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Abstract: Plants are constantly challenged by changing environmental conditions that include abiotic
stresses. These are limiting their development and productivity and are subsequently threatening
our food security, especially when considering the pressure of the increasing global population. Thus,
there is an urgent need for the next generation of crops with high productivity and resilience to
climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution
(4IR) technologies has redefined the ideological boundaries of research and applications in plant
sciences. Recent technological advances and machine learning (ML)-based computational tools and
omics data analysis approaches are allowing scientists to derive comprehensive metabolic descrip-
tions and models for the target plant species under specific conditions. Such accurate metabolic
descriptions are imperatively essential for devising a roadmap for the next generation of crops that
are resilient to environmental deterioration. By synthesizing the recent literature and collating data on
metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out
the opportunities and challenges offered by omics science, analytical intelligence, computational tools
and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics
workflows and the use of machine learning and computational tools to decipher the dynamics in the
chemical space that define plant responses to abiotic stress conditions.

Keywords: abiotic stress; metabolomics; 4IR technologies; automation; machine learning

1. Introduction—A Dawn of a New Era and a Prime to Plant Defenses
1.1. The Fourth Industrial Revolution (4IR) Era

The Fourth Industrial Revolution (4IR) era entails the integration of advanced tech-
nologies in the physical, digital and biological domains. This includes the confluence and
convergence of emerging technologies such as artificial intelligence (AI), the Internet of
Things (IoT), big data analytics, cloud computing, robotics and wireless telecommunica-
tions [1,2]. These innovative technologies have brought about paradigm shifts and are
disruptively boosting many industries globally by encouraging new models that enable the
acquisition, sharing, and use of data and resources to produce improved products/services
in a faster, cheaper, more effective and sustainable manner [3]. In life sciences, particularly
in the field of metabolomics—a multidisciplinary omics science that studies metabolism
(Section 2.1)—some of these 4IR technologies have been and are integral components of
metabolomics workflows. It suffices to highlight the use of analytical platforms that are
equipped with analytical and artificial intelligence (A/AI), generation of big data, applica-
tion and development of big data analytics involving the use of machine and deep learning
(ML and DL) algorithms (Figure 1).
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Figure 1. 4IR technologies in the plant metabolomics workflow. The 4IR technologies and their implementation within the 
plant metabolomics workflows are indicated based on colour, as highlighted by the key. An illustration of the preparation 
of samples with the assistance of robotics, advancements in analytical platforms, equipped with A/AI for sample analysis. 
The generated (big) data can be uploaded on cloud-based servers, e-infrastructures for data analysis, storage and sharing. 
Some of these web-based suits include MetaboAnalyst, XCMS Online, MetExplore, PhenoMeNal and GNPS. Computa-
tional tools in these e-infrastructures involve the use of chemometrics methods, ML and DL algorithms. Metabolic pathway 
reconstruction and network analysis are often used for biological interpretation of metabolomics data. The IoT is an indis-
pensable component supporting most of these cloud metabolomics frameworks. 

This review focuses on the use of metabolomics in interrogating plant responses to 
adverse environmental conditions, with a particular attention to the 4IR technologies in 
this multidisciplinary omics science. Metabolomics is increasingly enabling the decoding 
of the language of cells at molecular level, advancing the understanding of regulatory 
network rules and mechanistic events at cellular and chemical space of the plant under 
consideration. Plants are naturally sessile organisms, and are thus susceptible to changing 
environmental conditions such as abiotic stress factors that include drought, salinity, ex-
treme high and low temperatures, heavy metals, light and radiation [13,14]. These abiotic 
stress factors can negatively affect plant growth, development and productivity, and sub-
sequently the agricultural yield. It is, therefore, imperative to comprehensively and pre-
dictively understand the plant metabolism under abiotic stresses, as such fundamental 
and actionable insights (adding to the current knowledgebase, Section 1.2) will contribute 
to the development of plants with enhanced resilience and productivity, and support 
strategies that promote plant growth under abiotic stress conditions [15,16]. To logically 
articulate these aspects, the review is structured to comprise four main components. In 
Sections 1.1. and 1.2, the 4IR era is briefly defined and introduced as well as the current 
models of plant defense mechanisms. The second main section then elaborates on 4IR 
technologies in the context of (plant) metabolomics workflows, from sample preparation 
step to the annotation of metabolites. Automation and technological advancements in an-
alytical techniques, the use of machine learning and computational tools to aid in 

Figure 1. 4IR technologies in the plant metabolomics workflow. The 4IR technologies and their implementation within the
plant metabolomics workflows are indicated based on colour, as highlighted by the key. An illustration of the preparation of
samples with the assistance of robotics, advancements in analytical platforms, equipped with A/AI for sample analysis.
The generated (big) data can be uploaded on cloud-based servers, e-infrastructures for data analysis, storage and sharing.
Some of these web-based suits include MetaboAnalyst, XCMS Online, MetExplore, PhenoMeNal and GNPS. Computational
tools in these e-infrastructures involve the use of chemometrics methods, ML and DL algorithms. Metabolic pathway
reconstruction and network analysis are often used for biological interpretation of metabolomics data. The IoT is an
indispensable component supporting most of these cloud metabolomics frameworks.

