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Abstract: Cardiorespiratory fitness (CRF) represents a strong predictor of all-cause mortality and is 
strongly influenced by regular physical activity (PA). However, the biological mechanisms involved 
in the body’s adaptation to PA remain to be fully elucidated. The aim of this study was to 
systematically examine the relationship between CRF and plasma metabolite patterns in 252 healthy 
adults from the cross-sectional Karlsruhe Metabolomics and Nutrition (KarMeN) study. CRF was 
determined by measuring the peak oxygen uptake during incremental exercise. Fasting plasma 
samples were analyzed by nuclear magnetic resonance spectroscopy and mass spectrometry 
coupled to one- or two-dimensional gas chromatography or liquid chromatography. Based on this 
multi-platform metabolomics approach, 427 plasma analytes were detected. Bi- and multivariate 
association analyses, adjusted for age and menopausal status, showed that CRF was linked to 
specific sets of metabolites primarily indicative of lipid metabolism. However, CRF-related 
metabolite patterns largely differed between sexes. While several phosphatidylcholines were linked 
to CRF in females, single lyso-phosphatidylcholines and sphingomyelins were associated with CRF 
in males. When controlling for further assessed clinical and phenotypical parameters, sex-specific 
CRF tended to be correlated with a smaller number of metabolites linked to lipid, amino acid, or 
xenobiotics-related metabolism. Interestingly, sex-specific CRF explanation models could be 
improved when including selected plasma analytes in addition to clinical and phenotypical 
variables. In summary, this study revealed sex-related differences in CRF-associated plasma 
metabolite patterns and proved known associations between CRF and risk factors for 
cardiometabolic diseases such as fat mass, visceral adipose tissue mass, or blood triglycerides in 
metabolically healthy individuals. Our findings indicate that covariates like sex and, especially, 
body composition have to be considered when studying blood metabolic markers related to CRF. 
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1. Introduction 
Cardiorespiratory fitness (CRF) is a health-related component of physical fitness (PF) 

[1], reflecting the ability of the circulatory, respiratory, and muscular systems to take up, 
transport, and utilize oxygen during sustained physical exercise (PE) [2]. It is affected by 
sex [3,4], age [4,5], lean body mass (LBM) [6], heredity [7], and behavioral factors like diet, 
smoking, or physical activity (PA) [4]. Actually, CRF is not only an objective measure of 
regular PA [8] but has also emerged as a strong predictor of all-cause and disease-specific 
mortality [9]. Representing the main modifiable determinant of CRF, regular PA is known 
to favorably influence body composition and glucose-insulin homeostasis, as well as the 
lipoprotein profile [8]. At the muscular level, beneficial adaptations to PA comprise an 
increased capillarization, a higher mitochondrial density, and enhanced oxidative 
metabolism, finally leading to an improved endurance capacity [10]. However, despite 
profound knowledge on the health-promoting benefits of PA, the molecular mechanisms 
and metabolic pathways involved in the whole-body and skeletal muscle adaptation to 
PA are still insufficiently understood [11]. 

The emerging field of metabolomics is a promising approach to systematically 
investigating exercise-induced changes in human metabolism related to performance and 
health [12]. By applying nuclear magnetic resonance (NMR) spectroscopy- or mass 
spectrometry (MS)-based techniques, metabolomics permits the simultaneous analysis of 
a high number and variety of metabolites, i.e., low-molecular-weight compounds, that 
represent the end-products of interactions between genes, proteins, and the cellular 
environment [13]. Thus, metabolomics can help to identify PA- or PF-associated 
metabolite profiles, possibly hinting at metabolic pathways that are linked to the well-
known effects of exercise [12]. 

Interestingly, recent metabolomic studies have provided the first evidence that 
higher levels of PA or PF are linked to lower circulating branched-chain amino acid (AA) 
[14–17] and higher circulating phosphatidylcholine (PC) concentrations [18–21]. 
However, research on the relationship between CRF and the blood metabolome in large 
populations, including both sexes and with a broad age spectrum, is rather scarce. In fact, 
only half of the studies that assessed maximal oxygen uptake (VO2max) as the gold standard 
of aerobic fitness conducted correlation or regression analyses [17,19,20,22,23], while the 
other half examined differences between groups with high or low CRF [15,18,21,24]. 
Limitations of the former studies are that the results were restricted to young [17,22], 
middle-aged [19,20], or older [23] individuals and are thus hardly transferable to the 
general population. Besides, studies either had rather small sample sizes [22,23] or solely 
included male subjects [17]. Apart from Lustgarten et al., who detected nearly 300 serum 
analytes [22], the remaining studies focused on a limited number of metabolites. Since 
several CRF-associated metabolites that were reported in the literature have also been 
linked to other phenotypical variables such as body composition, adjustments for 
potential confounders are decisive to determine if correlations can be specifically 
attributed to CRF [25]. 

As a way of overcoming those limitations, we applied a multi-platform metabolomics 
approach and exploratory bi- and multivariate statistical procedures to systematically 
analyze the relationship between CRF and 427 plasma metabolites in 252 healthy women 
and men from the cross-sectional Karlsruhe Metabolomics and Nutrition (KarMeN) 
study. Participants had a wide age range and were thoroughly characterized by 
anthropometric, functional, and clinical examinations [26]. Therefore, we were able to take 
a variety of known and potential confounders into account. Since it has already been 
shown that sex, age, and menopausal status are determinants of CRF [4,27] and are also 
linked to a discriminatory plasma metabolite profile in the KarMeN participants [28], all 
analyses were conducted in sex-specific subgroups and adjusted for age and menopausal 
status. Firstly, both bi- and multivariate associations between CRF and metabolites were 
calculated, using bivariate correlation or partial least squares (PLS) regression analyses, 
respectively. Secondly, to identify associations that were independent of other 
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phenotypical or clinical variables, correlation analyses and PLS models were additionally 
adjusted for parameters related to body composition, clinical blood biochemistry, lung 
and arterial function, short-term and habitual PA, or diet. Thirdly, cross-validated 
stepwise regression procedures were conducted, thus selecting sets of phenotypical, 
clinical, and plasma metabolite variables that contribute to a preferably good explanation 
of CRF. 

2. Results 
2.1. Metabolomics Data 

427 plasma analytes were included in the final data analysis. Untargeted methods 
yielded 234 analytes, of which 43 (18.4%) could be identified with sufficient certainty. 193 
analytes were derived from targeted analyses and were thus known a priori. Of the 236 
identified metabolites, most belonged to lipid metabolism (69.5%) and AA metabolism 
(17.4%), followed by xenobiotics-related metabolism (5.1%), mammalian-microbial 
cometabolism (3.0%), carbohydrate or energy metabolism (each 2.1%), and nucleotide or 
cofactors and vitamins metabolism (each 0.4%). The classification of the identified 
metabolites to both major and specific metabolic pathways is provided in Table S1. 

2.2. Basic Characteristics of Study Participants 
The study sample consisted of 252 healthy individuals, 150 males (M, 59.5%) and 102 

females (F, 40.5%), with a mean age of 45.9 ± 17.1 years and a mean peak oxygen uptake 
(VO2peak) of 38.9 ± 11.7 mL kg−1 min−1. The characteristics of participants are presented 
according to sex-specific VO2peak quarters (Figure 1). In the radar plots, the respective 
means of the lowest VO2peak quarter (1st q) were used as a reference value and the means 
of the other quarters (2nd q, 3rd q and 4th q) were related to the means of the first quarter. 
The absolute means, standard deviations, and respective units are provided in File S1. 

 
Figure 1. Radar plots visualizing the basic characteristics of KarMeN participants according to sex-specific VO2peak 
quarters. The means of the 1st q were used as reference values to the means of the 2nd, 3rd and 4th q. * : significant 
differences between quarters according to the Welch ANOVA. °: n = 23 (1st q), n = 25 (2nd q); ⱽ: n = 36 (1st q); ⱽⱽ: n = 35 
(1st q), n = 37 (2nd q). AEE: activity energy expenditure; BMC: bone mineral content; BMI: body mass index; BP: blood 
pressure; dia: diastolic; FEV1: forced expiratory pressure in one second; FM: fat mass; Hb: hemoglobin; HDL: high-density 
lipoprotein; HEI-NVS: Healthy Eating Index (modified version); HRrest: resting heart rate; LBM: lean body mass; LDL: low-
density lipoprotein; MET: metabolic equivalent of task; PWV: pulse wave velocity; q: quarter; sys: systolic; TGs: 
triglycerides; VATM: visceral adipose tissue mass; VCmax: maximal vital capacity; VO2peak: peak oxygen uptake. 
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In both females and males, there were statistically significant differences between 
VO2peak-related quarters with regard to age, weight, body mass index (BMI), fat mass (FM 
(%)), and visceral adipose tissue mass (VATM (in kg)). Furthermore, differences for 
clinical parameters like fasting blood glucose, HbA1c, triglycerides (TGs), high-density 
lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, systolic and diastolic 
blood pressure (BP), pulse wave velocity (PWV), maximal vital capacity (VCmax), and 
forced expiratory pressure in one second (FEV1) were observed across the quarters of the 
sex-specific VO2peak. In females, additional differences between VO2peak-related quarters 
could be observed for height and the total metabolic equivalent of task (MET), while in 
males, differences were detected for LBM, resting heart rate (HRrest), and the activity 
energy expenditure (AEE). The menopausal status in women also significantly differed 
between VO2peak quarters, with increasing ratios of pre- to post-menopausal women from 
the 1st q to the 4th q (see File S1 (Table S1)). As the non-modifiable factors age and 
menopausal status were associated with the sex-specific VO2peak, and since they have 
already been shown to determine plasma metabolite patterns in KarMeN subjects [28], 
these variables were treated as confounders in all subsequent analyses. 

