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Abstract: The human gut microbiota plays a dual key role in maintaining human health or inducing 
disorders, for example, obesity, type 2 diabetes, and cancers such as colorectal cancer (CRC). High-
throughput data analysis, such as metagenomics and metabolomics, have shown the diverse effects 
of alterations in dynamic bacterial populations on the initiation and progression of colorectal cancer. 
However, it is well established that microbiome and human cells constantly influence each other, 
so it is not appropriate to study them independently. Genome-scale metabolic modeling is a well-
established mathematical framework that describes the dynamic behavior of these two axes at the 
system level. In this study, we created community microbiome models of three conditions during 
colorectal cancer progression, including carcinoma, adenoma and health status, and showed how 
changes in the microbial population influence intestinal secretions. Conclusively, our findings 
showed that alterations in the gut microbiome might provoke mutations and transform adenomas 
into carcinomas. These alterations include the secretion of mutagenic metabolites such as H2S, NO 
compounds, spermidine and TMA, as well as the reduction of butyrate. Furthermore, we found that 
the colorectal cancer microbiome can promote inflammation, cancer progression (e.g., angiogenesis) 
and cancer prevention (e.g., apoptosis) by increasing and decreasing certain metabolites such as 
histamine, glutamine and pyruvate. Thus, modulating the gut microbiome could be a promising 
strategy for the prevention and treatment of CRC. 
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1. Introduction 
Cancer is generally known as a disease of the genome arising out of a combination 

of genetic mutations, epigenetic modifications and altered signaling pathways. These mu-
tations occur diversely, sometimes with undetermined origins. However, some cancers 
are associated with infectious agents, and some appear in tissues that are exposed to mi-
crobiota (a set of microbial agents present in a specific environment) [1].  

Microbial agents constitute about 90% of the cells in the human body, and it is esti-
mated that there are 1014 bacteria, comprising 103 species, in the human colon. This signi-
fies that bacterial genes outnumber human genes in the human body [2–5]. Additionally, 
the density of large intestinal bacteria is approximately 1010 times higher than that of the 
small intestinal bacteria, and the risk of cancer in the large intestine is 12 times higher than 
that that in the small intestine [6,7].  
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The transformation of adenoma into carcinoma tumors in colorectal cancer (CRC) 
requires mutations in the cancer-driver genes, which normally takes up to 10 years, and 
additional mutations accelerate its progression. There is also a hypothesis that considers 
the role of the microbiome in CRC, mostly adenomas. The driver–passenger hypothesis 
states that driver bacteria cause this transformation by triggering DNA damage and per-
sistent inflammation. On the other hand, the tumor microenvironment provides another 
growth site for opportunistic bacteria called passengers. This even suggests that some 
probiotic bacteria may take advantage of the tumor microenvironment and prevent the 
progression of cancer [8]. 

With the advent of high-throughput technologies, researchers can quantify molecu-
lar changes at different cellular levels. These technologies can reveal the complete picture 
of cell metabolic activity in one snapshot and can unveil the metabolic patterns and func-
tion of cells, including the activities of enzymes, gene products, transporters and chemical 
reactions. Therefore, they would be suitable tools for the metabolic profiling of different 
cells, both to identify differences between organs and to distinguish metabolic diseases 
[9–13]. 

Genome-scale metabolic models (GEMs) provide quantitative information about the 
metabolism of large-scale systems [14]. Using GEMs and optimization methods, such as 
flux balance analysis (FBA) or flux variable analysis (FVA), the metabolic flux rate for all 
the reactions in the model can be predicted [15,16]. For deciphering the role of the entire 
system and the complex relationships of a microbial community, community metabolic 
modeling (CMM) is introduced [17]. Briefly, CMM is the combination of the ecological 
model of the microbiota (presence in an environment) and their microbiota GEMs [18]. 
CMM can employ GEMs to examine the interactions between different microorganisms 
and the cross-feeding in a population (the exchange of metabolites among microorgan-
isms). Different studies have assessed the effect of cross-feeding between host human cells 
and environmental absorption using CMM. For example, Kumar et al. reconstructed 
CMM of malnourished children’s gut microbiota by the integration of GEMs. This model 
revealed a reduction in essential amino acid production by the gut microbiota in malnour-
ished children [19]. Another study investigated metabolic alterations following changes 
to the gut microbiota composition in metformin-treated type 2 diabetes patients [20]. They 
suggested that lipopolysaccharide synthesis, nucleotide sugar metabolism and amino acid 
metabolism are susceptible to changes in gut microbes. The intestinal microbiota and met-
abolic changes in CRC have been studied using metagenomics and metabolic data, respec-
tively [21,22]. Researchers have proposed some tumor-specific bacterial populations and 
metabolite regulation in CRC. Kehan Xu et al. investigated the co-occurrence and co-ex-
clusion of bacterial species in the mucosa-associated microbiota of CRC tumors and found 
potential bacterial biomarkers in the CRC tumor’s microbiota [23]. 