As the field matures, with advancements in technologies, development and appli-
cations of state-of-the-art bioinformatics and computational tools, equipped with ML
algorithms, are gaining momentum for data mining and interpretation [4,5]. Typical
widely adopted examples include the Global Natural Product Social Molecular Network-
ing (GNPS), an ecosystem of tandem mass spectrometry (MS/MS) data storage, analysis
and sharing [6], MetaboLights, a cloud computing based repository that enables the sharing
and re-use of data and meta-data [7], MS2LDA, a software tool that extracts co-occurring
mass fragments and neutral losses from MS/MS spectra using an unsupervised ML algo-
rithm [8], MetaboAnalyst, a web-based service consisting of modules for data pretreatment,
mining and pathway analysis, XCMS, a cloud-based data analysis suite for preprocessing
untargeted liquid chromatography-mass spectrometry (LC-MS) data, statistical analysis,
pathway analysis and multi-omic data integration, MetExplore, an environment for the
curation of metabolic networks, and PhenoMeNal, a e-infrastructure with a collection
of workflows and tools for metabolomics analysis pipelines [5] (Figure 1). The digiti-
zation of mass spectra to aid in biological interpretation of plant metabolomics data is
illustrated in a study of more than 70 Rhamnaceae plant extracts [9] where the authors illu-
minate clade-specific chemical signatures annotated through an integrative computational
metabolomics workflow.

The increasing momentum and use of 4IR technologies in life sciences, particularly
in plant metabolomics, which is the focus of this review, is redefining the ideological
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boundaries of research and applications in the field. Recent advances in generating com-
prehensive biological (metabolomics) datasets at high throughput, in combination with
enhanced capabilities to mine and interpret these datasets are increasingly allowing scien-
tists to derive a comprehensive understanding for crop plants under consideration [10,11].
Such accurate and predictive models that describe the metabolism of plants under specific
conditions would provide novel insights that identify key biological bottlenecks in regard
to plant growth and productivity [11,12].

This review focuses on the use of metabolomics in interrogating plant responses to
adverse environmental conditions, with a particular attention to the 4IR technologies in this
multidisciplinary omics science. Metabolomics is increasingly enabling the decoding of the
language of cells at molecular level, advancing the understanding of regulatory network
rules and mechanistic events at cellular and chemical space of the plant under consideration.
Plants are naturally sessile organisms, and are thus susceptible to changing environmental
conditions such as abiotic stress factors that include drought, salinity, extreme high and
low temperatures, heavy metals, light and radiation [13,14]. These abiotic stress factors can
negatively affect plant growth, development and productivity, and subsequently the agri-
cultural yield. It is, therefore, imperative to comprehensively and predictively understand
the plant metabolism under abiotic stresses, as such fundamental and actionable insights
(adding to the current knowledgebase, Section 1.2) will contribute to the development
of plants with enhanced resilience and productivity, and support strategies that promote
plant growth under abiotic stress conditions [15,16]. To logically articulate these aspects,
the review is structured to comprise four main components. In Section 1.1. and Section 1.2,
the 4IR era is briefly defined and introduced as well as the current models of plant defense
mechanisms. The second main section then elaborates on 4IR technologies in the context
of (plant) metabolomics workflows, from sample preparation step to the annotation of
metabolites. Automation and technological advancements in analytical techniques, the
use of machine learning and computational tools to aid in deciphering the dynamics in
the chemical space that define plant defense responses are highlighted. The application of
metabolomics to decode plant responses to adverse environmental conditions is increasing,
and this is highlighted in the third main section. The review concludes with the fourth
main section that contains an outlook on expected developments in the plant metabolomics,
driven by advancements of 4IR technologies.