2.3. Sex-Specific Relationship between CRF and Phenotypical/Clinical Variables 
To examine sex-specific relations between the VO2peak and selected phenotypical as 

well as clinical variables, correlations adjusted for age (and menopausal status in females) 
were calculated. A visual comparison of the pairwise correlations in women and men is 
provided in Figure 2. After adjustments for the above-mentioned confounding factors, the 
VO2peak in females showed positive correlations with HDL cholesterol (r = 0.43) and 
negative correlations with the FM (%) (r = −0.61), VATM (r = −0.44), PWV (r = −0.38), and 
TGs (r = −0.33), that were all significantly different from zero. In males, not only HDL 
cholesterol (r = 0.29) but also the AEE (r = 0.20) showed positive correlations with the 
VO2peak. Compared to females, negative correlations to the VO2peak that were significantly 
different from zero were not only detected for the FM (%) (r = −0.62), VATM (r = −0.57), 
PWV (r = −0.32), and TGs (r = −0.25) but additionally for HRrest (r = −0.30), diastolic BP (r = 
−0.27), LDL cholesterol (r = −0.22) and insulin (r = −0.18). 

 
Figure 2. Confounder-adjusted sex-specific correlations between the VO2peak and phenotypical/clinical variables. * Pearson 
correlations were performed on Van der Waerden (VdW)-transformed data adjusted for age (and menopausal status in 
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females) and respective correlation coefficients (r; dots) and 95% confidence intervals (CIs; bars) are illustrated. AEE: 
activity energy expenditure; BMC: bone mineral content; BP: blood pressure; FEV1: forced expiratory pressure in one 
second; FM: fat mass; Hb: hemoglobin; HDL: high-density lipoprotein; HEI-NVS: Healthy Eating Index (modified 
version); HRrest: resting heart rate; LBM: lean body mass; LDL: low-density lipoprotein; MET: metabolic equivalent of task; 
PWV: pulse wave velocity; TGs: triglycerides; VATM: visceral adipose tissue mass; VCmax: maximal vital capacity. 

2.4. Sex-Specific Relationship between CRF and Plasma Metabolites 
2.4.1. Bivariate Association Analyses 

Correlation coefficients were calculated for the associations between the VO2peak and 
plasma metabolites, with adjustments for known confounders, i.e., age and menopausal 
status (*), and additionally for phenotypical and clinical variables (**). While a graphical 
overview of all sex-specific bivariate correlations is provided in File S2, computed values 
are provided in Table S2. The number of plasma metabolites with correlations to the 
VO2peak that were statistically significantly different from zero are shown, along with their 
categorization to major metabolic pathways (Table 1). The classification of VO2peak-
correlated plasma metabolites to both major and specific metabolic pathways is moreover 
visualized in pie charts (File S3). 

Table 1. The number of detected plasma metabolites, according to major metabolic pathways, and number of metabolites 
significantly correlating with the VO2peak, shown separately by sex. 

Pathway 
Total Number 

of Plasma 
Metabolites 

Number of Plasma Metabolites Correlating with the VO2peak 
Females (n = 102) Males (n = 150) 
* ** * ** 

All 427 125 59 112 24 
Lipid metabolism 164 63 27 36 8 
Amino acid metabolism 41 4 6 8 2 
Xenobiotics and related metabolism 12 2 2 4 1 
Mammalian-microbial cometabolism 7 2 0 1 0 
Carbohydrate metabolism 5 2 1 1 0 
Energy metabolism 5 3 1 2 0 
Cofactors and vitamins metabolism 1 1 0 0 0 
Nucleotide metabolism 1 0 0 0 0 
Unknown 191 48 22 60 13 

* confounder (age/menopausal status)-adjusted; ** additionally adjusted for 21 phenotypical/clinical variables. 

Confounder-adjusted correlation analyses revealed that 125 metabolites in females 
and 112 metabolites in males showed correlations with the VO2peak that were significantly 
different from zero. Overall, only a limited number of common correlations were ob-
served between the sexes, and generally stronger correlations could be found in the fe-
males. In women, 79 plasma metabolites were positively correlated with the VO2peak, 
among them 21 acyl-alkyl-phosphatidylcholine (PC ae) species (C44:3, C34:3, C42:4, C42:3, 
C42:2, C34:2, C40:3, C36:2, C44:6, C42:5, C36:3, C44:4, C42:1, C44:5, C40:5, C38:2, C40:4, 
C32:1, C32:2, C30:0, C40:1), 11 diacyl-phosphatidylcholine (PC aa) species (C42:2, C34:2, 
C36:2, C40:2, C42:0, C40:3, C42:4, C42:1, C28:1, C42:5, C36:3), sphingomyelin (SM) C16:0, 
lyso-phosphatidylcholine (lysoPC) C18:2, two acylcarnitines (C14:2, C10:2), the long-chain 
fatty acid (LCFA) C24:0, citrate, glyceric acid, acetate, and two unknown analytes, all 
demonstrating an r ≥ 0.25. The majority of the 46 negatively correlated metabolites in fe-
males were unknown, except for two LCFAs (C16:1 9cis, C18:1 11cis) with an r ≤ -0.25. In 
males, 33 plasma metabolites showed positive correlations with the VO2peak, including 
three lysoPCs (C18:2, C18:1, C17:0) and three unknown analytes with an r ≥ 0.25. Similar 
to females, most of the 79 negatively correlated metabolites in males remained unknown. 
Only two SMs (C18:0, C18:1) and diacyl-PC C40:6 with an r ≤ −0.25 could be identified. 
Overall, PCs largely showed weak to moderate positive correlations in females, whereas 
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most PCs in males were either not or slightly negatively linked to the VO2peak. Significant 
bivariate correlations with the same directions in both sexes were observed for lysoPC 
C18:2 (F: r = 0.30; M: r = 0.34), glyceric acid (F: r = 0.29; M: r = 0.21), acetate (F: r = 0.26; M: 
r = 0.19), succinic acid (F: r = 0.24; M: 0.20), malic acid (r = 0.21; M: r = 0.22), and the LCFA 
C16:1 9cis (F: r = −0.32; M: r = −0.20), in addition to several unknown analytes with mainly 
negative correlations to the VO2peak in both women and men (Table S2; File S2). 

After additionally adjusting for phenotypical and clinical variables, 59 metabolites 
(0.20 ≤ |r| ≤ 0.39) in females and 24 metabolites (0.16 ≤ |r| ≤ 0.25) in males still exhibited 
weak to moderate correlations with the VO2peak that were significantly different from zero. 
The majority of the VO2peak-related plasma metabolites in both females and males 
belonged to lipid metabolism, followed by AA metabolism and xenobiotics and related 
metabolism. However, only a few correlations with the same directions in both sexes were 
detected (e.g., U1.156). The top 10 of sex-specific positive and negative partial correlations 
between the VO2peak and plasma metabolites are summarized in Table 2. 

Table 2. Top 10 of sex-specific partial correlations between the VO2peak and plasma metabolites. 