Additionally, previous studies have explored changes in the bacterial population and 
their potential impact on CRC initiation or development, as well as metabolic alterations 
in the CRC tumor lumen and blood serum. By using the same modeling approach, they 
highlighted the role of Fusobacterium spp. in the production of glutarate and in the sup-
pression of butyrate and acetate levels in feces [23,24]. Since then, many high-throughput 
data have unraveled the etiology and complexity of CRC; however, the investigation of 
CRC and microbiome metabolism remain a subject of inquiry. In the current study, we 
evaluated the CMM of the gut microbiome and its influence on the initiation and progres-
sion of CRC with a comprehensive and metabolomic approach. Our results indicate that 
alterations in the gut microbiome might provoke CRC’s transformation from an adenoma 
into a carcinoma. 
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2. Results 
2.1. Community Microbiome Metabolic Models of CRC in Different Tumors 

The community modeling of the microbiome requires the integration of individual 
bacterial metabolic models (GEMs) based on the proportions of different bacteria present 
through ecological modeling. In this work, we made use of the MGYS00001248 data  [25], 
an ecological model that consists of metagenomic data of mucus biopsy specimens with 
adenomas and their adjacent tissue, as well as non-tumor tissue as a control [21]. Adjacent 
tissue samples of adenomas and carcinomas were discarded on the assumption that we 
did not know whether they were directly related to CRC (Table 1). 

Table 1. Numbers of samples at different steps of this study. Adjacent tissue samples in 
MGYS00001248 data were discarded since we wanted to focus on in situ tumor and polyp microbi-
omes. In the normalization step, samples with low read counts were removed (in total, 76 of 170 
samples were removed). At the modeling step, due to unknown errors, some models were infeasi-
ble, which we excluded from further analysis. Finally, we considered microbiome metabolism pro-
files clustered as meta-models. 

 Normalization 
Input 

Normalized Input 
for Microbiome 

Metabolic Model-
ing 

Reconstructed Mi-
crobiome Meta-

bolic Models 

Data Analysis 
and Meta-Model 

Selection 

Adenoma 57 41 37 8 
Carcinoma 52 26 24 7 

Normal 61 27 27 6 
Total 170 94 88 21 

To select the GEMs’ best matching with existing metagenome data, we firstly tried to 
combine both publicly available databases, AGORA and EMBL. In 2016, AGORA models 
(consisting of 773 GEMs of well-known bacteria) were reconstructed to investigate the 
reciprocal association of bacterial behaviors and human metabolic diseases [26]. The AG-
ORA developers showed that the interaction of the species depends on the availability of 
nutrients in the diet and the metabolic potential of the models. EMBL–GEMs were used 
to create and store automated GEMs of 5587 organisms at the strain level [27]. The AG-
ORA models were compatible with the COBRA toolbox, but we found that the EMBL–
GEMs were not. Furthermore, the EMBL–GEMs are insufficient in requisite models for 
the creation of community models. Since metagenomic data, which consist of bacteria’s 
taxonomy and their measure of presence, have insufficient resolution regarding the 
strains or species of bacteria, we should modify the taxon list based on experimental 
knowledge. Additionally, metagenomic data vary in depth and sample size, which could 
lead to missing data. Matching GEMs with bacteria requires identification at the strain or 
species level. To minimize the loss of the accuracy of microbial population information, 
pan-AGORA models (Supplementary 1) were constructed using the COBRA toolbox, 
which are infrastructure models of subclasses of the family, genus and species models. 
Then, to estimate low-resolution reads of taxonomy assignment data, we used publica-
tions and the Disbiome database [28]. Thus, we created a table (Supplementary 2) of bac-
terial GEMs’ names and their abundance for further analysis.  

Although using the rarefaction method for metagenomic data analysis is controver-
sial [29–31], it seems rational for metagenomic data normalization [31]. However, one of 
the challenges with this method is choosing the right threshold value. In general, an ap-
propriate value is one in which most of the samples are larger [32]. In the same way, the 
rarefaction curves can provide an estimate of the asymptotic richness concerning the sam-
ple counts that are suitable for normalization (Figure 1). By considering these two ap-
proaches, we selected a sample size of 10,000 for normalization. Therefore, samples with 
read counts below this value were discarded and, then, the abundances were normalized. 
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Finally, the taxonomy assignment data were modified and normalized for input data from 
864 read rows corresponding to 219 bacterial GEMs collected as the microbiome modeling 
toolbox input data (Supplementary 2).  

Since diet can also affect the survival of bacterial models in the community model, 
we postulated that the environmental conditions of the microbial population were food-
intensive, so all the simulations were performed under the rich diet. Finally, from 160 
mucosal microbiome samples, 88 microbiome community models were constructed based 
on AGORA and Pan models (Supplementary 3). 

The NMPC (net maximal production capability), which simulates the capacity of the 
microbiota to create the intestinal lumen environment, was calculated by FVA (Supple-
mentary 4). This simulation was utilized to analyze the differences in the effects of the 
microbiome in each group on the metabolic conditions around the tumor and intestine. 
We consider the NMPC as the microbiome’s role in creating the intestinal environment. 