1.2. Plant Defense Mechanisms—Current Models

Evolutionally, plants have developed eminently intricate immune systems and defense
mechanisms to respond to biotic and abiotic stresses [17]. These responses are stress-
dependent, at cellular and molecular levels, but there are also some overlaps in biochemical
and physiological events that define plant response to stresses [18,19]. Over the years,
various studies have generated a substantial knowledge-base and understanding of plant
responses to different adverse environmental stresses, formulating models that explain
mechanistic events that govern plant responses [20–22]. It suffices here to highlight some of
the elucidated molecular events that define plant defense mechanisms, involving the danger
perception to activation of downstream molecular and cellular phenomonologies [23].
Perception of abiotic stresses generally results in the generation of reactive oxygen species
(ROS) that act as early signaling molecules. Elevated levels of ROS act as a signaling wave
that is involved in a defense-related reconfiguration of the hormonal network comprising
abscisic acid (ABA), gibberellins (GAs), auxins, jasmonic acid (JA), salicylic acid (SA)
ethylene, cytokinins (CKs) and brassinosteroids (BRs). These phytohormones are primary
signaling molecules that trigger the expression of stress-related genes and induction of
metabolic reprogramming and physiological changes that result in abiotic stress tolerance
or resistance [16,21]. The outcome is determined by the directional shift of metabolic
reconfigurations and fluxes—either towards an irreversible damage by the stress factor
or effective stress resistance and acclimation of the plants. Some of the (general) negative
impacts of abiotic stresses on the plant physiology include a reduction in both transduction
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and photosynthesis rates, a decrease in stomatal conductance and in leaf water content
and, subsequently, a reduced growth rate [24,25].

The current understanding of the stress signaling and responses is still the tip of
an iceberg. Comprehensive predictive models that describe the activation of different
signals, sensing mechanisms, downstream changes in gene expression, metabolism, physi-
ology, growth and development are still lacking. Systems biology approaches, particularly
omics sciences (genomics, transcriptomics, proteomics and metabolomics) carried out
separately or in integrated manner, hold unique opportunities to generate novel insights
describing, comprehensively and predictively the metabolism of plants under specific
conditions [10–12]. The plant metabolome can echo the effect of environmental stress
conditions, and therefore, metabolomics can be applied to provide a snapshot of the plant
metabolism at a cellular and molecular level by monitoring the changes in metabolite
levels and fluxes, which reflect the biological and physiological processes in response to
the stressful conditions [26,27]. Thus, the focal point of this review is the application and
potential of metabolomics with 4IR-inspired tools and technologies to aid in elucidating
plant defense responses to abiotic stress conditions by illuminating the plant specialized
metabolome [28–30].

2. 4IR Technologies and Plant Metabolomics

Metabolomics is classically defined as an omics science that aims at the analysis of the
entire complement of small molecular weight molecules, namely metabolites
(≤1500 Da in size), within a biological system under given physiological conditions [29,31].
Metabolomics incorporates the domains of biology, chemistry, chemometric, statistics
and computer science. This multidisciplinary scientific field has matured over the last
two decades and has gained popularity, particularly in the life sciences, and is becoming
indispensable in interrogating cellular biochemistry and elucidating the mechanisms re-
sponsible for metabolic changes in response to different physiological conditions [5,32–35].
In plant sciences, metabolomics has been successfully applied in a broad spectrum of
studies including metabolic pathway studies [29], relating genotype and biochemical phe-
notype [36], silent phenotype mutations [37], plant-environment interactions [27] and
plant priming, a phenomenon that pre-conditions plants for enhanced defense against
stresses [38]. Metabolomics, particularly for large scale studies, is, however, limited by
various bottlenecks; hence, the focus to overcome these challenges has intensified through
the development of computational metabolomics tools and improved technologies [9],
most of which are 4IR-driven (Figure 1) and are articulated in the following sub-sections
on 4IR technologies in metabolomics workflows.

2.1. Automation in Sample Preparation

Sample preparation is a key aspect of metabolomic studies, as it is responsible for
removing proteins and cellular debris from the metabolites of interest. An ideal sample
preparation method should maintain sample integrity, and be simple and robust. Tradi-
tional sample preparation steps involve the quenching of the metabolism, cellular lysis
with organic solvents or detergents, sonication and centrifugation. The preparation of large
numbers of samples, utilizing such sample preparation strategies is, however, time consum-
ing and likely to introduce unwanted variation [39,40]. The demand for automated sample
preparation strategies (Figure 1) that will diminish human error, improve reproducibility,
decrease extraction time and increase throughput for large-scale metabolomics studies
is thus evident [41]. Recently, novel automated sample preparation methods (Table 1)
have emerged in the field of metabolomics. These methods are solid-phase extraction
(SPE), solid-phase microextraction (SPME), liquid-phase microextraction (LPME) methods
(dispersive liquid–liquid microextraction (DLLME), hollow fiber liquid–liquid microex-
traction (HF-LLME), single drop microextraction (SDME) and the recent electromembrane
extraction (EME)), accelerated solvent extraction (ASE), supercritical fluid extraction (SFE),
microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) [40,42,43].
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Table 1. Automated sample preparation methods with their advantages and disadvantages over traditional sample preparation methods.