 
Positive Correlations Negative Correlations 

Variables r (95% CIs) Variables r (95% CIs) 
Females     

1 PC ae C40:3 0.37 (0.19; 0.53) U3.961 −0.39 (−0.55; −0.22) 
2 PC ae C42:4 0.31 (0.13; 0.48) U3.956 −0.32 (−0.49; −0.14) 
3 C5-Carnitine 0.31 (0.12; 0.47) U3.950 −0.31 (−0.48; −0.12) 
4 PC ae C38:3 0.28 (0.09; 0.45) U4.252 −0.31 (−0.47; −0.12) 
5 Choline 0.27 (0.08; 0.44) U3.971 −0.31 (−0.47; −0.12) 
6 Glyceric Acid 0.27 (0.08; 0.44) U0978 −0.30 (−0.46; −0.11) 
7 U0856 0.27 (0.08; 0.44) U0975 −0.28 (−0.45; −0.09) 
8 PC ae C36:2 0.26 (0.07; 0.44) U2.656 −0.28 (−0.45; −0.09) 
9 Acetylornithine 0.26 (0.07; 0.43) U1.156 −0.28 (−0.45; −0.09) 

10 PC ae C44:3 0.26 (0.07; 0.43) U3.060 −0.26 (−0.43; −0.07) 
Males     

1 U0130 0.19 (0.03; 0.34) U2.250 −0.25 (−0.39; −0.09) 
2 Alanine 0.18 (0.02; 0.33) U2.822 −0.21 (−0.36; −0.05) 
3 C6 (C4:1-DC)-Carnitine 0.18 (0.02; 0.33) U (Sugar-like 4) −0.21 (−0.36; −0.05) 
4 U2.910 0.18 (0.02; 0.33) U1331 −0.21 (−0.36; −0.05) 
5 PC aa C36:3 0.18 (0.02; 0.33) Tartaric acid −0.21 (−0.36; −0.05) 
6 U3.385 0.17 (0.01; 0.32) U1.156 −0.20 (−0.35; −0.04) 
7 Glutamate 0.17 (0.01; 0.32) U0.936 −0.19 (−0.34; −0.03) 
8 - - U1.159 −0.19 (−0.34; −0.03) 
9 - - U1.166 −0.19 (−0.34; −0.03) 

10 - - PC ae C38:6 −0.18 (−0.33; −0.02) 
Pearson correlations were performed on Van der Waerden (VdW)-transformed data and results of partial correlations 
adjusted for age, menopausal status, and further phenotypical/clinical variables are presented. Pearson correlation 
coefficients (r) and the lower and upper limit of the 95% confidence intervals (CIs) are rounded to two decimal places. |r| 
≥ 0.25 are indicated in bold. PC aa: diacyl-phosphatidylcholine; PC ae: acyl-alkyl-phosphatidylcholine; U: unknown. For 
unknown NMR-analytes, the chemical shift of the lower bucket border is indicated in ppm. 

In females, the top 10 positively correlated plasma metabolites included five acyl-
alkyl-PCs (C40:3, C42:4, C38:3, C36:2, C44:3), acylcarnitine C5, choline, glyceric acid, and 
acetylornithine, while the top 10 negatively correlated plasma metabolites were unknown 
analytes. In males, only seven plasma metabolites were positively correlated with the 
VO2peak, namely two AAs (alanine, glutamate), acylcarnitine C6 (C4:1-DC), diacyl-PC 
C36:3, and three unknown analytes. The top 10 negatively correlated plasma metabolites 
in males comprised eight unknown analytes, the xenobiotic tartaric acid and acyl-alkyl-
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PC C38:6. Sex-related differences in the direction of the relations were obvious for tartaric 
acid (F: r = 0.23; M: r = −0.21), diacyl-PC C42:1 (F: r = 0.23; M: r = −0.18), U2.250 (F: r = 0.11; 
M: r = −0.25), C5-carnitine (F: r = 0.31; M: r = −0.05), and alanine (F: r = −0.19; M: r = 0.18). 
While several PCs still showed weak to moderate positive correlations in females, single 
PCs in males tended to be slightly negatively linked to the VO2peak (Table S2; File S2). 

2.4.2. Multivariate Association Analyses 
The multivariate association between the VO2peak and all 427 plasma analytes was 

assessed based on rank products obtained in cross-validated PLS models. Rank products 
were calculated by the geometric mean of the ranks of the regression coefficients of each 
metabolite in PLS models, across 20 random splits. For each metabolite variable, the 
importance of its contribution to the multivariate association was determined by 
permutation tests (see Section 4.7 (ii) for more details). A graphical overview of all sex-
specific associations is provided in File S2. In Table S2, metabolites are listed together with 
their rank products of contribution to multivariate associations. Regarding females, PLS 
analysis showed that metabolites highly contributing to the confounder-adjusted 
multivariate association with CRF included several diacyl- and acyl-alkyl-PCs, the LCFA 
C16:1 9cis, as well as a number of unknowns. In males, metabolites with high 
contributions to the multivariate association comprised specific lysoPCs (C18:2, C18:1, 
C17:0), SMs (C18:0, C18:1), and diacyl-PC C40:6 next to unidentified analytes, when 
adjusting for age. As opposed to confounder-adjusted multivariate association analyses, 
the mean of the root mean square errors (RMSEs) based on the test samples was not 
always higher in the permutations than by using the original data, if additionally 
controlling for phenotypical and clinical variables (File S4). Consequently, the 
multivariate relationship between CRF and all 427 plasma analytes lost importance after 
applying additional adjustments. 

To visualize the sex-specific association patterns of plasma metabolites, the results of 
both bi- and multivariate association analyses were combined in a volcano plot (see Figure 
3 for confounder-adjusted findings (*) and File S5 for confounder- and 
phenotypical/clinical variables-adjusted findings (**)). In the upper right and left corners, 
metabolites with moderate (|r| ≥ 0.25) bivariate correlations and significant contributions 
to multivariate associations are detectable. Metabolites in the upper middle region 
showed weak (|r| ≤ 0.25) bivariate correlations but significant contributions to 
multivariate associations, i.e., their relationship with the VO2peak depended on all other 
considered analytes. In contrast, the lower right and left corners include metabolites with 
moderate bivariate correlations but no relevant contributions to multivariate associations, 
i.e., their relationship with the VO2peak lost relevance if other metabolite variables with 
possibly redundant information were taken into account. For a subsequent metabolic 
interpretation of CRF-related metabolite patterns, plasma metabolites with either relevant 
bivariate correlations (|r| ≥ 0.25) or significant contributions to multivariate associations 
were considered (Figure 4). 
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Figure 3. Volcano plots illustrating sex-specific plasma metabolite patterns associated with the VO2peak. F: females; M: males. * 
confounder (age/menopausal status)-adjusted. The y-axis represents the significance of the contribution of each metabolite variable 
to the multivariate association with the VO2peak, expressed as the negative logarithm of the relative frequencies of permutation-
obtained rank products below measured rank products. The x-axis illustrates the direction and strength of partial correlations 
between the VO2peak and metabolite variables, expressed as Pearson correlation coefficients (r) of Van der Waerden (VdW)-
transformed variables. The classification of plasma analytes to major metabolic pathways is color-coded as follows: amino acid 
metabolism (dark blue); carbohydrate metabolism (yellow); cofactors and vitamins metabolism (dark green); energy metabolism 
(light blue); lipid metabolism (brown); mammalian-microbial cometabolism (orange); nucleotide metabolism (purple); xenobiotics 
and related metabolism (light green); unknown (black). 
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Figure 4. Classification of relevant CRF-associated plasma metabolites to major and specific metabolic pathways. Top: 
females; bottom: males. Major metabolic pathways are color-coded as follows: amino acid metabolism (dark blue); 
carbohydrate metabolism (yellow); energy metabolism (light blue); lipid metabolism (brown). * findings from confounder 
(age/menopausal status)-adjusted bi-/multivariate association analyses; ** findings from bivariate association analyses 
additionally adjusted for phenotypical/clinical variables. CRF: cardiorespiratory fitness; PC: phosphatidylcholine; SM: 
sphingomyelin. Metabolites with bivariate correlations to CRF that were significantly different from zero in both females 
and males are indicated in bold. 

2.4.3. Multiple Regression Analyses 
To additionally investigate the sex-specific relationship between the VO2peak and 

selected metabolite variables in the presence of phenotypical and clinical data, multiple 
linear regression analyses were performed. By adjusting all included variables for age and 
menopausal status, the examined associations were independent of these non-modifiable 
variables. As described in the methods section, sex-specific models were calculated based 
on three different sets of phenotypical, clinical, and metabolite variables. The results of 
the cross-validated stepwise regression analyses are presented in Table S3. 

Finally, the most suitable combination of phenotypical, clinical, and metabolite 
variables for a preferably good explanation of the VO2peak was selected. The included 
variables (“approach 1–3 selection”) and the adjusted coefficients of determination (R2 
(adjusted)) for the evaluation of the sex-specific final models are summarized in Table 3. 
With regard to approach 1 selection, seven phenotypical or clinical variables were selected 
for the final model of females, resulting in an R² (adjusted) of 0.40. For the final model of 
males, six phenotypical or clinical variables were selected, leading to an R2 (adjusted) of 
0.43. When including all 21 phenotypical and clinical variables, an R2 (adjusted) of 0.36 for 
women and an R2 (adjusted) of 0.39 for men was obtained (see Table S3). With approach 
2, the added value of plasma metabolites for explaining the confounder-adjusted VO2peak 
in the presence of all 21 phenotypical and clinical variables was considered. 