 
Figure 1. Rarefaction curves: the relations between the number of species present and total reads in 
each sample. We used them to perceive and select an appropriate sample size for normalization. As 
shown, most of the samples were about 10,000 or larger. Furthermore, at sample size n = 10,000, 
most of the curves are in asymptotes, which indicates that most of the species are present at this 
size. 

2.2. Meta-Model Selection and Data Analysis for Simulated Metabolism of CRC Microbiome  
Studies have demonstrated that the CRC microbiota and its healthy counterpart have 

diverse patterns [21], which are called a meta-community. Accordingly, we call models 
with the same patterns a meta-model. Thus, we first detected the meta-models of all the 
groups based on the NMPC data and then selected a meta-model for each group (n8, n9, 
n22, n23, n26 and n27 as a normal meta-model; a3, a5, a20, a21, a28, a29, a34 and a36 as an 
adenoma meta-model; and c1, c7, c9, c10, c16, c18 and c24 as a carcinoma meta-model). 
This step was performed by PCA (Figure 2). The PCA plots show the similarity of the 
microbiome metabolic models based on their NMPCs according to the first two compo-
nents. Presumably, microbiome metabolic models with the greatest similarity in NMPC 
data have the same patterns. We selected meta-models with the most similarity within 
groups and the most dissimilarity between groups. Cross-validation with the SIMCA soft-
ware indicated the significance of PCA models, with R2X(cum) = 0.85, and Q2(cum) = 
0.727. Supplementary 5 shows more statistical tests for this model. 
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Figure 2. Scatter plot of PCA scores for all models. Using PCA, meta-models were selected for each group by considering 
the greatest similarity in groups (nearest) and the greatest differences between groups (farthest). a3, a5, a20, a21, a28, a29, 
a34 and a36 as an adenoma meta-model; c1, c7, c9, c10, c16, c18 and c24 as a carcinoma meta-model; and n8, n9, n22, n23, 
n26 and n27 as a normal meta-model. In this figure, a, c and n stand for adenoma, carcinoma and normal, respectively. 
This PCA was plotted by the first two components, in which R2X[1] = 0.417 and R2X[2] = 0.21. 

2.3. Meta-Models Reveal Different Patterns Among CRC Tumors 
We used pairwise PLS-DA to find metabolic patterns among the meta-models of each 

group. PLS-DA is an efficient tool for analyzing metabolomic data [33]. It can effectively 
find patterns for differentiation between carcinoma vs. normal (Figures 3 and 4), adenoma 
vs. normal (Figures 5 and 6) and carcinoma vs. adenoma (Figures 7 and 8) groups. In all 
the PLS-DA models’ first components, the most important metabolites that were involved 
in this differentiation were extracted from a VIP plot with a VIP criterion more than 1 
[34,35]. We performed a cross-validation analysis of the PLS-DA models using the SIMCA 
software (which returns the significance of models). Supplementary 5 describes the statis-
tical parameters of the PLS-DA models in detail. 

Metabolite set enrichment analysis (MSEA) was used to determine the role of metab-
olites in human cell metabolism. For this purpose, VIP was used to extract metabolites 
that were involved in human metabolism, filtered by the VMH database. This analysis 
was performed for metabolites that were increased or decreased in a pairwise analysis of 
groups. p-values < 0.05 were considered significant for the pathways detected in MSEA. 
Therefore, the results show that microbiota-derived metabolites could be involved in CRC 
metabolism by altering pathways under different conditions during CRC progression. 

2.4. Comparison between Carcinoma and Normal Meta-Models 
The results reveal that L-glutamine, L-tyrosine, pyruvate, tyramine, tryptamine and 

ten other metabolites were significantly increased in the normal meta-model. Further-
more, metabolites such as taurine, L-serine, chondroitin sulfate, mannose, putrescine and 
73 other metabolites were decreased in this comparison (Figure 3). 

The MSEA results indicated that thyroid hormone synthesis, purine metabolism, 
phenylalanine metabolism, the urea cycle, ammonia recycling, tyrosine metabolism and 
amino sugar metabolism pathways were enriched in the list of increased metabolites. The 
decreased metabolites were involved in spermidine and spermine biosynthesis, galactose 
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metabolism, the urea cycle, taurine and hypotaurine metabolism and phosphatidyl etha-
nolamine biosynthesis (Figure 4). 

 
Figure 3. Extraction of the most important metabolites in carcinoma vs. normal meta-model comparison. The column plot 
of metabolites excluded by the VIP plot shows which metabolite correlates with which group. Red columns (positive w*c) 
are metabolites more abundant in carcinoma, and blue columns (negative w*c) are those more abundant in the normal 
group. These w*c measures are from the first component of the PLS-DA model. For this PLS-DA model, the first compo-
nent R2 and Q2 parameters were R2X = 0.532 and Q2 = 0.972. 