Method Description Advantages Disadvantages
Originally

Automated?
(Yes/No)

Reference(s)

Solid-phase extraction
(SPE)

Extracts metabolites based on their chemical and
physical properties that determine their distribution

between the mobile liquid phase and a solid stationary
phase. Targeted metabolites are released from

stationary phase by changing the mobile phase into the
elution solvent.

Enhanced selectivity, rapid,
reproducible and economical. Poor metabolite coverage No [43–47]

Solid-phase
microextraction

(SPME)

Extracts a range of metabolites from a variety of
matrices by the insertion of a polymer-coated fiber into

either the vial headspace, liquid sample or exposed
in vivo. The metabolites diffuse from the sample onto

the fiber.

Enhanced sensitivity,
minimum invasiveness,

enhanced analysis
throughput and compatibility

with in vivo sampling
and extraction.

Time-consuming steps in
equilibration of the fibre (30
min) and sample extraction

(up to 5 min), low metabolite
coverage, and its expensive.

Yes [40,48–50]

Dispersive
liquid–liquid

microextraction
(DLLME)

Extraction solvent (i.e., water-immiscible organic
solvent) is added to a dispersive solvent (i.e.,

water-miscible solvent), the mixture is then injected into
the sample to form a homogenous solution. Induced
dispersion increases surface contact between extract

and the sample, thus resulting in
instantaneous extraction.

Simple, cost-effective, rapid,
has high extraction recovery,
reduced solvent consumption
and has high reproducibility.

Uses halogenated and
organic solvents, requires

manual/mechanical agitation
of the sample for dispersion
of the organic solvents in the

sample solution, and
time-consuming phase

separation step.

No [48,51,52]

Electromembrane
extraction (EME)

An electrical field is applied between the sample and
the acceptor compartments, separated by a membrane
of organic solvent (i.e., the support liquid membrane
(SLM)). Charged ionic metabolites are extracted from
the sample solution, through the SLM, and into the

acceptor compartment. Proteins, salts, etc. are
incapable of passing the SLM, thus metabolites are

recovered in the aqueous phase.

Enables large-scale
automation.

Difficulty of extracting
hydrophillic metabolites. No [48,52,53]
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Table 1. Cont.

Method Description Advantages Disadvantages
Originally

Automated?
(Yes/No)

Reference(s)

Hollow fiber
liquid–liquid

microextraction
(HF-LLME)

Two-phase mode: The hollow fiber (HF) is soaked with
the extraction solvent and exposed to the sample’s

solution or headspace, an equilibrium between solvent
and sample is establishes, thus resulting in the
extraction of metabolites from the sample into

the solvent.
Three-phase mode: The center of the HF contains an

aqueous phase (i.e., acceptor phase), in addition to the
soaked HF pores with organic solvent. The HF is

exposed to the sample where two equilibriums are
established. The first is between the sample and the
solvent, followed by the second between the solvent

and the acceptor phase, thus metabolites are extracted
from the sample into the acceptor phase of the HF

through the solvent.

Highly selective and
concentrate metabolites. No [51,52]

Single drop
microextraction

(SDME)

Similar to HF-LLME. A syringe is used instead of a HF
and only a drop of the extractant solvent is required.

Simple, cost-effective and
time-saving.

Limited by partial solubility
of organic solvents in water,
limited extraction volume,
metabolite losses due to

volatility and dislodgement
of the extractant solvent.

No [51,52,54]

Accelerated solvent
extraction

(ASE)/Pressurized
liquid extraction

(PLE)

The solvent’s temperature is elevated beyond its boiling
point to increase its solubilizing capacity and reduce its

viscosity to penetrate into the sample matrix and
increase the metabolites’ diffusion rate. Additionally,

the elevated pressure ensures the solvent remains in the
liquid phase and aids it in penetrating through the

sample matrix, which maximizes solvent and
metabolite contact, and result in effective extraction.

Reduced solvent usage
and rapid. No [42,55,56]

Supercritical fluid
extraction (SFE)

Utilizes gas properties above their critical points as
solvents to facilitate the extraction of non-polar to

semi-polar metabolites from plant materials.

Enhanced sensitivity and
accuracy, reduced extraction
time, ideal for thermo-labile
metabolites and reduced use

of organic solvents.

Very expensive. Yes [42,56–58]
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Table 1. Cont.

Method Description Advantages Disadvantages
Originally

Automated?
(Yes/No)

Reference(s)

Microwave-assisted
extraction (MAE)

Microwave, electromagnetic radiation with a frequency
in the 0.3–300 GHz range, energy is used to extract
polar metabolites from plant materials by heating

the solvent.

Reduced extraction time
(15-20 min), reduced solvent

consumption, improved
extraction yield and

precision.

Operates at relatively high
temperature which is

problematic for thermally
liable metabolites, low

extraction yield for non-polar
solvents and requires a

centrifugation step to remove
solid materials

from extractant.

