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Abstract: Metabolomic analysis may provide an integrated assessment in genetically and patho-
logically heterogeneous populations. We used metabolomic analysis to gain mechanistic insight
into the small and diverse population of adults with congenital heart disease (ACHD). Consecutive
ACHD patients seen at a single institution were enrolled. Clinical variables and whole blood were
collected at regular clinical visits. Stored plasma samples were analyzed for the concentrations of
674 metabolites and metabolic markers using mass spectrometry with internal standards. These
samples were compared to 28 simultaneously assessed healthy non-ACHD controls. Principal com-
ponent analysis and multivariable regression modeling were used to identify metabolites associated
with clinical outcomes in ACHD. Plasma from ACHD and healthy control patients differed in the
concentrations of multiple metabolites. Differences between control and ACHD were greater in
number and in degree than those between ACHD anatomic groups. A metabolite cluster containing
amino acids and metabolites of amino acids correlated with negative clinical outcomes across all
anatomic groups. Metabolites in the arginine metabolic pathway, betaine, dehydroepiandrosterone,
cystine, 1-methylhistidine, serotonin and bile acids were associated with specific clinical outcomes.
Metabolic markers of disease may both be useful as biomarkers for disease activity and suggest
etiologically related pathways as possible targets for disease-modifying intervention.

Keywords: adult congenital heart disease; metabolomic analysis; biomarkers

1. Introduction

The field of metabolomics has the potential to dramatically impact research and
progress in cardiology. As metabolomic changes represent the integrated effects of genomic,
proteomic and environmental or dietary influences, they may provide unique insights
into disease pathobiology [1]. By providing information on the substrates participating
in a broad diversity of biological processes, metabolomic analysis can indicate changes in
these processes which may be contributing to disease. The metabolome is thus proposed
to be the closest readout of disease status in an individual at any given time [2]. In
the field of acquired heart disease, metabolomic studies have already led to significant
new insights, revealing previously unrecognized biomarkers [3] and pathophysiological
mechanisms [4–6]. Similarly in the field of congenital heart disease, metabolomic studies
have revealed informative changes in the plasma concentrations of amino acids related to
the nitric oxide signaling pathway [7] and in Fontan patients have revealed alterations in
the concentrations of amino acids and lipid metabolites [8]. Existing studies are limited,
however, in both the numbers of metabolites and numbers of patients investigated. In fact,
there is a comparative paucity of metabolomic data related to cardiac disease generally, in
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part as a result of technical and practical challenges [9], making metabolomics a largely
untapped resource for biological information.

Metabolomic analysis may offer unique insights into the pathology underlying clinical
deterioration in adult congenital heart disease (ACHD). In spite of growing prevalence [10]
and high rates of hospitalization [11] and mortality [12] there remain few interventions
with proven efficacy in preventing clinical deterioration in ACHD [13]. In part this failure
is attributable to prohibitively complex genetic, anatomical, physiologic and environmental
systemic inputs in this group of patients which is too small and heterogeneous to permit
population-based research. In this scenario, the integrative capacity of metabolomic analy-
sis has the potential to uncover unifying and potentially targetable metabolic phenotypes
generated by a broad diversity of upstream systemic inputs. In support of this hypothesis,
the pairing of metabolomic analysis with computer modeling has recently yielded novel
insight into the etiologically heterogeneous pathophysiology of acquired systolic heart
failure [14].

In the present study, we investigated the potential utility of metabolomic analysis to
generate new hypotheses and provide new insights into the pathophysiology of ACHD.

2. Results
2.1. Study Cohort

The final cohort included a total of 167 assessment/biological sample pairs, repre-
senting 99 individual patients (61 individuals with a single sample, 18 with 2, 14 with 3
and 6 with 4+ samples). Fifty-one percent were male and 76% Caucasian with an average
age at assessment of 38.3 ± 13.3 years old. ACHD diagnoses were 21% SRV, 20% SD, 35%
RVOT, 9% SV and 15% other. There were 26 non-ACHD healthy control samples having an
average age of 43.7+7.7 years old (older than the ACHD cohort p = 0.008) with 42% males
(p = 0.51 compared to the study cohort). Cohort characteristics can be found in Table 1
and patient’s clinical status at the time of study evaluation is detailed in Supplementary
Materials Table S2. The non-cardiac diagnoses present in each of the 71 individuals who had
them (excluding those listed in Table 1) can be found in Supplementary Materials Table S3.

Table 1. Patient characteristics (N = 99).