Nine or ten metabolites, respectively, were additionally selected for the final models, 
leading to a comparatively higher performance in both sexes (F: R2 (adjusted) = 0.72; M: 
R2 (adjusted) = 0.62). Contrary to approach 2, both phenotypical and clinical parameters, 
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as well as metabolite variables, entered the model in a competing stepwise manner in 
approach 3. Actually, FM (%) was the only phenotypical/clinical variable being included 
in the final models of both sexes. In females, nine plasma analytes were additionally 
selected, resulting in an R2 (adjusted) of 0.68. In males, eight plasma analytes completed 
the model which finally showed an R2 (adjusted) of 0.59. In summary, approach 2, as well 
as approach 3, selection demonstrated an improved performance in both sexes, compared 
to the initial models solely based on phenotypical/clinical variables. While the acyl-alkyl-
PC C40:3 was present in the females’ final models for both approaches 2 and 3, diacyl-PC 
C36:3, malic acid, as well as glutamate, were selected for the final models of males. 

Table 3. Summary of sex-specific final models for the confounder-adjusted VO2peak. 

Model Females (n = 102) Males (n = 150) 

Approach 1 
Selection 

R² (adjusted) = 0.40 
FM (%), HDL cholesterol, LBM, PWV, Hb, BP 
systolic, BP diastolic 

R² (adjusted) = 0.43 
FM (%), HDL cholesterol, BMC, AEE, TGs, LDL 
cholesterol 

Approach 2 
Selection 

R² (adjusted) = 0.72 
All phenotypical/clinical variables + PC ae 
C40:3, U3.961, S-Methylcysteine, Tartaric acid, 
U1.148, Serine, C24:0, Kynurenine, U0992 

R² (adjusted) = 0.62 
All phenotypical/clinical variables + PC aa C36:3, 
U0130, Tartaric acid, C6 (C4:1-DC)-Carnitine, C14:1-
OH-Carnitine, U2.250, Malic acid, Glutamate, C24:0, 
U1.226 

Approach 3 
Selection 

R² (adjusted) = 0.68 
FM (%), PC ae C40:3, myo-Inositol, U0975, 
U3.961, U7.294, Glycine, U2.313, Lysine, C18:1-
Carnitine 

R² (adjusted) = 0.59 
FM (%), Malic Acid, Taurocholate, PC aa C36:3, 
U0130, PC aa C36:6, Glutamate, U(Similar to Uracil), 
U1.226 

Variables were selected based on the results of the stepwise regression analyses and included in sex-specific final models. 
All variables were Van der Waerden (VdW)-transformed and adjusted for age (and menopausal status in females). 
Selected metabolite variables are indicated in italics. Approach 1: only phenotypical/clinical variables (n = 21) were 
stepwise selected; approach 2: all phenotypical/clinical variables (n = 21) were included and only plasma metabolite 
variables (n = 427) were stepwise selected; approach 3: phenotypical/clinical variables (n = 21) as well as plasma metabolite 
variables (n = 427) were stepwise selected. AEE: activity energy expenditure; BMC: bone mineral content; BP: blood 
pressure; FM: fat mass; Hb: hemoglobin; HDL: high-density lipoprotein; LBM: lean body mass; LDL: low-density 
lipoprotein; PC aa: diacyl-phosphatidylcholine; PC ae: acyl-alkyl-phosphatidylcholine; PWV: pulse wave velocity; R2 
(adjusted): adjusted coefficient of determination; TGs: triglycerides; U: unknown. 

3. Discussion 
The major finding of our systematic association analyses is that the VO2peak was 

related to sex-specific sets of plasma metabolites that primarily belong to lipid 
metabolism. However, the observed correlations were rather moderate, and, 
independently of other clinical or phenotypical variables considered, only a small number 
of metabolites were significantly correlated with CRF. Multiple regression analyses 
revealed that models explaining the sex-specific VO2peak could be improved when 
including selected plasma metabolites in addition to clinical and phenotypical 
parameters. For a metabolic interpretation of CRF-related metabolite patterns, a graphical 
overview of identified metabolites with relevant bivariate correlations (|r| ≥ 0.25) or 
significant contributions to multivariate associations with CRF and their pathway 
classification is provided in Figure 4. 

Apart from detecting bi- and multivariate associations between CRF and plasma 
metabolites, which are discussed in the following sub-sections, we were also able to prove 
well-known relationships between CRF and several health-related clinical or phenotypical 
variables [4] in the KarMeN population. After correcting for age and menopausal status, 
we confirmed previous studies showing that CRF correlated negatively with the FM (%) 
[29], VATM [30], PWV [31], and TGs [32,33] and positively with HDL cholesterol [32,33] 
in both females and males. Equally consistent with the literature, but only present in men, 
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were negative correlations of the age-adjusted VO2peak with the HRrest [5], diastolic BP 
[29,32], LDL cholesterol [34], and insulin [5]. In summary, our data provide evidence that 
even in a study sample consisting of metabolically healthy individuals and independent 
of age, individuals with higher CRF generally demonstrated lower values of clinical 
parameters, some of which are recognized as traditional risk factors for chronic metabolic 
or cardiovascular diseases. 

3.1. Sex-Specific Plasma Metabolite Patterns Related to CRF 
3.1.1. Age- and Menopausal Status-Adjusted Findings 

As shown by the results of age- and menopausal status-adjusted (*) correlation and 
PLS regression analyses, the CRF-related plasma metabolite pattern in females mainly 
comprised PCs, all of which were individually positively correlated with the VO2peak. PCs 
represent the most abundant phospholipid component in cellular membranes and plasma 
lipoprotein classes, being important for cell integrity or the assembly and stability of 
lipoproteins [35]. Besides, acyl-alkyl-PCs were proposed as antioxidants preventing 
lipoprotein oxidation [36]. Previous studies have reported lower levels of acyl-alkyl-PCs 
in obese or insulin-resistant individuals [36,37] and showed that specific acyl-alkyl-PCs 
were related to higher HDL cholesterol and a lower risk for type 2 diabetes [38]. In line 
with our results, Wientzek et al. demonstrated age- and sex-adjusted positive associations 
between CRF and several serum PCs in middle-aged adults [20]. Likewise, higher plasma 
levels of four acyl-alkyl-PCs were observed in adults with high CRF compared to less fit 
adults, when controlling for age and BMI [21]. While those relationships seemed to be 
independent of sex, associations between CRF and specific PCs in the KarMeN population 
were more pronounced in women than in men. 

With regard to men, age-adjusted association analyses revealed that the CRF-related 
plasma metabolite pattern was dominated by three lysoPCs (C18:2, C18:1, C17:0), all of 
which were positively linked to the VO2peak, and two SMs (C18:0, C18:1), which were 
negatively linked to the VO2peak. In fact, lysoPC C18:2 also showed a relevant positive 
correlation with CRF in females. LysoPCs represent hydrolysis products from PCs, with 
relevant roles for cell signaling. As a major component of oxidized LDL, lysoPCs are also 
supposed to regulate the pathophysiological processes underlying atherosclerosis [39]. It 
is noteworthy that saturated lysoPCs are assumed to exert pro-inflammatory effects, 
whereas polyunsaturated lysoPCs such as C18:2 do not seem to possess inflammatory 
properties [40]. Actually, circulating lysoPCs were found to be reduced in obese 
individuals [41], and in particular, lysoPC C18:2 has been linked to a lower risk for type 2 
diabetes [38] or cardiovascular disease [42]. As is consistent with our findings, Wientzek 
et al. showed positive correlations between CRF and serum lysoPCs C18:2 and C18:1, after 
controlling for sex and age. Thus, it is possible that lysoPC C18:2, in particular, might 
provide a potential link between CRF and its protective effects on chronic diseases. Our 
data moreover suggest a sex-dependent regulation of phospholipid metabolism in 
relation to CRF status. Although PC hydrolysis and lysoPC formation have been shown 
to be generally higher in men than in women (possibly due to differences in enzymatic 
activities, body composition, and/or hormonal or lifestyle factors [43]), the exact 
mechanisms underlying sex-related differences in CRF-associated phospholipids are 
largely speculative. However, we assume sex to be an important factor when studying 
how PC metabolism is linked to the health-beneficial effects of high CRF. In addition to 
lysoPCs, SMs are present in cell membranes or linked to lipoproteins [44]. Higher plasma 
SMs have been proposed as independent risk factors for cardiovascular diseases [45]. In 
particular, SMs with saturated acyl chains (C18:0 to C24:0) were closely correlated with 
parameters of obesity or insulin resistance [46]. As is consistent with our results, previous 
studies reported negative correlations between CRF and blood SM C18:0 [22,47] or SM 
C18:1 [20,47] in young [22] and middle-aged [20] adults or patients with coronary artery 
disease [47]. Despite sex-related differences, our findings indicate that even in healthy 
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individuals and across a broad age range, higher CRF tends to be associated with lower 
values of potential novel blood biomarkers of the pathophysiological processes 
underlying cardiometabolic diseases. 