No [57,59,60]

Ultrasound-assisted
extraction (UAE)

Utilizes ultrasonic energy and solvents to extract
secondary metabolites from various plant materials.

Reduced extraction time,
solvent consumption, energy,

thermal degradation,
extraction temperature and
equipment size, enhanced

mass transfer, extraction yield
and high extract recovery.

Low extraction efficiency. No [57,61–63]
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The detailed SPME workflow is described in [50]. This method eliminates human error
and thus improves precision and sample throughput. In addition, damage to the fragile
fiber and consumption of chemicals and their environmental footprint is reduced [64,65].
Automation of dispersive liquid–liquid microextraction based on solidification of floating
organic drop (DLLME-SFO) method has been achieved by the integration of a sequential
injection analysis (SIA) system with a modified robot that has a 3D printed phase separa-
tor [66]. The EME method is automated when performed in a multiwell-format [48]. The
HF-LLME method integrates the extraction, purification and concentration steps into a
single step and is performed in either a two- or three-phase mode as described in Table 1.
Automation of this method is enabled by a 96-well HF-LLME system with an auto-injector
integrated to an analytical platform such as high performance liquid-chromatography
(HPLC) [51]. Principles of ASE and the factors that determine the efficiency of metabolite
extraction are highlighted in [42]. Detailed information on the SFE’s system, procedure,
solvents and on-line automation with a supercritical fluid chromatography with a triple
quadrupole mass spectrometer detector (SFC-QqQ-MS) are highlighted in the following
studies [57,58]. The system and procedure of the MAE method is described by [57,67]. This
MAE system has been automated by the incorporation of an autosampler that enables
extraction sequences of up to 24 samples and thus accelerates method optimization [59,68].
The principles of the UAE method for metabolite extraction are explained in detail in the
studies of [57,69,70].

In the context of plant metabolomics, only a few of these methods have been applied.
For instance, the use of SPE to obtain insights into complex phenolic composition of tea
and other plant samples [44], SPME to extract metabolites that reflect the changes in the
‘HoneyCrisp’ apples metabolome [71], extraction of phenolics with DLLME for chromatog-
raphy analysis has been reported by [72], EME with liquid chromatography-tandem mass
spectrometry (LC-MS/MS) was used to analyze plant hormones in citrus leaf samples [73],
ASE was used in the analysis of natural products in green tea (Camellia sinensis L.) [55],
SFE had been applied to extract tetrahydrocannabinol (THC) from Cannabis sativa L. [74],
pharmaceutical and nutraceutical natural compounds from Berberis species have been
extracted with MAE [75], and UAE has been applied in the extraction of phytochemical
compounds from apricot by-products (pulp) [76]. These methods, including HF-LLME
and SDME, have not yet been reported in metabolomics studies of plant responses to
abiotic stresses. In plant metabolomics, these automated sample preparation methods
allow for the extraction of metabolites from hundreds of samples with reduced extraction
time and solvent consumption per sample, minimization of variation between samples, im-
proved metabolite recovery, and at higher purity levels. Thus, such automation of sample
preparation step enables consistency in sample handling, an assurance factor towards the
generation of high quality and reproducible metabolomics data. The confidence in the data
produced is essential for maximizing the biological output.

Robotic systems have thus been developed in addition to automated sample prepara-
tion methods for rapid throughput and reproducibility in large scale metabolomic analysis
(Figure 1). These robots can be incorporated into existing automated systems to function as
a transport system (i.e., sample handling) or to perform manipulation (i.e., sample prepara-
tion) tasks [77,78]. Depending on the type of task(s) performed, a single-arm or dual-arm
robot is used. Single-arm robotic systems perform transportation tasks to connect different
stations, whereas dual-arm robotic systems perform both transportation and manipulation
tasks with the use of standard laboratory equipment and devices. In addition, dual-arm
robots can function simultaneously and independently. Dual-arm robots can also transfer
labware from one arm to the other without setting it down [77,79]. An example is the
CSDA10F dual-arm robot (Yaskawa, Kitakyushu, Japan), that is used to perform multiple
tasks including the handling of vials, solvents, pipettes and sample preparation. It is also
capable of transferring and feeding vials to the autosampler of an analytical instrument.
The use of the dual-arm robot improved the quality and efficiency of the analytical measure-
ments in comparison to manual sample preparation [79]. Remote sample preparations can
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thus be achieved with the application of such dual-arm robotic systems, which will save the
analyst time and increase reproducibility that will lead to accurate analyses of metabolites.
Thus, as one of the core steps in the (plant) metabolomics workflow, sample preparation has
a tremendous impact on the final results. Hence, the minimization of errors and improved
coverage and reproducibility, by incorporating automation and robotic technologies, will
improve the biological insights generated from metabolomics investigations, particularly
in abiotic stress studies.