 
Figure 4. MSEA of the most important metabolites in PLS model of carcinoma vs. normal. Metabolites more abundant in 
carcinoma meta-models than normal meta-models involved in pathways are shown in the left-side table. Those more 
abundant in normal are shown in the right-side table. We considered p-values < 0.05 significant for this analysis. 
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2.5. Comparison between Adenoma and Normal Meta-Models 
Histamine, spermidine, putrescin, hydrogen sulfide, L-tryptophan and 75 other com-

pounds were the metabolites most significantly increased in the adenoma meta-model 
compared with the normal meta-model. Butyrate, phenol acetate, cobalt, taurine and 69 
others were decreased (Figure 5). 

As the MSEA demonstrated (Figure 6), the metabolites that decreased in the adenoma 
versus normal meta-models are those contributing to purine metabolism, the transfer of 
acetyl groups in mitochondrial pathways, the urea cycle and phosphatidyl ethanolamine 
biosynthesis. Furthermore, the metabolites increased are those contributing to the urea 
and TCA cycles; the metabolism of arginine, proline, phenylalanine, tyrosine and galac-
tose; the biosynthesis of cardiolipin; and the mitochondrial electron transport chain. The 
biosynthesis of spermidine and spermine, unlike in the carcinoma meta-model, seem to 
be downregulated. 

 
Figure 5. Extraction of most important metabolites in adenoma vs. normal meta-model comparison. The column plot of 
metabolites excluded by the VIP plot shows which metabolite correlates with which group. Red columns (positive w*c) 
are metabolites more abundant in adenoma, and blue columns (negative w*c) are those more abundant in the normal 
group. These w*c measures are from the first component of the PLS-DA model. For this PLS-DA model, the first compo-
nent R2 and Q2 parameters were R2X = 0.783 and Q2 = 0.976. 
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Figure 6. MSEA of the most important metabolites in PLS-DA model of adenoma vs. normal. Metabolites more abundant 
in the adenoma meta-model than the normal meta-model involved in pathways are shown in the left-side table. Those 
more abundant in normal are shown in the right-side table. We considered p-values < 0.05 significant for this analysis. 

2.6. Comparison between Carcinoma and Adenoma Meta-Models 
In the carcinoma versus adenoma meta-model comparison, we found shared and dis-

tinct metabolites that distinguish these tumor types. Adenine, D-glucose, L-aspartate, L-
histidine, pyruvate and 32 other substances were substantially increased in the carcinoma 
meta-model. Additionally, acetaldehyde, trimethylamine, putrescine, ethanol, hydrogen 
sulfide and 85 others were significantly increased in the adenoma meta-model (Figure 7). 

Furthermore, in the MSEA, cycles such as TCA and urea, and the metabolism of 
amino acids, such as arginine, proline, cysteine and alanine, were related to the increased 
metabolites. The synthesis of spermidine, spermine and carnitine, and the Warburg effect 
are related to these metabolites (Figure 8). 
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Figure 7. Extraction of the most important metabolites in carcinoma vs. adenoma meta-model comparison. The column 
plot of metabolites excluded by the VIP plot shows which metabolite correlates with which group. Red columns (positive 
w*c) are metabolites more abundant in carcinoma, and blue columns (negative w*c) are those more abundant in the ade-
noma group. These w*c measures are from the first component of the PLS-DA model. For this PLS-DA model, the first 
component R2 and Q2 parameters were R2X = 0.572 and Q2 = 0.933. 

 
Figure 8. MSEA of the most important metabolites in PLS-DA model of carcinoma vs. adenoma. Metabolites more abun-
dant in the carcinoma meta-model than the adenoma meta-model involved in pathways are shown in the left-side table. 
Those that are more abundant in adenomas are shown in the right-side table. We considered p-values < 0.05 significant for 
this analysis. 
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By the comparison of important metabolites between samples, we found that some 
of these metabolites are group-specific and some shared (Figures 9 and 10). It showed that 
metabolites could be tumor-specific and have different roles in tumors. Notably, 37 me-
tabolites significantly differentiated between normal, adenoma and carcinoma meta-mod-
els, and 13 specifically differentiated between two meta-models. As the driver–passenger 
hypothesis states, the metabolites of the CRC microbiota show different patterns in ade-
noma and carcinoma tumors. Some promote tumors and are released or remain and sup-
port tumor growth and development. Some metabolites only play a supportive role in 
carcinomas. On the other hand, the significant downregulation of certain metabolites, es-
pecially in the carcinoma meta-model, could be one reason for the detrimental effects of 
the carcinoma microbiota. As Figure 9 and Supplementary Figure S1 demonstrate, the 
carcinoma meta-model showed more downregulated than upregulated metabolites. 
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Figure 9. Significant metabolites in CRC microbiome. This heatmap briefly highlights significant 
metabolites altered in different tumors of CRC by our CMMs. Blue and red colors indicate decreases 
and increases in the intestinal lumen, respectively. White color means neither a significant alteration 
nor a contributor. 
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Figure 10. Proposed workflow for metabolic discrimination analysis of microbiome community constraint-based models, 
from data preparation to data analysis. 