Further relevant CRF-related plasma metabolites in females were two acylcarnitines 
(C14:2, C10:2), the LCFA C24:0, glyceric acid, acetate, and citric acid, all of which were 
positively linked to the VO2peak, and two LCFAs (C16:1 9cis, C18:1 11cis), which showed 
negative correlations with the VO2peak. Of those metabolites, palmitoleic acid C16:1 9cis 
also significantly contributed to the multivariate association with CRF. C16:1 9cis is an 
abundant fatty acid in human blood and adipose tissue. It can be ingested through diet or 
endogenously produced, and is assumed to act as a beneficial lipokine that prevents the 
negative effects of adiposity on insulin sensitivity [48]. Since circulating C16:1 9cis has 
been shown to be proportional to FM [48], the negative correlation between CRF and C16:1 
9cis might be explained by the generally lower FM (%) in fitter females. Acylcarnitines are 
intermediates in the transport of LCFAs to mitochondria or byproducts of β-oxidation 
[49]. Although blood acylcarnitines have been identified as markers of insulin resistance, 
mitochondrial overload, and incomplete fat oxidation [50], they are also physiologically 
elevated in conditions with high lipolytic rates [51]. Recently, it has been shown that a 
training-induced rise in fasting levels of muscular long- and medium-chain acylcarnitines 
(e.g., C14:2 and C10:2) were related to improved CRF and potentially reflective of a more 
robust carnitine buffering system [52]. Glyceric acid is a sugar acid that connects several 
pathways, e.g., glycerolipid metabolism and glycolysis/gluconeogenesis. Even if its 
biological relevance with regard to PE has, to our knowledge, not yet been described, 
Lustgarten et al. also demonstrated a positive association between CRF and circulating 
glyceric acid in healthy females [22]. Equally in line with our results, blood acetate was 
shown to be higher in physically active adults [14]. Acetate is either directly formed from 
pyruvate, providing a source for acetyl-coenzyme A [53], or can be produced by the 
intestinal microbiota, finally entering circulation [54]. It has been suggested that a higher 
PF is linked to a greater abundance of gut bacteria with positive health effects, being 
reflected in the release of fermentation metabolites like acetate [55,56]. In addition to its 
anti-inflammatory and vasodilatory properties [54], acetate has been proposed as an 
important energy substrate during endurance exercise in mice [57]. However, the extent 
to which the microbiome indeed affects the PE capacity in humans, and whether resting 
blood acetate might mirror this association, requires further investigation. While the 
tricarboxylic acid (TCA) cycle intermediate citric acid only showed a relevant positive 
correlation with the VO2peak in females, malic acid and succinic acid tended to be positively 
linked to CRF in both sexes. Previous studies revealed a rise in fasting plasma malic acid 
after weight loss and PE intervention in obese women [58], a training-induced increase in 
muscular succinic acid in subjects at risk of metabolic disease [52], or a slightly positive 
correlation between CRF and serum succinic acid in healthy young men [59]. Despite 
weak bivariate correlations, our results support the suggestion that specific TCA cycle 
intermediates might be potentially interesting blood markers of the beneficial effects of 
chronic PA occurring at a muscular level, such as an increased mitochondrial density or 
TCA cycle capacity. 

To conclude, we provided evidence of sex-specific CRF-associated plasma metabolite 
patterns after adjusting for age and menopausal status. Sex-related differences were 
especially observed for lipid metabolism-related PCs, which generally showed relevant 
associations with the VO2peak in females but not in males. However, weak to moderate 
correlations between CRF and lysoPC C18:2, LCFA C16:1 9cis, glyceric acid, as well as the 
energy or carbohydrate metabolism-related succinic acid, malic acid, or acetate, were 
observed in both sexes. Accordingly, our results suggest that CRF-related adaptations in 
glycerophospholipid metabolism might vary between sexes, whereas the consequences of 
a high CRF on, e.g., the TCA cycle seem to be present in females and males. 
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3.1.2. Age-, Menopausal Status- and Phenotypical/Clinical Variables-Adjusted Findings 
A higher CRF is generally concomitant with a healthier body composition, 

adaptations in heart and arterial function, or cardiometabolic risk parameters. Hence, we 
next aimed to identify metabolite patterns that were independent of further assessed 
phenotypical and clinical variables associated with CRF. When adjusting for potential 
covariates (**), a comparatively smaller number of metabolites were correlated with the 
VO2peak in both sexes. Thus, it can be suggested that many of the observed associations 
cannot be primarily and specifically attributed to CRF. As no relevant CRF-related 
information seemed to remain in the overall plasma metabolite profile, findings from PLS 
regression analyses are not further discussed. 

After applying additional adjustments, seven acyl-alkyl-PCs, C5-carnitine, choline, 
glyceric acid, acetylornithine, and diacyl PC C28:1 still showed moderate positive 
correlations with the VO2peak in females. Two of these acyl-alkyl-PCs (C40:3, C44:3) were 
also present in a cluster of 19 PCs that were related to CRF in the study of Wientzek et al. 
when controlling for sex, age, BMI, and waist circumference, among others [20]. The fact 
that we adjusted for more precise body composition measures and parameters of 
lipoprotein metabolism, which are known to be linked to both CRF [60] and PCs [35,38], 
could explain the study-specific results. Choline participates in multiple pathways of lipid 
or AA metabolism, serving as a precursor for PC species, the neurotransmitter 
acetylcholine, or betaine. Circulating choline can result from diet or PC breakdown [61] 
and was shown to be either lower [18] or higher [59,62] in fitter individuals. Even though 
a more efficient conversion of PCs to choline in trained individuals was assumed [62], it 
cannot be excluded that female KarMeN subjects with high CRF were also characterized 
by a higher dietary choline intake. In summary, sex-specific differences in CRF-related 
plasma metabolites were still detectable, e.g., for some PCs that remained positively 
correlated with female CRF but were not or even slightly negatively linked to male CRF. 
Moreover, the xenobiotic tartaric acid showed sex-specific correlations with CRF. This 
might be due to differences in the dietary intake of wine, vinegar, or grapes [63,64] in more 
or less fit women or men. The AA alanine showed a slightly negative correlation to the 
female VO2peak but a slightly positive correlation to the male VO2peak. In the literature, 
circulating alanine was mostly negatively linked to CRF status [15,23]. 

3.2. Sex-Specific CRF Explanation Models 
Contrary to a previous attempt to explain the variability of CRF in the KarMeN 

population based on urinary metabolites [65], we were now able to identify sets of plasma 
metabolites that, together with clinical and phenotypical variables, contributed to a 
relatively good explanation of the VO2peak in both sexes, after adjusting for age and 
menopausal status. In all approaches, the FM (%) entered the models as the first variable, 
already explaining 33.5% (females) or 42.3% (males) of the confounder-adjusted VO2peak. 
Six (females) or five (males) further phenotypical or clinical parameters slightly improved 
the models (approach 1 selection). However, when phenotypical and clinical parameters, 
as well as metabolite variables, entered the models in a competing manner, plasma 
analytes led to fairly improved performance in both sexes, as demonstrated by an R2 
(adjusted) of 0.68 for females and 0.59 for males (approach 3 selection). Regarding females, 
acyl-alkyl-PC C40:3 was the second most important determinant of the VO2peak. 
Interestingly, this PC sum parameter also showed relevant bi- and multivariate 
associations with CRF. As the relationship between acyl-alkyl-PC C40:3 and the VO2peak 
did not appear to be influenced by other assessed plasma analytes, and the bivariate 
correlation persisted independently of adjustments, the ability of acyl-alkyl-PC C40:3 to 
predict CRF in females should be given special consideration in further studies. Regarding 
males, the TCA cycle intermediate malic acid was the second variable being included in 
the model after the FM (%) (approach 3 selection). In a study by Lustgarten et al., blood 
metabolites-based CRF explanation models were also sex-dependent. Seven serum 
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metabolites in females and five serum metabolites in males explained 58 or 80% of CRF 
variability, respectively. However, as regression models were not adjusted for age, body 
composition, diet, or PA [22], it is uncertain if those metabolites are specifically indicative 
of CRF. As demonstrated by our stepwise regression models, the VO2peak was largely 
determined by the FM (%) in the KarMeN study, supporting the assumption that some 
associations between CRF and plasma metabolites might be mechanistically linked to 
clinical or phenotypical traits that were also influenced by chronic PA. In fact, Kujala et 
al. have shown that comparatively few blood metabolites remained significantly 
associated with CRF after adjusting for the body fat content in healthy young men [17]. 
Nevertheless, our findings could emphasize the additional value of metabolomics data for 
explaining the variability inherent in the VO2peak, hinting at some possibly relevant plasma 
metabolites that could help to infer an individual’s CRF status. Further studies will be 
needed to verify if those metabolites are indeed specific for CRF, and to what extent they 
are influenced by other functional or morphological characteristics of the human 
organism. 