Characteristics. N Value

Sex (male) 99 50 (51%)
Diagnosis 99

Transposition of the great arteries (SRV) 21 (21%)
TOF/DORV, RVOT stenosis (RVOT) 34 (35%)

Septal defects (SD) 20 (20%)
Single ventricle/Ebstein’s (SV) 9 (9%)

Other diagnoses 15 (15%)
Non-cardiac diagnosis 96 71 (74%)

Caucasian race 75 (76%)
Education 89

High school or less 36 (40%)
College 22 (25%)

Post-college 31 (35%)
Smoking 98

Never 64 (65%)
Past smoker 11 (11%)

Current smoker 23 (24%)
Hypertension 99 35 (35%)

Diabetes 99 14 (14%)
Dyslipidemia 98 18 (18%)

History of arrhythmia 99 45 (45%)
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Table 1. Cont.

Characteristics. N Value

Previous vascular surgery 92 10 (11%)
Previous non-cardiac surgery 98 59 (60%)

Abbreviations: N—number of patients; TOF—Tetralogy of Fallot; DORV—double outlet right ventricle; RVOT—
right ventricular outflow tract. Age changes between assessments and so is reflected in Table 2 with other
time-dependent variables.

Table 2. Significantly impacted pathways stratified by category of ACHD diagnoses (*** FDR p < 0.01,
** FDR 0.01 < p < 0.05, * FDR 0.05 < p < 0.10, no * FDR > 0.10).

Significantly Impacted Pathways

All congenital heart disease Septal
Aminoacyl-tRNA biosynthesis *** Aminoacyl-tRNA biosynthesis *

Histidine metabolism *** Histidine metabolism *
Arginine biosynthesis ** Arginine and proline metabolism

Arginine and proline metabolism * Arginine biosynthesis
Phenylalanine, tyrosine and tryptophan

biosynthesis * beta-Alanine metabolism

Galactose metabolism
Alanine, aspartate and glutamate metabolism Single ventricle

D-Glutamine and D-glutamate metabolism Taurine and hypotaurine metabolism
Taurine and hypotaurine metabolism Sphingolipid metabolism

beta-Alanine metabolism Linoleic acid metabolism
Phenylalanine metabolism Cysteine and methionine metabolism
Systemic right ventricle Other

Alanine, aspartate and glutamate metabolism *** Histidine metabolism **
Histidine metabolism *** Aminoacyl-tRNA biosynthesis *

Aminoacyl-tRNA biosynthesis ** Pantothenate and CoA biosynthesis
Arginine biosynthesis ** beta-Alanine metabolism

Arginine and proline metabolism ** Alanine, aspartate and glutamate metabolism
D-Glutamine and D-glutamate metabolism ** Arginine biosynthesis

beta-Alanine metabolism ** Glycerophospholipid metabolism
Butanoate metabolism

Sphingolipid metabolism
TOF/DORV, RVOT stenosis

Arginine biosynthesis ***
Aminoacyl-tRNA biosynthesis ***

Histidine metabolism *
D-Glutamine and D-glutamate metabolism *

Arginine and proline metabolism *
Taurine and hypotaurine metabolism

Phenylalanine metabolism
Alanine, aspartate and glutamate metabolism

Pantothenate and CoA biosynthesis
Abbreviations: FDR—false discovery rate; TOF—Tetralogy of Fallot; DORV—double outlet right ventricle;
RVOT—right ventricular outflow tract.

2.2. Metabolite Differences between ACHD and Control

Amino acids and related metabolic compounds which differed significantly between
ACHD and controls are depicted in Figure 1 while a comparison of lipid-derived metabolic
compounds are reported in Figure 2. The degree of variation between ACHD patients
and controls for all metabolites are depicted in Volcano plots, Supplementary Materials
Figure S1. Overall, plasma concentrations differed for a large number of amino acids and
related metabolic compounds between ACHD and controls with no striking differences
between the various ACHD groups. We found lower concentrations of serotonin, sero-
tonin/tryptophan ratio and hypoxanthine across all ACHD diagnosis groups compared to
control. Patients with RVOT, SRV and SD all had lower plasma concentrations of lactate
and higher concentrations of arginine than those observed in control samples. There were
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no significant differences between ACHD and controls in serum concentrations of lipids
lumped by class (as depicted in Figure 2) or in specific individual lipid molecular species.