3. Discussion 
Several studies have examined the association of metabolites with CRC. In vivo and 

in vitro environments cannot accurately indicate the sources of metabolic changes, espe-
cially in CRC, where the gut microbiome is an inseparable part. Based on the results of 
our microbiome community modeling and simulating the intestinal lumen metabolic en-
vironment (we have summarized the main results in Supplementary Figure S2), we hy-
pothesized about how the microbiome composition affects CRC metabolism: 
1. The adenoma microbiome plays an important role in the mutagenesis and the pro-

gression of the adenoma to carcinoma. 
2. The metabolic changes in the adenoma microbiota increase inflammation and regu-

late the immune system. 
3. The metabolites of the CRC microbiota contribute to the growth and proliferation of 

cancer cells in both adenoma and carcinoma tumors. 
4. Microbial metabolites of adenomas and carcinomas are involved in the progression 

of CRC, for example, (the inhibition of) apoptosis and invasion. 
Therefore, this workflow has the potential to investigate the underlying metabolic 

mechanisms regulating CRC progression, and it can be adopted to other disease microbial 
community models (Figure 10). 

3.1. Adenoma Microbiota Plays an Important Role in Mutagenesis and Progression of Adenoma 
to Carcinoma 

An increase in mutagenic metabolites and a decrease in their inhibitors involved in 
the progression of adenoma to carcinoma were observed in the metabolism of the ade-
noma microbiota. Short-chain fatty acids have many important functions within the hu-
man body, and numerous studies have shown that their levels significantly change in the 
fecal samples of patients with CRC [36]. Butyrate, one of the most important and contro-
versial metabolites of the CRC microbiota, is significantly reduced in adenoma compared 
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to healthy models. Butyrate is also involved in reducing inflammation and inducing apop-
tosis. In addition, it prevents the accumulation and formation of microbiota that cause 
epithelial cell mutations by regulating the immune system of the intestinal environment 
[37]. On the other hand, hydrogen sulfide (a toxic substance produced from the catabolism 
of meat foods) prevents the oxidation of butyrate and causes toxicity by disrupting the 
barrier of epithelial cells. It has been observed that these effects are more related to micro-
biota activity than diversity [37,38]. In our study, we showed that, in adenoma models, as 
H2S increases, ROS increase simultaneously. This is a point to consider in the bacterial 
flora’s role in pathogenicity, including CRC initiation. 

Subsequently, other metabolites showed cooperation in CRC initiation. Adenoma 
models predicted an increase in spermidine and putrescine, which are polyamines. Poly-
amines play a critical role in mutagenesis and tumorigenesis by producing ROS [39]. The 
increased nitrite and electron transfer chain (ETC) activity in the MSEA indicates aug-
mented ROS and mutagenicity. Nitrite acts as a precursor to N-nitroso compounds 
(NOCs) that are genotoxic and cause an increase in ROS [40]. Trimethylamines, including 
trimethylamine (TMA) and trimethylamine N-oxide (TMAO), are involved in DNA dam-
age [41]. Increased urea can also increase ammonia production. Ammonia is involved in 
mutagenesis and tumorigenesis by damaging mucus, inducing genotoxicity and increas-
ing ROS production. Increases in urea, TMA and TMAO are seen in adenoma models 
compared to healthy specimens [42]. 

Our models provide more evidence for the adenoma microbiota’s influence in CRC 
initiation by mutagenesis, although a VIP index greater than 1 was considered in the iso-
lation of important metabolites. VIP values of 0.5 to 1 could also be significant [43]. Etha-
nol and acetaldehyde are among the substances whose mutagenic role in CRC has been 
discussed [37]. An increase in ethanol and acetaldehyde with a VIP of approximately 0.8 
was seen in adenoma models. Increased tyramine was evident in both adenoma and car-
cinoma models. It is genotoxic to intestinal cells. It also further damages cancer cells by 
disrupting the DNA repair system [44]. In our opinion, despite the significant evidence in 
this section, there is still room for further investigation in future research. 

3.2. Metabolic Alterations in the Adenoma Microbiota Increase Inflammation and Regulate the 
Immune System 

Some metabolites play a key role by being multifunctional at different CRC levels.  
Hydrogen sulfide increases inflammation by reducing the oxidation of butyrate and 
breaking down the intestinal epithelial cell barrier. Furthermore, butyrate plays a role in 
reducing inflammation and the accumulation of harmful species by interacting with the 
immune system and producing a suitable environment [37]. Trimethylamines, in addition 
to inducing DNA damage, cause inflammation [37,41]. Increased hydrogen sulfide and 
trimethylamines and decreased butyrate in the adenoma microbiota meta-model, in addi-
tion to the role of mutagenicity, showed increasing inflammation. 

Histamine is a chemical messenger made by immune cells that is also involved in 
inflammation. Previous studies have shown increased production of histamine in CRC 
and decreased catabolism in CRC adenomas. It may also play a role in the development 
of CRC by affecting the histamine 2 receptor (H2R) [45]. Although the production of this 
substance has not been studied in previous studies from the perspective of the microbiota 
and the role of this organ, in the adenoma meta-model, histamine production was signif-
icantly increased. Simultaneous reductions in chondroitin sulfate and glucosamine were 
observed in both the adenoma and carcinoma meta-models. The possible effects of these 
two substances on the initial prevention of CRC, with anti-inflammatory properties, were 
previously investigated [46]. 