3.3. Strengths and Limitations 
The major strength of this study is that it provides a systematic overview of the 

relationship between CRF and the plasma metabolome in a relatively large population 
consisting of both women and men, with a wide age range. The KarMeN study was 
characterized by highly standardized anthropometric and clinical examinations, as well 
as a strictly controlled procedure for blood collection, CRF assessment, and metabolomics 
analyses. To minimize the variability in metabolomics measurements, plasma samples 
were collected in the fasting state, and pre-menopausal women were examined within the 
luteal phase of their menstrual cycle. As the KarMeN study focused on healthy, non-
smoking subjects with a normal to moderately high weight, excluding individuals with 
supplement use or hormonal treatment, the metabolic variation related to diseases, 
medication, or metabolic disorders was also markedly reduced. To control for known 
confounders from the very beginning, we conducted sex-specific analyses adjusted for 
age and menopausal status. Owing to the comprehensive characterization of study 
participants, further potential confounding factors related to body composition, clinical 
blood biochemistry, lung and arterial function, short-term and habitual PA, as well as diet 
could be considered. Another strength of this study is the applied multi-platform 
metabolomics approach, allowing the detection of a large number of plasma analytes from 
a broad range of biochemical classes and pathways. Limitations of the study include the 
cross-sectional design, as it does not allow the deriving of causal relationships. 
Furthermore, some of the plasma analytes showing relevant associations with CRF could 
not be identified with sufficient certainty and thus, regrettably, remained unknown. 

4. Materials and Methods 
4.1. Subjects and Study Design 

The cross-sectional KarMeN study was conducted between March 2012 and July 2013 
at the Division of Human Studies of the Max Rubner-Institut in Karlsruhe, Germany. 
Details on inclusion and exclusion criteria, as well as a comprehensive description of the 
study design and examination procedures, have already been published [26]. Briefly, 301 
healthy, non-smoking individuals (172 men, 129 women) between 18 and 80 years of age 
were included. All subjects visited the study center three times and were thoroughly 
characterized by anthropometric, clinical, and functional examinations. Moreover, data 
on PA, diet and the menopausal status of female subjects were collected. Since the 
menstrual cycle is known to affect metabolite profiles [66], all premenopausal women 
were scheduled for examinations within their luteal phase. On the morning of the second 
study day, fasting plasma samples were collected using 9 mL EDTA plasma tubes (S-
Monovette, Sarstedt, Nümbrecht, Germany). The plasma samples were immediately 
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centrifuged at 1850× g at 4 °C, aliquoted into small portions, and cryopreserved at −196 °C 
until metabolomics analyses. Serum samples (S-Monovette Z-gel, Sarstedt, Nümbrecht, 
Germany) were collected for standard clinical biochemistry analyses. 

4.2. Anthropometry and Body Composition Assessment 
Bodyweight and height were measured in underwear and without shoes (Seca 285, 

Hamburg, Germany), and the BMI was calculated by dividing the body weight in 
kilograms by the height in meters squared. The body composition was assessed by dual-
energy X-ray absorptiometry (Lunar iDXA, GE Healthcare, München, Germany) and the 
LBM, FM, and VATM, as well as the bone mineral content (BMC), were determined with 
the supplementary software enCOREv16. The FM (%) was calculated by dividing the total 
FM by the total body weight. Approval for dual-energy X-ray absorptiometry 
measurements was received from the Federal Office for Radiation Protection (Z5-22462/2-
2011-043). 

4.3. PF and PA Assessment 
As a measure of PF, CRF was assessed by a standardized incremental exercise test on 

a bicycle ergometer (Ergobike medical, Daum, Fürth, Germany). All participants started 
pedaling at 25 Watts and the workload was then augmented by 25 Watt every 2 min until 
individual exhaustion, as previously described [65,67]. The respiratory gas exchange was 
measured breath-by-breath by using a cardiopulmonary exercise testing system 
(MetaMax 3B, Cortex, Leipzig, Germany). Since the VO2max could not be determined with 
certainty, as it requires the presence of a plateau in oxygen uptake, the VO2peak, as the 
highest attained oxygen uptake during the test, was assessed and expressed relative to the 
bodyweight in mL kg−1 min−1. During the entire procedure, the heart rate was recorded 
(T31 coded, Polar Electro GmbH Deutschland, Büttelborn, Germany). In addition, 
continuous hemodynamic monitoring was conducted by running a 12-channel 
electrocardiogram (CardioDirect 12, DelMar Reynolds GmbH, Feucht, Germany) and by 
measuring the BP every 2–3 min on the right upper arm (Boso-Carat Professional, Bosch 
+ Sohn, Jungingen, Germany). As measures of PA, both short-term and habitual PA were 
determined [67]. Briefly, the level of short-term PA was assessed during a period of seven 
consecutive days by combined accelerometry and heart rate measurements (Actiheart, 
CamNtech, Cambridge, UK). The average AEE during the study week was finally 
calculated by the supplied software (Version 4.0.103) and given in kcal/day. To obtain the 
habitual PA for the last three months, participants filled out the standardized 
international physical activity questionnaire. The average weekly PA was calculated and 
expressed in MET-min/week. 

4.4. Dietary Assessment 
Food consumption for the day prior to blood sampling was assessed by conducting 

a 24-hour recall in a personal interview, using the software EPIC-Soft, as described in 
detail elsewhere [26,68]. In order to evaluate the diet quality of participants, a modified 
version of the Healthy Eating Index was calculated, which was initially applied in the 
second German National Nutrition Survey (“Nationale Verzehrsstudie (NVS) II”) [69] and 
adapted with minor modifications in the KarMeN study. The so-called HEI-NVS 
evaluates the overall diet quality, with scores ranging from 0 (low quality) to 110 (high 
quality). 

4.5. Clinical Examinations 
Clinical parameters like the HRrest, as well as systolic and diastolic BP, were measured 

after a resting period of at least five minutes in a sitting position (Boso-Carat Professional, 
Bosch & Sohn, Jungingen, Germany). The pulmonary function was assessed by 
spirometry (FlowScreen, CareFusion, Hoechberg, Germany) and the VCmax, as well as the 
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FEV1, were recorded. Moreover, arterial stiffness was determined (ARTERIOGraph, 
Medexpert, Budapest, Hungary) and the PWV was calculated. Standard clinical 
biochemistry analyses in fasting serum samples (e.g., hemoglobin (Hb), glucose, HbA1c, 
TGs, HDL- and LDL-cholesterol) were carried out by the certified medical laboratory 
MVZ Labor PD Dr. Volkmann (Karlsruhe, Germany) and insulin concentrations were 
determined with an enzyme-linked immunosorbent assay (ME E-0900, LDN, Nordhorn, 
Germany). 

4.6. Metabolomics Analyses 
To obtain a broad coverage of the plasma metabolome, a number of complementary 

(non-)targeted analytical techniques were applied. Quality control (QC) samples prepared 
by pooling plasma samples from all KarMeN participants were analyzed, along with 
plasma samples in all applied methods. The following section provides a brief summary 
of the different methods; further details are available in the supplement of Rist et al. [28]. 

Non-targeted two-dimensional gas chromatography (GC × GC)-MS analysis. 
Plasma samples were analyzed by a non-targeted GC × GC-MS-based approach using a 
Shimadzu GCMS QP2010 Ultra instrument equipped with a ZOEX ZX2 modulator [70]. 
The GC × GC-MS raw data files were then processed by non-targeted alignment using in-
house developed R-modules [71]. By means of regularly injected QC samples, signal 
intensity drift, i.e., intra- and interbatch effects occurring during the measurement period, 
were corrected. With this method, a wide range of metabolites (including AAs, amines, 
organic acids, sugars, sugar alcohols, or polyols) could be detected. 

Targeted gas chromatography (GC)-MS analysis of fatty acids. The 
chromatographic separation of plasma fatty acids usually requires the application of 
specialized polar columns and can thus not be conducted adequately by using a standard 
apolar × medium-polar GC × GC column setup. Therefore, a previously described method 
[72] was applied to detect plasma fatty acids such as methyl esters, with minor 
modifications. By using a GC single quadrupole instrument (Shimadzu GCMS QP2010 
Ultra) and a BPX90 column (Trajan Scientific), 48 fatty acids were finally determined in a 
quantitative manner. 