All metabolites with uncorrected p-values < 0.05 for a difference between ACHD
and control were investigated further by metabolic pathway analysis. Table 2 depicts
significantly impacted pathways (p < 0.05) along with the level of significance corrected for
a false discovery rate of 0.05 with level of significance as indicated.
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Figure 1. Significant differences in concentration of amino acids and related metabolic compounds between patients in any
of the ACHD groups and controls (box represent the normalized differences along with 95% confidence interval; dotted
line at x = 0 is the concentration in control subjects. White boxes: Difference is not statistically significant; black boxes:
Difference is statistically significant but is above the threshold for a false discovery rate of 5%; red boxes: Difference is
statistically significant and is below the threshold for a false discovery rate of 5%). Y-axis values indicate fold concentration
difference between ACHD and controls for the indicated variable. x-axis abbreviations: ALL—all diagnoses; OTH—
other diagnoses; SRV—transposition of the great arteries; RVOT—Tetralogy of Fallot/right ventricular outflow stenosis;
SD—septal defect; SV—single ventricle. Metabolites abbreviations: 1-MHis—1-Methylhistidine; αAAA—aminoadipic
acid; ADMA—asymmetric dimethylarginine; Arg—arginine; Cit-citrulline; Kyn—kynurenine; Orn—ornithine; PAG—
phenylacetylglycine; SDMA—symmetric dimethylarginine; Trp—tryptophan.
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Figure 2. Comparison of concentration of lipid-derived metabolic compounds between patients with ACHD and controls
(box is the normalized differences along with 95% confidence interval: Dotted line at x = 0 is the concentration in control
subjects). Y-axis values indicate fold concentration difference between ACHD and controls for the indicated variable. x-axis
abbreviations: ALL—all diagnoses; OTH—other diagnoses; SRV—transposition of the great arteries; RVOT—Tetralogy of
Fallot/right ventricular outflow stenosis; SD—septal defect; SV—single ventricle.

2.3. ACHD Principal Component Cluster Determination

In principal component analysis, the first four components individually were retained
for further analysis based on an examination of the scree plot. These components re-
spectively explained 30%, 9%, 5% and 4% of the variance and together explained 48% of
cumulative variance in metabolic compound concentrations, Supplementary Materials
Figure S2. Investigating these components more closely revealed that the first principal
component (PC1) almost exclusively includes metabolites from the triacylglycerol class,
and the second principal component (PC2) includes metabolites from the sphingolipid,
glycerophospholipid, ceramide and cholesterol ester classes. The third principal compo-
nent (PC3) is dominated by acylcarnitines and glycerophospholipids. The fourth principal
component (PC4) included many amino acids and related compounds. Table 3 depicts the
metabolic pathways represented in the various principal components.

Table 3. Metabolic pathways represented in the first four components identified with principal
component analysis (*** FDR p < 0.01, ** FDR 0.01 < p < 0.05, * FDR 0.05 < p < 0.10, no * FDR > 0.10).

Significantly Impacted Pathways

PC1 PC2
Glycerolipid metabolism Sphingolipid metabolism *

Linoleic acid metabolism
PC3 alpha-Linolenic acid metabolism

Glycine, serine and threonine metabolism
Glycerophospholipid metabolism PC4

Arginine biosynthesis *
Phenylalanine metabolism

Phenylalanine, tyrosine and tryptophan
biosynthesis

Galactose metabolism
Butanoate metabolism

D-Glutamine and D-glutamate metabolism
Taurine and hypotaurine metabolism

Arginine and proline metabolism

2.4. Metabolite Association with Clinical Variables

Multivariable regression models were constructed as described in the methods section
and included the first four principal components along with sex, race, age, diagnosis,
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presence of non-cardiac diagnoses, hypertension, diabetes and dyslipidemia as potential
covariates. As depicted in Table 4 (left panel), a lower patient score on PC1 was associated
with increased odds of arrhythmia history and shortness of breath. A higher patient score
on PC2 was associated with increased odds of arrhythmia history. A lower patient score on
PC4 was associated with an increased probability of all adverse cardiac characteristics and
variables (both measured and self-reported) and worse self-reported quality of life Figure 3.

Table 4. Multivariable models. Association between principal components loads, individual metabolites with high reliability
in bootstrap resampling and adverse cardiac outcomes. Left side—regression models built with PC loads and clinical
covariates only, reported are the variables included in the final regression model. Right side—regression models built with
PC loads and clinical covariates (if statistically significant) and the highly reliable metabolites.