3.3. CRC Microbiota Contribute to the Growth and Proliferation of Cancer Cells in Both Tumors 
The complete urea cycle converts excess nitrogen to urea and excretes it in the urine. 

This complete cycle is mainly active in the liver, but enzymes in other cells are responsible 
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for the synthesis of the intermediates of this cycle through the use of nitrogen according 
to cells’ needs. Extrahepatic urea cycle enzymes are the only intracellular producers of 
arginine, citrulline and ornithine, which are precursors for the synthesis of polyamines, 
nitric oxide (NO) and proline. In cancer, unlike in liver cells that secrete nitrogen, urea 
cycle mediators, including arginine, proline and ornithine, enter anabolic pathways, and 
changes in their enzymes contribute to tumor growth [42]. As ammonia production in-
creases, ammonia condensation with bicarbonate produces carbamoyl phosphate (CP) 
through the enzyme carbamoyl phosphate synthase (CPS1), which prevents ammonia tox-
icity. It has been observed that, in cancer, the CP barrier between the mitochondria and 
the cytoplasm disappears, and cytoplasmic CP increases [47,48]. Finally, the CAD protein 
(a trifunctional multi-domain enzyme including carbamoyl phosphate synthase 2, aspar-
tate trans-carbamylase and dihydro-orotase) converts cytoplasmic CP to pyrimidines, 
which are required for cell proliferation. Furthermore, increased CPS1 expression has 
been observed to be associated with a poor prognosis in CRC [49,50]. In the MSEA, the 
urea cycle was increased in the adenoma and carcinoma meta-models, and it was shown 
that the CRC microbiota may play a key role in increasing the activity of this cycle in 
human cells. 

Interestingly, arginine, proline and ornithine, which are important in the urea cycle, 
were increased in the adenoma models. Furthermore, the increase in arginine and proline 
metabolism in human cells was increased according to the MSEA results. Arginine and 
proline replace glucose in the energy supply under glucose deprivation and energy defi-
ciency. The enzyme arginine succinate lyase (ASL) is highly expressed in various cancers, 
including CRC, which produces arginine, NO and citrulline. Furthermore, the production 
of intracellular NO from arginine is dependent on this enzyme, so the inhibition of this 
enzyme has similar effects on the reduction of NO. NO promotes cell proliferation [42]. 

The amount of secreted glutamine, an important hallmark metabolite of cancer me-
tabolism, was increased in the carcinoma meta-model. Cancer cells use glutamine during 
glutaminolysis for cell growth and proliferation. This is one of the hallmarks of cancers, 
and many treatment strategies have been developed based on it. Cancer cells use media-
tors created in the glutaminolysis cycle to replenish the TCA cycle [51]. Glutamine is prob-
ably needed for tumors to become malignant. By producing ammonia, glutamine regu-
lates the intercellular physiological pH of cancer cells as a buffer [52]. In addition to glu-
tamine, pyruvate was further increased in the carcinoma meta-model. 

Pyruvate is present in anaplerotic reactions in ovarian cancer and affects mitochon-
drial functions [53]. By affecting the ETC, it causes the production of ROS and alters cell 
proliferation [54]. The serine racemase enzyme produces pyruvate from serine. The role 
of this enzyme in CRC becomes more prominent with the production of pyruvate, and it 
aids tumor growth and is being investigated as a drug target [55]. Interestingly, our mod-
els confirmed these findings: firstly, its gene is present in Firmicutes, Actinobacteria and 
Fusobacteria, which are present and prevalent in CRC microbiota models. Secondly, there 
were decreased levels of serine and increased levels of pyruvate in the carcinoma meta-
model and, thirdly, there is increased pyruvate uptake from the environment in some 
cancers. Finally, the increase in pyruvate demonstrated its supportive role as an energy 
supplier and in increasing cell proliferation in the carcinoma meta-model. According to 
the results of our modeling, the influence of the microbiome in this regard can be very 
significant. 

Despite the principle of ignoring the TCA cycle and the priority of aerobic glycolysis 
in cancer cell metabolism, the TCA cycle was increased in the MSEA of the adenoma meta-
model. The TCA is involved in the production of required macromolecules and the energy 
production of cancer cells [51]. From these results, we could deduce that the microbiome 
contributed to an increase in the metabolic cycle, energy production and cancerous tumor 
formation. 
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The effects of hormones on pathogenicity and its origin are usually considered in the 
physiology of a human body. The MSEA results revealed the enrichment of thyroid hor-
mone synthesis in the carcinoma meta-model. There have been many studies on the effects 
of thyroid hormone and nuclear receptors on tumorigenesis and cancer cell proliferation. 
Despite the heterogeneity in these studies, increased receptor expression in CRC and in-
creased risk in patients with hyperthyroidism may be of interest. It should also be noted 
that, given the environmental uptake of cancer cells, the role of microbiome metabolism 
in the production and explanation of the effect of this hormone could be important [56,57]. 