Liquid chromatography (LC)-MS metabolite profiling using the Absolute IDQ™ 
p180 kit. Plasma samples were also utilized for targeted metabolite profiling using the 
Absolute IDQ™ p180 kit developed by Biocrates AG (Innsbruck, Austria). The general 
preparation and quantification procedure has already been described [73]. For the 
chromatographic separation of AA and biogenic amines, a Zorbax Eclipse XDB-C18 
column (3 × 100 mm, 3.5 μm; Agilent, Waldbronn, Germany) equipped with a 
SecurityGuard™ column (C18, 4.0 × 3.0 mm; Phenomenex, Aschaffenburg, Germany) was 
used. PCs and SMs were analyzed by flow injection analysis into the analytical system, 
comprising a Nexera UHPLC system (Shimadzu) coupled to an API QTRAP15500 mass 
spectrometer (AB Sciex, Darmstadt, Germany). With this method, a variety of 
acylcarnitines, AAs, biogenic amines, SMs, and PCs were detected. While lysoPC species 
always have one acyl-bound fatty acid, other included PC species are characterized by 
two acyl-bounds (PC aa) or one acyl- and one alkyl-bound (PC ae) fatty acid, respectively. 
In general, each analyzed PC represents a sum parameter of different PC species with 
identical residue sums (e.g., PC ae C32:1 may consist of PC ae C16:0/C16:1, PC ae 
C18:0/C14:1, etc.). 

Targeted LC-MS analysis of methylated amino compounds. The quantification of 
seven amino compounds in plasma was conducted by ultra-performance liquid 
chromatography-tandem MS, using an Acquity H-Class UPLC coupled to a Xevo TQD 
triple quadrupole MS (both from Waters, Eschborn, Germany), as previously established 
[74]. Plasma samples were diluted with acetonitrile after protein precipitation and 
separated by an inverse acetonitrile gradient on a polar hydrophilic interaction liquid 
chromatography column (Acquity BEH Amide, Waters, Eschborn, Germany). Target 
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analytes, as well as deuterated internal standards, were monitored by positive 
electrospray ionization in multiple reaction monitoring mode. 

Targeted LC-MS analysis of bile acids. 14 bile acids in plasma samples were 
quantified using a 1200 series HPLC system (Agilent, Waldbronn, Germany) coupled to a 
Q-Trap 3200 MS (AB Sciex, Darmstadt, Germany) [75]. 

Non-targeted NMR analysis. Plasma samples were analyzed by 1D-1H-NMR 
spectroscopy. Briefly, they were measured at 310 K on an AVANCE II 600 MHz NMR 
spectrometer equipped with a 1H-BBI probe head and a BACS sample changer (Bruker 
BioSpin GmbH, Rheinstetten, Germany). All obtained plasma spectra were automatically 
phased with the Bruker AU program apk0.noe. Using the program AMIX 3.9.14 (Bruker 
BioSpin GmbH, Rheinstetten, Germany), they were then referenced to the EDTA signal 
and bucketed graphically, so that buckets contained only one signal or group of signals 
and no peaks were split between buckets, whenever possible. Buckets were either 
annotated to a previously known and identified analyte, or registered as unknown. The 
identification of metabolites was carried out with Chenomx NMR Suite 8.1 (Chenomx, 
Edmonton, Canada). The detected analytes included organic acids, AAs, amines, and 
sugar alcohols. 

4.7. Data Handling and Statistical Analysis 
The data from the different analytical platforms were integrated into a common data 

matrix, consisting of 301 samples and 657 plasma analytes. With respect to the study 
participants, we excluded 49 individuals due to missing spiroergometry data (n = 40), 
technical errors during analyses (n = 7), implausibly low HRrest data (n = 1), and a missing 
plasma sample (n = 1). If identified metabolites were measured by more than one of the 
analytical platforms, those metabolites that were detected by the less quantitative method 
were excluded (n = 149). Further analytes were deleted if they had a detected frequency 
lower than 20% in either the female or male subgroup (n = 81). Thus, the final data matrix 
contained 252 individuals and 427 plasma analytes. The dataset, including metabolite data 
and metadata, is provided in Table S1. Prior to statistical analyses, metabolite data were 
transformed into Van der Waerden (VdW) scores. By using this rank-based inverse 
normal transformation, the data were converted into ranks, transformed to a scale 
between 0 and 1, and then, the corresponding standard normal quantiles were calculated. 
This transformation took the issue of values below the limit of detection into account and 
led to a uniform scale for all analytes, i.e., they were finally comparable between analytical 
platforms. 

Based on sex-specific VO2peak quartiles, the sex-specific VO2peak data were divided into 
four quarters (q), and differences in basic characteristics between the subgroups of the 
corresponding participants of the quarters were examined by Welch ANOVA (chi-
squared test) for numeric (categorical) variables. All subsequent statistical analyses were 
conducted separately for sexes and the non-modifiable factors age (and menopausal 
status in females) were treated as confounders. Random forest regression algorithms 
considering age, phenotypical, and clinical variables were applied to impute missing 
values for AEE and PWV. Similar to the metabolite data, both the VO2peak and considered 
phenotypical and clinical parameters were transformed into VdW scores prior to 
statistical analyses. To examine the sex-specific relationship between the VO2peak and 
selected phenotypical and clinical parameters, Pearson correlations adjusted for age (and 
menopausal status in females) were calculated. Correlations were considered statistically 
significantly different from zero when the 95% confidence intervals (CIs) did not include 
zero. 

Regarding metabolomics data analysis in sex-specific subgroups, three major aims 
were pursued: (i) to investigate the relationship between the VO2peak and single plasma 
metabolites (bivariate association analyses), (ii) to determine the relationship between the 
VO2peak and all plasma metabolites simultaneously (multivariate association analyses) and 
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(iii) to identify a set of plasma metabolites possibly improving the explanation of the 
VO2peak in the presence of phenotypical and clinical data (multiple regression analyses). 
(i) Bivariate association analyses 

To examine the sex-specific relationship between the VO2peak and single plasma 
metabolites, adjusted for age and menopausal status, partial Pearson correlation 
coefficients (r) with 95% CIs were calculated. In a second step, correlations independent 
of further phenotypical and clinical variables were assessed. More specifically, we 
performed sex-specific correlation analyses by adjusting not only for the above-mentioned 
confounders but also for the following phenotypical and clinical parameters: LBM, FM 
(%), VATM, BMC, height, Hb, glucose, insulin, HbA1c, TGs, HDL and LDL cholesterol, 
HRrest, systolic and diastolic BP, PWV, VCmax, FEV1, AEE, total MET, and HEI-NVS. 
(ii) Multivariate association analyses 

To analyze the relationship between the VO2peak and all 427 plasma metabolite 
variables simultaneously, PLS regression analyses using nested cross-validation were 
conducted separately for women and men. The PLS analyses were either applied on 
confounder-adjusted metabolite variables or on metabolite variables additionally 
adjusted for the above-listed phenotypical and clinical parameters. The outer loop 
contained 20 random splits in a calibration dataset (containing 80% of all samples) and a 
test dataset (containing the remaining 20% of all samples). The data were preprocessed, 
including the formation of VdW-scores, respective adjustments, and unit variance scaling 
based on the calibration data. As the inner loop, a single random eight-fold cross-
validation was used to tune the PLS model, based on the RMSE. Thereby, the number of 
predictive components was restricted to being at most ten. A rank for the obtained PLS 
regression models was assigned to each metabolite variable according to the negative 
absolute value of its regression coefficient. By calculating the geometric means of the ranks 
across the 20 random splits, a final rank product for each metabolite variable was 
obtained. The model performance was evaluated by the mean of RMSEs on the test 
samples across the 20 random splits. Moreover, 2500 permutations of the VO2peak values 
were run, and the relative frequency of permutation-obtained rank products below the 
previously calculated rank products was assessed. If the relative frequency was ≤ 0.05, the 
contribution of a metabolite variable to the VO2peak in a multivariate association was 
considered significant. 
(iii) Multiple linear regression analyses 

To assess the relationship between the VO2peak and sets of phenotypical, clinical, and 
metabolite variables, three different exploratory multiple linear regression models were 
calculated for each sex, with the confounder-adjusted VO2peak as the dependent variable, 
and with stepwise forward-selected confounder-adjusted clinical, phenotype, and 
metabolite variables as independent variables. In detail, the following approaches were 
applied: 
• Approach 1: Only phenotypical/clinical variables (n = 21) were stepwise selected. 
• Approach 2: All Phenotypical/clinical variables (n = 21) were included and only 

plasma metabolite variables (n = 427) were stepwise selected. 
• Approach 3: Phenotypical/clinical variables (n = 21) as well as plasma metabolite 

variables (n = 427) were stepwise selected. 
While in approach 2, all phenotypical/clinical variables entered the model as fixed 

variables before considering the plasma metabolites, in approach 3 all variables entered 
the model in a competing manner. To obtain a ranking of confounder-adjusted 
phenotypical, clinical, or metabolite variables according to their contribution for 
explaining the adjusted VO2peak, the models were built by maximizing the coefficients of 
determination (R2). 