PC Only PC + Highly Reliable Metabolites

Outcomes PC Loads Clinical Covariates QIC (PC) PC Loads Significant Metabolites QIC (mets)

O2 saturation < 95% 4 SV, SD 95.6
ADMA/Arg,

serotonin/tryptophan,
GCDCA, Betaine

84.6

Cardiac dysfunction 4 None 119.6 2,5 Citrulline, Cystine,
1-Methylhistidine 103.4

RV dysfunction 4 SRV, dyslipidemia 79.9 4 DHEAS 76.4
Arrhythmia history 2,4 SRV, SV, age 179.3 2 TCA, Orn/Arg 175.4

Shortness of breath 1,4 None 143.0 Ornithine, SDMA/Arg,
Homo-L-arginine 120.9

ADMA—asymmetric dimethyl arginine; Arg—arginine; DHEAS—dehydroepiandrosterone; GCDCA—glycochenodeoxycholic acid;
Orn—ornithine; SDMA—symmetric dimethyl arginine; TCA—Taurocholic acid.

Volcano plots were created for each adverse cardiac variable in an effort to better under-
stand which specific metabolites were most strongly associated with patient characteristics
and outcomes, Supplementary Materials Figure S3. Most notable are arginine pathway
metabolites (arginine, methylarginines and citrulline), 1-methylhistidine, ornithine and
dehydroepiandrosterone. The pathways involved with these metabolites are reported in
Supplementary Materials Table S4.

Finally, we compared regression models generated by combining the metabolites with
high reliability identified in the bootstrap analysis for each clinical variable, Supplementary
Materials Figure S2, and principal component loads with those generated using principal
component loads alone. The results are depicted on the right side of Table 4. Regression
models generated by adding the individual metabolites with high reliability showed better
fit (lower QIC) for all clinical characteristics and variables with the exception of exertional
shortness of breath. Importantly, this analysis did not find any individual metabolite to be
associated with the broad diversity of clinical characteristics and variables as was found
for PC4.
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Figure 3. Association between patient score on PC4, clinical characteristics (top graph) and patient
reported outcomes (bottom graph) in multivariable regression models. We found that higher plasma
concentrations of the metabolites in PC4 were associated with both a decreased probability of
adverse clinical characteristics and improved patient reported health status in all domains other
than arrhythmia. Models for clinical outcomes (other than worsening quality of life) are adjusted for
clinical covariates. Worsening quality of life is adjusted for age and TGA, anxiety/depression score,
quality of life score, symptoms and total score are adjusted for the presence of non-cardiac diagnoses
and the symptoms score is further adjusted for the sex of the participant. Abbreviations: CI—
confidence interval; O2—oxygen; OR—odds ratio; QOL—quality of life; SOB—shortness of breath.

3. Discussion

In the present analysis, we investigated plasma metabolite levels in an anatomically
heterogeneous outpatient ACHD cohort. We found significant differences in plasma
metabolite concentrations both between ACHD and non-ACHD patients, and between
ACHD patients with differing physiologic abnormalities. We also found that metabolic
phenotype did not necessarily align with physiologic abnormality; but correlated well
with cardiac function, oxygen saturation and patient-reported health status. We specifi-
cally found that a cluster of metabolites including intermediates in amino acid metabolic
pathways had a strong positive relationship with cardiac outcomes and health status.
Analysis of the specific metabolites involved suggests metabolites in the arginine, choline,
steroid hormone and bile acid pathways as potential biomarkers and targets for further
therapeutic investigation. While we did not identify any biomarker unique to ACHD (for
which non-targeted metabolomics studies would likely be better suited) we did identify
metabolic shifts shared with other forms of chronic heart disease.

In the present study, we chose to perform a targeted metabolomics approach inclu-
sive of a broad array of metabolites. We selected this approach given the availability of
excellent existing untargeted metabolomic analyses in heart failure and coronary vascular
disease [3,5,15–17]. As the most common causes for mortality in ACHD are heart failure
and arrhythmia [18,19], similar to what is seen in acquired heart disease, we anticipated
that changes in recognized, informative plasma metabolite levels might be similarly in-
formative in ACHD. We also were interested in being able to specifically quantify and
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compare the relative abundance of metabolites in the same pathway as potentially useful
in identifying pathway flux, for which untargeted analysis is more limited.