Serotonin and dopamine were also increased in the adenoma meta-model. These are 
neurotransmitters produced by the central nervous system and the gastrointestinal tract. 
Clinical studies have proven their effects on the growth of tumors such as CRC [58–64]. 
Furthermore, the overexpression of the serotonin B2 receptor, which leads to increased 
cell proliferation, is potential evidence of the effect of serotonin on CRC cell proliferation 
[65]. These roles in CRC were also proved by our models, but with the collaboration of the 
microbiota. 

Other pathway alterations involved cardiolipin and ETC biosynthesis, which were 
enriched in the MSEA results for the adenoma meta-model. Cardiolipin is present in the 
inner membrane of the mitochondria; its overexpression and interaction with ETC pro-
teins in CRC cells increases and optimizes the efficiency of mitochondrial respiration [66]. 
The inhibition of the ETC also reduces tumor growth [67]. Considering the role of cardi-
olipin in membrane structure and its interaction with ETC, the effect of adenoma micro-
biome of increasing cell proliferation through supporting mitochondrial precursors and 
energy supply through the ETC has been demonstrated. 

The gut microbiome can also accelerate the production of purine and pyrimidine pre-
cursors, supporting cell proliferation and energy supply. Our results show significant in-
creases in nucleotides, DNA precursors and purine metabolism in the adenoma and car-
cinoma models. Adenine, adenosine and deoxy-adenosine, deoxy-cytidine, uridine, gua-
nosine and thymidine were found among the enhanced metabolites for both models. Thy-
midine catabolism is a metabolic strategy of cancer cells that provides them with energy 
by supplying carbon to the glycolytic pathway under nutritional deprivation [68]. 

Phenolic acids and cobalt chloride have anticancer effects [69,70]. The decrease in 
phenolic acids and cobalt in cancer models compared to healthy individuals is in good 
agreement with the role of the microbiome in reducing cell proliferation. 

3.4. Microbiome Metabolites in Adenoma and Carcinoma are Involved in the Development of 
Colorectal Cancer, such as through (the Inhibition of) Apoptosis and Invasion 

Our carcinoma meta-data model indicated the prevention of apoptosis due to a sig-
nificant reduction in the  synthesis of taurine, spermidine, phosphatidylethanolamine and 
phenolic acid metabolites. Taurine stimulates apoptosis, and its secretion in the carcinoma 
microbiome may be reduced [71,72]. Spermidine, which was increased in the adenoma 
model and was involved in inflammation and tumorigenesis, was decreased in the carci-
noma meta-model. The dual role of spermidine in cancer was previously investigated. 
Spermidine can play a role in tumor suppression by increasing apoptosis and autophagy, 
and decreasing immunosuppression [39]. The reduction of this metabolite in the carci-
noma meta-model showed the role of the microbiome in inhibiting the anticancer effect of 
spermidine. The role of phosphatidylethanolamine in stimulating apoptosis by reducing 
the mitochondrial membrane potential in hepatocytes has been previously demonstrated 
[73]. The decreased synthesis of this substance in the carcinoma microbiome probably pre-
vents apoptosis. Decreases in galacturonate and butyrate metabolites were seen in the ad-
enoma meta-model. Galacturonate-containing pectins have been introduced as drugs that 
increase apoptosis, as well as carriers, and in combination with anticancer drugs [74]. A 
decrease in butyrate, a substance that induces apoptosis, prevents cancer cell apoptosis 
[75,76]. The elevated glutamine and pyruvate in the carcinoma meta-model showed that 
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the microbiome is able to provoke malignancy and cancer migration. Pyruvate has previ-
ously been shown to support the migration and development of ovarian cancer [53]. The 
presence of glutamine may also be essential for cancer malignancy [52]. Increased arginine 
and, eventually, higher production of NO, dopamine and serotonin, indicated the poten-
tial for the microbiome to affect cancer cell angiogenesis. NO can be involved in epithelial-
to-mesenchymal transition (EMT) and angiogenesis [42]. Clinical studies have shown the 
effects of serotonin and dopamine on the angiogenesis of cancers such as CRC [65]. 
Fumarate affects the migration and invasion of cancer cells by acting on the killer cell 
lectin-like receptor C3. An increase in this metabolite in the adenoma meta-model could 
confirm this effectiveness [77]. 

4. Materials and Methods 
In this study, we investigated microbiome metabolism in terms of the abundances of 

microbiota and their distinct metabolomics in different tumors of CRC. For this purpose, 
we used metabolic modeling and metabolomics analysis approaches including commu-
nity metabolic modeling (CMM), principal component analysis (PCA) and metabolite set 
enrichment analysis (MSEA). We used metagenomics and the relative abundances of mi-
crobiota data as the input for microbiome metabolic modeling. Figure 10 depicts the work-
flow used for this study. To determine the compatibility of the input data with the meth-
odology, we preprocessed the metagenomic data. 