In addition to the ranking of variables, a single linear multiple regression model was 
calculated for each of the approaches 1 to 3 in order to obtain a manageable number of 
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variables that, in combination, explained CRF. For variable selection, the previously 
described stepwise multiple linear regression analyses were performed on a calibration 
dataset (containing 80% of all samples) and the predictive accuracy of each step was 
assessed on the test dataset (containing the remaining 20% of the samples). The selection 
was stopped if the predictive accuracy decreased for the first time. In total, the analysis 
was repeated 1000 times with random assignments of samples into calibration and test 
datasets. Finally, the number of times each variable was present in those cross-validated 
stepwise regression models was counted (a relative frequency of 1 means that the variable 
was always considered in stepwise variable selection). All variables with a relative 
frequency ≥ 0.05 were then included in a final model with respect to approaches 1 to 3. 
The obtained final models were described by the adjusted R² and compared within each 
subpopulation. Statistical analysis was performed by using SAS JMP 11.0.0 (SAS Institute 
Inc. 2013, Cary, NC, USA) and the software R Version 4.0.0 [76], using the packages named 
caret [77], openxlsx [78], and missForest [79]. Figures were generated in Excel, 2016 or R, 
using the packages named ggplot2 [80], ggrepel [81], and ggpubr [82]. Supplementary 
PDF files were generated with LaTeX, using the package knitr [83]. R-scripts for the 
calculation of results and generation of figures and PDF files are provided in Files S6–S9. 

4.8. Metabolite Classification 
For the biological interpretation of CRF-related metabolite profiles, identified and 

putatively annotated metabolites, i.e., compounds with Metabolomics Standards 
Initiative (MSI)-level 1 or 2 [84], respectively, were manually assigned to 8 major and 32 
specific pathways of human metabolism based on the information provided by the human 
metabolome database 4.0 [85] and the Kyoto Encyclopedia of Genes and Genomes 
PATHWAY database [86]. Annotation of analytes detected using untargeted approaches, 
showing relevant associations with CRF, was performed as follows: spectra of GC × GC-
MS analytes were matched against an in-house spectral library as well as against the 
FiehnLib and the NIST17 libraries. If matching was unsuccessful, structural hypotheses 
were derived depending on the presence of known diagnostic fragments (see Table S9.2 
in Ulaszewska et al. [87]) and additionally, especially in the case of sugars and sugar-like 
compounds, based on the compound’s position in the two-dimensional chromatogram. 
Unfortunately, the spectra of CRF-related unknown analytes were mostly unspecific, 
which hampered structural elucidation. In the case of NMR, the identification of CRF-
associated unknown analytes was not possible because the particular buckets contained 
either unspecific signals or overlapped peaks. 

5. Conclusions 
In summary, our findings demonstrated sex-dependent relationships between CRF 

and specific plasma metabolites in the KarMeN population. Apart from proving well-
known associations between CRF and, further, partly health-related phenotypical or 
clinical variables in both sexes, we could identify a number of PCs, lysoPCs, and SMs as 
being associated with the VO2peak in either females or males, when controlling for age and 
menopausal status. However, independently of selected clinical or phenotypical 
variables, sex-specific CRF tended to be correlated with a rather small number of plasma 
metabolites primarily related to lipid-, AA-, or xenobiotics-related metabolism. Hence, 
many of the observed associations between CRF and metabolites were likely to be 
mediated by the considered clinical or phenotypical parameters. Although the variability 
of CRF was largely determined by the FM (%) in both sexes, our stepwise regression 
analyses revealed certain sets of plasma metabolites able to improve sex-specific VO2peak 

explanation models. In particular, acyl-alkyl-PC C40:3 could be identified as a possibly 
interesting metabolite parameter for conclusions on CRF status in healthy females. 
Remarkably, CRF-associated metabolites have already been discussed as being reflective 
of exercise-induced adaptations in muscular energy metabolism (e.g., malic acid, succinic 
acid, acylcarnitines) or inversely linked to the development of cardiometabolic diseases 
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(e.g., PCs, lysoPCs). Therefore, those metabolites might represent potential mediators of 
the performance- or health-enhancing effects of chronic PA. However, more research is 
needed to further clarify the mechanisms and metabolic pathways underlying sex-specific 
differences in CRF-associated metabolite profiles. Finally, we recommend future studies 
examining blood metabolic markers related to CRF to conduct sex-separated analyses and 
to consider age, menopausal status, body composition, and other health-related variables 
as covariates. 

Supplementary Materials: The following are available online at 
www.mdpi.com/article/10.3390/metabo11070463/s1, File S1: Basic characteristics of the KarMeN 
participants according to VO2peak quarters; File S2: Graphical overview of associations between the 
VO2peak and plasma metabolites; File S3: Classification of metabolites with significant bivariate 
correlations to metabolic pathways; File S4: Evaluation of PLS approaches; File S5: Volcano plots of 
VO2peak-associated plasma metabolite patterns; File S6: Calculation; File S7: Results; File S8: Output; 
File S9: Supplement; Table S1: Dataset including metabolite data and metadata; Table S2: Results of 
bi- and multivariate association analyses; Table S3: Results of multiple linear regression analyses. 

Author Contributions: Conceptualization, A.B.; investigation, R.K., M.J.R., C.H.W., D.B., R.N., S.H.; 
data curation, R.K., M.J.R., C.H.W., D.B., B.M., K.R.; methodology: M.D., S.K., A.B.; formal analysis, 
M.D. and S.K.; software: M.D.; visualization, M.D. and S.K.; project administration, A.B.; writing—
original draft, S.K.; writing—review and editing, S.K., M.D., R.K., M.J.R., C.H.W., D.B., B.M., K.R., 
R.N., S.H., A.B. All authors have read and agreed to the published version of the manuscript. 

Funding: The KarMeN study was funded by the German Federal Ministry of Food and Agriculture 
(BMEL). The funder had no role in study design, data collection and analysis, decision to publish, 
or preparation of the manuscript. 

Institutional Review Board Statement: The study was approved by the ethics committee of the 
State Medical Chamber of Baden-Württemberg, Stuttgart, Germany (protocol code: F-2011-051, date 
of approval: 20 September 2011) and was conducted in accordance with the declaration of Helsinki. 
The study was registered at the German Clinical Trials Register (DRKS00004890). The WHO 
universal trial number is U1111-1141-7051. 

Informed Consent Statement: Written informed consent was obtained from all participants before 
entering the study. 

Data Availability Statement: Data is contained within the article or Supplementary Material. 

Acknowledgments: The authors would like to thank the volunteers of the KarMeN study for their 
participation. We also thank the technicians and staff of the Study Center for Human Nutrition, the 
Department of Nutritional Behaviour and the analytical laboratories as well as the staff of the 
Institute of Sports and Sports Science. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 
AA amino acid 
AEE activity energy expenditure 
BP blood pressure 
BMC bone mineral content 
BMI body mass index 
CIs confidence intervals 
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FEV1 forced expiratory pressure in one second 
FM fat mass 
GC gas chromatography 
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Hb hemoglobin 
HDL high-density lipoprotein 
HEI-NVS Healthy Eating Index (modified version) 
HRrest resting heart rate 
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KarMeN Karlsruhe Metabolomics and Nutrition 
LBM  lean body mass 
LC liquid chromatography 
LCFA long-chain fatty acid 
LDL low-density lipoprotein 
LysoPC lyso-phosphatidylcholine 
MET metabolic equivalent of task 
MS mass spectrometry 
NMR  nuclear magnetic resonance 
PA physical activity 
PC phosphatidylcholine 
PC aa diacyl-phosphatidylcholine 
PC ae acyl-alkyl-phosphatidylcholine 
PE physical exercise 
PF physical fitness 
PLS partial least squares 
PWV pulse wave velocity 
q quarter 
QC quality control 
r  Pearson correlation coefficient 
R2 coefficient of determination  
R2 (adjusted) adjusted coefficient of determination 
RMSE root mean square error 
SM sphingomyelin 
TCA tricarboxylic acid 
TGs triglycerides 
U unknown 
VATM visceral adipose tissue mass 
VCmax maximal vital capacity 

VdW Van der Waerden 
VO2max maximal oxygen uptake 

VO2peak peak oxygen uptake 
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