2.2. Automation and Analytical Intelligence in Analytical Platforms

Robust analytical platforms are essential for accurate analyses of metabolites with
good reproducibility over a period of time. Nuclear magnetic resonance (NMR) and liquid
chromatography-mass spectrometry (LC-MS) are the most popular platforms used in
metabolomics [29,80,81]. Automation in these analytical platforms, particularly in LC-MS,
has significantly improved the efficiency of data acquisition and its reliability. Therefore,
due to the preexistence of automation within these platforms, we thus refer to automation
in the context of technological advancements of these platforms. In addition, automation
has also reduced the risk of variability or errors related to manual operations. However,
the operation of these analytical platforms is dependent on highly skilled and experienced
analysts that can identify and avoid problems prior to analysis to increase the chance of
producing highly reliable and robust data [78,82].

Platforms with analytical intelligence could contribute to the acquisition of highly
reliable data, regardless of the user’s skill(s) or experience, but still need highly skilled
input to train the algorithms (Figure 1). Analytical intelligence is a concept for analytical
instruments and it consists of systems and software that resemble an experienced analyst
by automatically identifying good or bad conditions, displaying the results, providing
feedback to the user, and solving common problems faced by an experienced analyst. For
instance, column equilibration to avoid column damage, constantly monitoring the level
and consumption of the mobile phase, management of column performance, manually
purging the flow channels and manually picking and integrating peaks (i.e., peak detection
and peak integration) are some examples of problems that challenge analyst [78,83,84].
Although different forms of ‘analytical intelligence’ have been part of advancements in
analytical systems, the concept of ‘analytical intelligence’ has been recently articulated by
Shimadzu [83]. This analytical intelligence means automated support functions that utilize
digital technology involving IoT and artificial intelligence to enable high productivity and
maximizing reliability, regardless of an operator’s skill level. Analytical intelligence thus
allows a system to monitor and diagnose itself, handling any issues during data acquisition
without user input, and its implementation is expected to increase data reliability [83].

2.2.1. Mass Spectrometry (MS)-Based Platforms

Automated mass spectrometry (MS) systems are equipped with autosamplers and
in some cases cartesian xyz robotics systems (i.e., robotics systems designed to permit the
arms with at least three degrees of freedom) for sample preparation and injection into LC-
and gas chromatography (GC)-MS instruments, thus enabling higher throughput, multiple
and remote sample data acquisition [51,78]. GC-MS autosamplers are preferred over the
commonly used manual injection procedure, as they provide accurate, precise, and rapid
sample aliquoting for large quantities of samples with frequent wash cycles, which reduce
sample carryover, defined by the user. Autosamplers thus aid in enhanced statistical
analysis and, therefore, reliable biological interpretations by enabling the acquisition and
analysis of multiple biological replicates, which increases the sample size for powerful
statistical analysis [78,85]. Despite the advances of automated MS systems for enhancing
reliable biological interpretations, these systems are, however, limited by their resolving
power for isomers. Hence, automated MS systems are coupled with chromatographic
separation techniques to improve the separation of isomers. This solution has proven
successful; however, for complex samples such as plant extracts, additional advancements
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are required to drastically improve resolution and thereby enhance metabolite coverage
and biological interpretations [34,86].

2.2.1.1. Orthogonal Separations

High peak resolution, metabolite coverage and selectivity can be improved by the de-
velopment of two-dimensional (2D) GC and LC coupled to MS [34,48]. In these techniques,
two columns with different stationary phases, which are connected through a modula-
tor (often involving rotary valves), are used to provide further separation of co-eluting
metabolites from the initial column, thus enhancing resolution and peak capacity [34,78].
Considering that plants have complex metabolomes with many unique chemical species
and overlapping peaks, the application of these techniques contributes to the advancement
of plant metabolomics by enabling the detection, quantification and identification of the
vast number of unknown metabolites. Additionally, this will aid in the elucidation of the
plants cell and molecular mechanisms [87,88].

Ion mobility spectrometry (IMS) is another technology capable of enhancing peak
resolution and selectivity with rapid separations in the millisecond range [89]. IMS devices
separate ions based on their differences in mobility under the influence of an electrical
field in the gas phase caused by their shape, size and charge. The measurement of the
drift time (i.e., mobility) can be converted into the collision cross section (CSS), a unique
physiochemical property of an ion [48,90]. IMS is divided into various technologies that
are grouped into either dispersive or selective. Dispersive IMS technologies are those that
enable the analysis of all ions, whereas selective IMS technologies only enable analysis
of selected ions. Hence, the dispersive IMS technologies, which include drift tube IMS
(DTIMS) and travelling wave IMS (TWIMS), are suitable for untargeted metabolomics. The
selective IMS technologies, which include field asymmetric IMS (FAIMS) and differential
mobility analyzers (DMA), are suitable for targeted studies and provide better orthogonality
to conventional MS data.