4.1. Data Collection and Preprocessing 
4.1.1. Taxonomy Assignment Data 

The relative abundances of microbiota in different tumors of CRC were extracted 
from the MGnify database (study MGYS00001248). The dataset consists of mucus biopsies 
from 160 individuals harvested by colonoscopy and examined histologically [21], and 61 
tumor-free specimens, 47 patients with adenoma polyps and 52 carcinoma patients. 

4.1.2. Data Preprocessing 
To create a CMM, we require (1) the relative abundances of presented and recognized 

bacteria, and (2) individual GEMs that match the recognized bacteria. For data con-
sistency, we manually modified the taxonomy nomenclature because metagenomic data 
often do not have sufficient resolution at the strain, species and genus levels for the bac-
teria. For the compatibility of the data with the taxonomy assignments, high-resolution 
taxon data were matched with AGORA GEM models derived from the Virtual Human 
Metabolism [78] (VMH) database. For non-compatible data, we used the “createPanMod-
els” function in the Constraint-Based Reconstruction Analysis (COBRA) toolbox [79] to 
construct Pan models. A Pan model is a GEM constructed from a combination of some 
other GEMs. 

To modify the taxonomy nomenclature, we used the Disbiome database [28]. This 
database presents the dysbiosis of the microbiome in diseases, and the nearest strain, spe-
cies, or genus affected by CRC according to its decrease or increase in abundance. Taxon-
omy levels higher than family were matched to AGORA models and Pan models by a 
literature review and using the Disbiome database. 

Data normalization is challenging in this domain. One of the most applicable meth-
ods is rarefaction, the applications of which in metagenomics and microbiome analysis 
have been discussed [29–31]. The average number of sample read counts was about 10,000. 
To confirm this value, we also plotted the rarefaction curve (Figure 1) and considered its 
asymptote. Curve plotting and data normalization were performed using the rarefaction 
method in the Vegan [80] library in R. 
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4.2. Microbiome Metabolic Modeling 
Large-scale community modeling requires the integration of the relative abundances 

of metagenomics data into metabolic models. For this purpose, we used the mgPipe pipe-
line that is the part of the microbiome modeling toolbox in the COBRA toolbox. The 
mgPipe function includes: (1) the analysis of the microbiota abundances per sample; (2) 
the construction of microbiome models and adding lumen-transport reactions by connec-
tion to a specific diet and uptake/secretion behavior; and (3) the simulation of models and 
the lumen metabolic environment under the given diet by flux variable analysis (FVA). 
These simulations demonstrate the maximal capability for metabolite production in a lu-
men environment: the so-called net maximal production capacity (NMPC). The metabolic 
modeling of the microbiome community was performed using the COBRA toolbox in the 
MATLAB 2017b environment with the IBM CPLEX 12.8 solver. We used the mgPipe pipe-
line and AGORA 1.03 [26] models and their Pan models to reconstruct CMM on a rich 
diet. In fact, the rich diet supports the stability of the relative abundances of bacteria in an 
environment without limitations in nutrient-uptake fluxes. Therefore, we selected the rich 
diet condition for further modeling. 

4.3. Data Analysis 
4.3.1. Multivariate Analysis 

NMPC data show the maximum microbiota community capacity of each sample in 
creating the intestinal lumen metabolic environment. This information was used to ana-
lyze and compare within groups and between groups. 

PCA and partial least-squares discriminant analysis (PLS-DA) are two methods that 
are important in the analysis of metabolomic data [33]. In this study, due to the high num-
ber of features, we first ran PCA to investigate the similarity and discrimination between 
all the samples and to separate similar models of each group—the so-called meta-model. 
Then, PLS-DA was performed for comparison between groups. 

The variable important projection (VIP) used PLS-DA information to display each of 
the variables in the first component of each PLS-DA model. 

The PCA and PLS-DA were performed in the SIMCA software environment of 
UMETRICS company version 14.1. Autofit was performed for PCA and PLS-DA modeling 
with default settings. 

The cross validation of the PCA and PLS-DA was performed using the SIMCA soft-
ware, by full cross validation. The method used the Krzanowski and PRediction Error 
Sum of Squares (PRESS) methods and returned the significance of the models [81,82]. 

4.3.2. Metabolic Set Enrichment Analysis 
MSEA [83] is an approach to identifying and interpreting patterns in human metab-

olism through metabolic alterations according to metabolic data. The VMH database was 
used to isolate microbiota-produced metabolites involved in human metabolism from all 
the metabolites derived from the PLS-DA and then VIP extraction. These metabolites were 
used as input for the Metaboanalyst platform [84]. 

5. Conclusions 
Our community metabolic models unveiled the roles of the gut microbiome in CRC 

development, as well as its significant influence on adenoma and carcinoma tumors, from 
provoking mutations to facilitating the spread, homeostasis and survival of colorectal can-
cer cells. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/metabo11070456/s1. Supplementary 1: Pan AGORA models (upon request), Supplemen-
tary 2: Bacterial GEMs’ names and their abundances for further analysis, Supplementary 3: Micro-
biome community models (upon request), Supplementary 4: Results for net maximal production 
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