Using this approach we identified high probability metabolic markers of cardiac
function and clinical status. Among the metabolic pathways we identified as potentially
informative, arginine metabolism is particularly interesting. Metabolites in this pathway
segregated to metabolic cluster 4 (which correlated with cardiac function and clinical sta-
tus), were independently associated with these outcomes and were significantly different
when comparing ACHD and non-ACHD. One of the fundamental roles played by the
arginine metabolic pathway is the elaboration of the biologically active signaling molecule
nitric oxide. Alterations in the concentrations of metabolite members of this pathway
correlate with prognosis in various types of heart disease [5,20,21] including congenital
heart disease generally [7]. Moreover, one prior study demonstrates that ADMA is elevated
in Fontan patients compared to controls although no association with clinical status or
outcome was identified [22]. In the present analysis we identified alterations specifically
in the concentrations of asymmetric dimethyl arginine and symmetric dimethyl arginine
which may impact arginine transport and nitric oxide synthesis [21,23]. We also identified
evidence of altered flux through the nitric oxide pathway with increased total ornithine,
ornithine to arginine ratio and total dimethyl arginine to arginine ratio. The overall metabo-
lite pattern identified suggests the hypothesis that elevated levels of dimethylarginine in
clinically deteriorating ACHD patients may lead to arginine diversion away from nitric
oxide synthesis, potentially adversely impacting clinical status and leading to disease
progression in ACHD as in other diseases. Given the availability of nitric oxide signaling
pathway modulators for use in pulmonary hypertension, this metabolic pathway has
potential as both a source for informative biomarkers and as a possible therapeutic target.

We also found that increased levels of the quaternary amine betaine correlate with
hypoxemia. Betaine is a member of the choline metabolic pathway. Previous studies suggest
that alterations in serum levels of members of the choline metabolic pathway, including
betaine, are associated with risk for cardiovascular disease [4,6]. These studies indicate that
alterations in diet may impact choline synthesis at the level of the gut microbiome. How
hypoxemia or conditions associated with hypoxemia (which in the present study included
mostly SV patients who have chronic gut congestion) might impact the gut microbiome
and choline biosynthesis may prove an avenue for further research.

We identified an informative association between decreased dehydroepiandrosterone
(DHEA) levels and RV dysfunction. DHEA has been demonstrated in animal models to
reverse pulmonary vascular disease and improve RV function in the setting of pulmonary
hypertension [24–26]. Moreover, DHEA has been directly associated with RV systolic
function in humans in a large population-based cohort [27]. This finding suggests the
possibility that either RV dysfunction or the sequelae of RV dysfunction (such as central
venous congestion) lead to DHEA elaboration. The association between lower DHEA
and RV dysfunction suggests the hypothesis that breakdown of a homeostatic signaling
mechanism involving DHEA may contribute to propagation of RV dysfunction in ACHD.
If confirmed, this will be an important avenue for further mechanistic investigation.

We also identified other potentially informative associations between metabolites and
clinical status in ACHD. These included alterations in the levels of bile acids, specifically
glycochenodeoxycholic acid and taurocholic acid which have been demonstrated to be ele-
vated in the setting of liver injury [28] and in our analysis were associated with SV patients
who are known to have chronic hepatic congestion. Elevated levels of 1-methylhistidine in
our study correlated with general cardiac dysfunction, which is consistent with existing
data showing plasma concentrations of the modified amino acid correlate with both systolic
and diastolic cardiac dysfunction in heart failure patients [29,30]. In contrast the observed
decreased plasma concentrations of reduced cysteine (cysteine) and serotonin/tryptophan
do not have a clear explanation in existing literature. If validated in larger cohorts, these
metabolites are worth pursuing as potentially informative biomarkers in the future.
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While we identified multiple individual informative metabolites, none of these metabo-
lites was consistently associated with outcomes across clinical groups. Many of these
metabolites, however, are components of metabolic cluster 4 which was associated with
adverse clinical outcomes across groups. This suggests that multiple metabolic pathways,
dysfunctionally regulated by a diverse array of upstream stimuli, may act in concert to
produce or reflect clinical disease in the ACHD population. In possible support of this
hypothesis, we found that metabolic cluster 4 and not individual metabolites was asso-
ciated with a better fit for the symptom of exertional shortness of breath. Given that
physical exertion produces a stress on the entire hemodynamic system and is a non-specific
symptom of disease, this finding may suggest that multiple metabolic systems, as defined
in this metabolic cluster, are etiologically related to disease progression. It also suggests
that no single pathway in isolation holds the key to understanding and preventing clini-
cal deterioration in ACHD. Looking forward this may indicate that a multi-intervention
approach will be required to effectively manage the sequelae of ACHD, not dissimilar to
what is the case in systolic heart failure [31].