Trapped IMS (TIMS) is the most recent IMS technology that is suited for targeted
studies due to its high selectivity with regard to the resolving power of analytes with
similar mobility; however, it can be utilized for untargeted studies by separating ions in an
ion funnel/drift tube, where the ions are carried by the gas flow towards the funnel exit
while the opposed electrical field pushes them back to the entrance funnel, resulting in
ions with identical charge to experience the same electrical force but different dragging
force from the gas flow due to different CSS. This results in better separation and peak
resolution [48,91,92]. The applied field strength, gas pressure and flow in the IMS cell varies
among the IMS devices [29,91]. The coupling of IMS with mass spectrometry (IMS-MS)
achieves separation based on ion mobility/CSS and mass-to-charge (m/z) ratio, which
enables separation of isomers and isobars, increases peak capacity, reduces chemical noise
and provides structural information through the CCS measurements. IMS-MS thus further
enhances resolution, selectivity, and sensitivity [89,91].

IMS can also be integrated into LC-MS systems by incorporating an IMS between
the ionization source after LC and before the MS analyzer [93]. For instance, in the study
of [94] that resulted in the profiling of 171 metabolites, including phenolics, flavonoids,
terpenoids, lipids and nucleotides, in 30 cultivars of leaf and head type lettuces (Lactuca
sativa L.). An untargeted screening of Passiflora leaf extracts with ultra-high performance
liquid chromatography ion mobility collision-induced dissociation mass spectrometry
(UHPLC-IM-CID-MS) has been used in the identification of flavonoid isomers, i.e., 6-
C and 8-C glycosylflavone isomer pairs orientin/isoorientin and vitexin/isovitexin [95].
These flavonoid isomers have been identified in plants subjected to abiotic stress. Thus,
the application of IMS in plant responses to abiotic stress research has the potential to
increase the identification of previously unknown detected metabolites and the resultant
metabolite coverage, thereby contributing to the elucidation of plant response mechanisms
to abiotic stress [96]. IMS is, however, limited by its inability to separate multiple coexisting
isomers with similar drift time and biomolecules such as carbohydrates, with flexible
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structure due to lack of reliable CSS calculation protocols and molecular models. Thus,
inaccurate CSS calculations and incorrect structural identification may occur. Here, models
based on machine and deep learning algorithms which take into consideration collision
effects, the long-range interactions between drift gas and the analyte ion, may be helpful to
reduce error rates by computing theoretical CSS values for biomolecules and predicting
metabolite structures [97,98]. The characterization of both metabolite structures and spatial
information in plants provides the opportunity to elucidate physiological mechanisms
in plant organisms, hence the development and advancements of spatial metabolomics
techniques [99,100].

2.2.1.2. Spatial Metabolomics: Mass Spectrometry Imaging

Current metabolomic techniques require the extraction of metabolites of interest from
biological samples prior to analysis. This approach has been widely used and successful in
detecting metabolomic changes in organisms; however, information concerning metabolite
spatial location within organelles, cells, tissues or organs is lost in the process, thus making
it difficult to interpret metabolomics data. This problem can be resolved but requires
time-consuming workflows and expert analyst [101,102]. The development of spatial
metabolomics has thus enabled in situ metabolomic approaches.

MS imaging (MSI) is the dominant technology in spatial metabolomics that is used
to visualize 2D and 3D spatial distribution of metabolites in biological tissues [102,103].
MSI combines the sensitivity and specificity of MS with the detailed metabolite spatial
information, to produce mass spectrums/images representing relative ion intensities at
specific tissue localizations [101,102]. MSI platforms are comprised of three components,
an ionization source, a mass analyzer and an ion detector. The ionization source extracts
and ionizes metabolites simultaneously from the surface of the sample at particular x- and
y-coordinates. The ionized metabolites are separated in the mass analyzer according to
their m/z and their abundance are detected and recorded by the ion detector. Software is
used to produce images, also referred to as intensity maps, from the spatially resolved MS
data in which each pixel (i.e., peak) is composed of a mass spectrum. In these images, the
spatial coordinates are represented by the x- and y-coordinates whereas the signal intensity
is represented by the color intensity scale [101,104].

