (OsmoNormImpData).

4.3. Statistical Data Analysis

R (version 4.0.4) and rstudio (version 1.4.1103) were used for statistical data analy-
ses. Except for the CTOT-04 replication, linear models were computed using R pack-
age “limma” (version 3.46.0) and “autonomics” (version 0.99.22) with the following
model: Metabolite~Diagnosis + eGFR.at.Biopsy + Recipient_Age + Recipient_Gender + Recipi-
ent_Ethnicity + Transplant.Type + Induction + Maintenance.Immunosuppres. + CTOT4.Signature
+ Primary.Diabetes, where “Metabolite” are the OsmoNormImpData metabolite values
that were further log10-transformed and scaled to a mean of zero and a standard de-
viation of one (z-scored). “Diagnosis” is a categorial with factors “ACR”, “AMR (incl
chronic)”, “ATI”, “mixed rejection”, “Normal/No Rejection”, and “PVAN (incl follow
up)”. “Recipient_Ethnicity” has factors “Black” and “Non-Black”, “Transplant.Type” has
factors “Deceased” and “Living”, “Induction” has factors “other” and “Thymo”, and “Main-
tenance.Immunosuppres.” has factors “SS” and “SM”.

For the CTOT-04 replication, to be consistent with the approach taken in the previous
study, linear models were computed using the R function “lm” (R stats package). Unscaled
and unimputed metabolite levels (OrigScale) were first log-scaled, then z-scored, and then
outliers more than 4 standard deviations from the mean were removed. A linear model
with metabolite levels as outcome and ACR case/control as independent variable was used,
considering “ACR”, “AMR” and “mixed rejection” as cases, and “Normal/No Rejection”
and “ATI” as controls.

For the multivariate biomarker selection, R packages “stabs” (version 0.6-4) and
“randomForest” (version 4.6-14) were used. Briefly, the 25 most discriminating metabolites
from a randomForest analysis (computing 500 trees) were used to fit general linear models
with stability selection (stab.glmnet.lasso with parameters q = 12, cutoff = 0.6, family =
“binomial” and sampling.type = “MB”). The eGFR and CTOT-04 mRNA signature were
added to the independent variable list.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/metabo11080533/s1, Table S1: characteristics of kidney transplant recipients at baseline, Table S2:
kidney allograft biopsy-associated parameters and Banff histology scores, Table S3: metabolomics data
as used as input to the limma analysis, Table S4: metabolite annotations, Table S5: sample annotations,
Table S6: summary statistics (limma).
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