Limitations

The present data and analyses are intended to be hypothesis generating. Samples were
drawn without regard to fasting status or time of day for the sake of practicality (samples
were obtained at the time of regular clinical visits). Given known impact of both diet and
diurnal variation in hormone levels on serum metabolite concentrations, this may have an
impact on the results. Nevertheless, recent data suggest the impact of fasting, activity and
time of day have limited impact on plasma metabolite profile [32]. Moreover we employed
a targeted metabolomics approach in the present analysis which limits analysis to only the
restricted set of quantified metabolites. As a result, informative metabolites not specifically
investigated in our metabolite panel would be missed by our approach. Relevant to this
consideration, given the very broad diversity of lipid metabolites quantified, we elected
not to compare abundance of specific lipid species between the ACHD and control groups
as part of the present analysis, instead reserving this for a future analysis. There is a
significant possibility that sampling error may have led to false associations given the
limited sample size employed in the present analysis. These findings will require validation
in larger more homogeneous cohorts. This study analysis was retrospective. As such, not
all patients had all assessments at all encounters resulting in some outcomes having a
lower effective sample size. Moreover, although we controlled for all factors possible,
metabolomic analysis is inherently sensitive to diet and physical activity which were not
controlled for in the present analysis. Similarly, it is possible that there was some systematic
error introduced into the analytic framework at the level of sample analysis. We have
tried to identify these system biases as possible. Finally, certain of the outcomes were
patient reported and therefore subject to bias based on psychological state at the time of
assessment.

4. Materials and Methods

We conducted a retrospective study including patients enrolled in an ACHD clinical
database and biobank at Baylor University Medical Center. This study was approved by
the institutional review boards at Baylor University Medical Center and the University of
Texas Southwestern Medical Center and was conducted in accordance with the Helsinki
declaration and the International Conference on Harmonization Good Clinical Practice
(ICH-GCP) guidelines. Each participant provided signed informed consent to participate
in the study. All biological materials and clinical data will be made available to qualified
investigators upon reasonable request.

4.1. Study Cohort

Patients meeting inclusion criteria and seen in the outpatient ACHD clinic at the en-
rolling site were approached consecutively and offered enrollment by the primary investi-
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gator at the time of regular outpatient visits. The inclusion criteria included age ≥ 18 years,
a diagnosis of ACHD confirmed by the principal investigator, being regularly followed in
the ACHD clinic, mental capability and ability to provide informed consent. Blood samples
were not collected during pregnancy. Blood samples and clinical data were assessed serially
at each clinically indicated visit such that some patients had multiple samples and multiple
clinical assessments. Due to heterogeneous periods between visits, there was no defined
time between repeated samples. Twenty-six control samples were identified from among
previously collected healthy volunteer samples who were free of chronic disease and took
no medications.

4.2. Clinical Data Acquisition

Clinical data were obtained from the enrolling site clinical database and biobank.
This database includes both data abstracted from the electronic health record for each
patient and clinical status directly assessed at the time of each visit. This dataset included
the following variables: Demographics: Age, race, ethnicity, gender, years of education,
highest degree, occupation annual income; health history: Tobacco use, pregnancy history,
arrhythmia history and type, arrhythmia ablation, pacemaker type, implantable cardiac
defibrillator, ACHD lesion type, cardiac surgery type, vascular surgery type, noncardiac
surgery type, noncardiac diagnosis type, Eisenmenger syndrome, hypertension, diabetes
mellitus, dyslipidemia, renal disease, dialysis, stroke, peripheral vascular disease; med-
ications: Medication identity, dose, indication, frequency, start and stop dates; family
health history; cardiac function: Right ventricular systolic function, left ventricular systolic
function, valvular function (for all cardiac functional assessments mode of assessment
and date were obtained); clinical characteristics and outcomes: Hospitalization including
discharge diagnosis, transplantation, ventricular assist device implant, death; cardiac func-
tional parameters: > moderate left ventricular systolic dysfunction (LV ejection Fraction <
40%), > moderate right ventricular systolic dysfunction, > moderate valvular dysfunction
(stenosis or regurgitation); vital signs: Blood pressure, heart rate, oxygen saturation on
room air or on supplemental oxygen; ACHD Patient Reported Outcome (PRO) score:
ACHD disease-specific health status questionnaire. Physiologically similar patients were
then grouped together to ensure adequate feature counts for analysis. These groups in-
cluded: Systemic right ventricle (SRV), right ventricular outflow tract (RVOT) lesions
including Tetralogy of Fallot (TOF) and double outlet right ventricle (DORV; excluding
Taussig–Bing anomaly), septal defects (SD), single ventricle/Ebstein’s anomaly (SV) and
other (left ventricular outflow tract stenosis, hypertrophic cardiomyopathy, aortopathy or
coronary anomalies). All data were collected in a REDCap database. Any variable with >
50% missingness was excluded from further analysis. Patient characteristics and clinical
profiles are reported as means with standard deviation, median with interquartile range and
frequencies as appropriate.

4.3. Biological Sample Acquisition and Metabolite Quantification

From participants who consented to contribute blood samples for research, about
30 mL of whole blood was collected in serologic vacuum evacuated tubes (1 EDTA (10 mL)
and 2 lithium-heparin (20 mL)) at the initial and follow-up visits. Each follow-up visit took
place at different time point in ACHD clinic as part of routine clinical care or at the time of
admission to the hospital for heart-related invasive or surgical procedures. A blood draw
was not performed on participants who refused at any time or who had become pregnant.
Within 1 h of sample collection, tubes were spun in a hematologic centrifuge for 15 min
to separate plasma from blood cells. Plasma was then aspirated from the cells using a
transfer pipette and divided into aliquots in labeled 2 ml screw-top freezer tubes. To ensure
de-identification of samples, an alphanumerical code was assigned to each patient’s sample.
Samples were stored immediately after aliquoting in an onsite −20 degree Celsius freezer
and then transferred weekly to a −80 degree Celsius freezer in the Center for Metabolomics
at Baylor Scott and White Research Institute, Dallas, TX, for longer term storage.
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Targeted metabolomic analysis was performed using the MxP® Quant 500 metabolomic
kit (Biocrates Life, Sciences AG, Innsbruck, Austria) according to the manufacture’s proto-
col for a 5500 QTrap (Sciex Framingham, MA, USA) mass spectrometer equipped with an
electrospray ionization source using liquid chromatography tandem mass spectrometry
(LC-MS/MS) and flow-injection analysis tandem mass spectrometry (FIA-MS/MS). This
commercially available platform can detect and quantify 674 metabolites and metabolic
indicators that cover 23 different classes of compounds. Pre-processing and analysis of
plasma samples was performed in a 96 well plate supplied with the kit which contained
calibration standards and spiked human quality control plasma at 3 different levels. Identi-
fication of compound mass spectra was performed using Analyst 6.0 (Sciex, Framingham,
MA, USA). Data was exported and uploaded to MetIDQ software (Biocrates Life Sciences
AG, Austria) for quantification from internal standards and calibration curves. The entire
set of samples for this study required 4 plates and data was normalized across each plate
using the median of QC level 2 (4 replicates/plate × 4 plates). In addition, we used an
add-on software tool, MetaboINDICATOR™ (Biocrates Life Sciences AG, Austria), to cal-
culate metabolite sums and ratios that are associated with specific pathways. This analysis
potentially provides 232 metabolic indicators.

4.4. Metabolic Data Preprocessing

Metabolites that were below the limit of detection were replaced by the lower limit
of detection for the assay divided by 2. Correction for batch effect in the measurement of
metabolite concentration was done using the ComBat package on R.

4.5. Statistical Analysis—Sample Selection

In order to build the study cohort, we first identified available samples and paired
them to clinic visits. Given that there were more clinical evaluations than samples available,
a greedy matching algorithm without replacement was used to match available samples to
a clinical evaluation within a 1-month period; this threshold was selected because it maxi-
mized the number of samples available for analysis while minimizing the time lag between
sample collection and acquisition of clinical data. Some patients had > 1 sample avail-
able for analysis, in those cases, the earliest available pair of clinical assessment/sample
for each patient (to prevent variations specific to an individual patient from being over-
represented), was used to compare metabolite concentration between the various ACHD
diagnostic groups and controls, all other analyses included all available samples with
proper statistical adjustments for repeated measures in a single patient (described below).

4.6. Comparisons of Metabolic Profiles and Identification of Metabolic Pathways

Comparison of metabolite levels between ACHD and control, between the various
ACHD groups and between ACHD patients with and without outcomes of interest was
accomplished by calculating the fold difference between groups for each metabolite and
statistical significance using Student’s t-test. These results were used to construct repre-
sentative Volcano plots using the EnhancedVolcano package on R. To facilitate metabolite
comparisons between the various diagnostic groups we calculated the normalized dif-
ference in metabolite concentrations between the various types of ACHD and healthy
control patients along with 95% confidence limits and reported those graphically. Specific
metabolites selected for this analysis included all metabolites for which the difference
between ACHD patients and control or between at least one of the diagnostic groups and
control was statistically significant using a false discovery rate of 5% (Benjamini-Hochberg
method). For metabolic pathway analyses, we included all metabolites that were differen-
tially expressed with a p-value of 0.05 or less and for which an HMDB ID was available.
Pathway analyses were performed using the MetaboAnalyst tool [33] using the hypergeo-
metric test for over-representation analysis and relative-betweeness centrality for pathway
topology analysis. The October 2019 version of the KEGG was used as the pathway library.



Metabolites 2021, 11, 525 12 of 15

All impacted pathways (p-value < 0.05) identified in those analyses are reported along with
the associated false discovery rate threshold.

4.7. Principal Component Analysis

In order to determine the association between metabolite concentration, patient char-
acteristics and outcomes, principal component analysis was performed on all metabolites
in the ACHD patient group. First, metabolite concentrations were normalized (scaled and
centered). Based on an examination of the scree plot of the principal component loads,
the first 4 components (respectively explaining 30%, 9%, 5% and 4% of the variance) were
retained for further analysis. Metabolic pathway profiling for each principal component
was conducted using the top 50 contributing metabolites in each principal component.

4.8. Association between Clinical Variables and Metabolic Profiles

We next investigated the association between metabolite concentrations and an array
of clinical variables including: O2 saturation <95%, history of arrhythmia, general cardiac
dysfunction (defined as LV ejection Fraction <40%, moderate or greater right ventricular
systolic dysfunction or at least moderate valvular dysfunction of any valve), specific right
ventricular (RV) dysfunction (defined as moderate or greater RV systolic dysfunction or
moderate or greater tricuspid or pulmonary valve dysfunction), baseline shortness of
breath, exertional shortness of breath, an ACHD disease specific patient-reported outcome
metric (summary score and scores in each domain as previously published [34] and self-
reported health-related quality of life (based on a single item patient-reported outcome
question).

In order to investigate the association between the different principal components
and clinical variables, we used linear (continuous variables) and logistic (binary variables)
regression models, adjusted for repeated measures through either an independent or
exchangeable (based on the model QIC) covariance structure as appropriate. All models
were built in a stepwise fashion (p < 0.05 to enter/remain). Potential factors included all
principal components scores along with the following clinical covariates: Sex, race, age,
diagnosis, presence of a non-cardiac diagnoses, hypertension, diabetes, dyslipidemia and
medications. A full list of patient medications for each patient will be made available
upon request. Mean imputation was used for missing clinical covariates. A second version
of these regression models was created in which the top metabolic compounds for each
clinical variable, as determined based on statistical significance (p < 0.01) and fold difference
(FD: 0.80/1.25) were included as candidate features. In order to facilitate feature selection
we used a bootstrap resampling approach to first identify features with high reliability.
In short, bootstrap resampling is a strategy where a number of subsamples (in this case
500 samples including between 20 and 80% of the total observations) are randomly drawn
from the original cohort and a regression model is fitted to the specific subsample. The
percentage of subsamples in which a specific feature is included in the final multivariable
model for a given subsample is called the reliability score and features with scores >50%
are considered highly reliable. For this analysis, only highly reliable features were potential
candidates for inclusion in the regression models, Supplementary Materials Table S1.
Model features and building strategies were otherwise similar to the models including
only the principal components and clinical covariates as potential features.

All analyses were performed using R v3.6.1 [35] with the stats and mlbench packages
along with the other packages mentioned above and SAS (Cary, NC, USA) v9.4 using
standard procedures. Figures were created using GraphPad 6 (San Diego, CA, USA).

5. Conclusions

We have identified metabolomic differences between ACHD and non-ACHD individu-
als, and have described metabolic variations in the ACHD population which correlate with
cardiac function and health status. We anticipate that these data will lead to new avenues
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for research in the field with the goal of identifying the mechanisms underlying disease
progression in ACHD and informative biomarkers to guide therapeutic intervention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11080525/s1, Table S1: Final multivariable regression models assessing the association
between principal components loads, individual metabolites and adverse cardiac characteristics and
outcomes, Table S2: Patient clinical status at the time of sample collection, Table S3: Non-cardiac
diagnoses. Each space includes all non-cardiac diagnoses for each of the 71 patients in whom a
non-cardiac diagnosis was present, Table S4: Significantly impacted pathways stratified by diagnoses,
Figure S1: Volcano plots for differential expression of metabolites between controls and patients with
ACHD, stratified by type of diagnosis, Figure S2: Principal cluster analysis plot in 3 dimensions,
Figure S3: Volcano plots for differential expression of metabolites between patients with and without
various clinical characteristics and outcomes.
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