MSI platforms are categorized by their ionization source and mass analyzer, and
they vary in speed, sensitivity, and spatial resolution. Matrix-assisted laser desorp-
tion/ionization (MALDI) is the dominant platform used in MSI and it extracts metabolites
and simultaneously ionizes them with the use of a laser (Figure 2). Emergence of other
platforms such as desorption electrospray ionization (DESI), laser ablation electrospray
ionization (LAESI), nanostructure-initiator MS (NIMS), nanospray desorption electrospray
ionization (nanoDESI), infrared matrix-assisted laser desorption electrospray ionization
(IR-MALDESI) and secondary ion MS (SIMS), which utilizes an ion beam, increases the
development and use of the MSI technology in spatial metabolomics [102,103].
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workflow. A tissue (leaf) is sectioned from the sample (tomato plant) and mounted on a target surface. A matrix is applied
to the tissue and a laser beam extracts metabolites into a mass analyzer. Mass spectra are generated at each x,y coordinates
across the tissue surface. A software algorithm combines and processes the mass spectra and generates a MSI image.

The detection of many metabolites from a single living cell within 10 min, is MSI
greatest advantage over current metabolomic techniques. Hence, MSI is increasingly
being applied in a variety of biological and clinical studies, as it enables simultaneous
measurements of vast amount of metabolites and their spatial distribution from a variety
of samples [105,106]. MALDI-MSI has been successful in imaging various classes of
endogenous molecules on the surface of different plant organ tissues, including the root,
stem, leaf, flower, fruit and seed, to provide new insight into the molecular in situ analysis
through the quantitative changes in molecules during plant growth and development
or those induced by environmental stresses [100]. The application of MALDI-MSI with
on-tissue chemical derivatization of maize root and leaf, has enabled the identification of
600 metabolites [107]. MSI of Lychnophora salicifolia leaves with laser desorption ionization
(LDI) and MS/MS, revealed the accumulation of vicenin-2, a di-C-glycosyl flavonoid, in
the mesophyll cells and upper epidermis, in response to extreme sunlight [108]. Spatial
metabolomics has also been used to explore plant specialized metabolite diversity in the
plant genus Euphorbia L., and the diterpenoids were shown to be localized to young stems
and roots, thereby suggesting they play a role in defense responses to biotic stresses [109].

The widespread application of spatial metabolomics is likely to benefit from the in-
corporation of machine and deep learning techniques, as well as cloud computing. For
instance, the development of novel mass spectrometry imaging software, in addition to
several existing examples of software such as MSiReader [110], with ML capabilities to
predict mass accuracy of collected data, will enable reduction in molecular ambiguity,
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enhanced data quality and interpretability. Machine learning dimension reduction meth-
ods, such as t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold
approximation and projection (UMAP), enable visualization of the large complex image
spectral data that will aid in identifying similar pixel or image clusters and data interpre-
tation [102,111]. Cloud computing platforms such as METASPACE and OpenMSI, have
enabled the construction of imaging MS libraries that contribute to rapid and accurate
metabolite identification by resolving ionization pathways and integrating all signals cor-
responding to a particular metabolite, and data analysis, thus increasing the widespread
use of MSI [102]. The application of spatial metabolomics thus has the potential to further
elucidate plant response mechanisms to abiotic stresses, as MSI enables rapid metabolite
detection and identification, particularly of those lost or degraded in the extraction pro-
cess, and the discovery of novel metabolites, that will provide insights of the metabolome
changes in response to the abiotic stresses, within the organelles, cells, tissues or organs.
Additional technologies for high throughput and automated analysis have been developed.

2.2.1.3. Lab-On-Chip and Microfluidic Devices

The emergence of microfluidic or lab-on-chip technology enables the integration of
multiple analytical processes onto a single platform. The technology is based on the
fabrication of microdevices with small channels and chambers that enables the manipu-
lation of fluid volumes in the micrometer range and parallel workflows for automated
and high throughput analysis [112,113]. The integrated processes in microfluidic devices
include sample preparation, preconcentration, separation and delivery to analytical plat-
forms [48,112]. Microfluidic platforms are divided into three categories: analog, droplet
and digital microfluidics (DMF). Analog and droplet based microfluidic platforms utilize
fluid shear stress between an oil phase and an aqueous phase, to generate continuous
fluid streams and separate droplets within enclosed microchannels, using passive and
active pumping mechanisms [114,115]. DMF platforms utilize electrodes, coated with a
hydrophobic material layer, to move, mix, merge and separate samples when a voltage
potential is applied [112,114]. The handling of small fluid volumes with low flow rates
make microfluidic devices suitable for coupling with MS. Soft ionization techniques are
usually employed for the ionization of delicate biomolecules, molecules that are sensitive
to heat and are usually large polar organic molecules [78,116].

The coupling of microfluidic devices with electrospray ionization-mass spectrom-
etry (ESI-MS) is dependent on emitters that are either integrated or external to the de-
vice [112,114]. Description of the emitters are well documented in [112]. MS analysis in
droplet-based microfluidic platforms is performed by either extracting the droplets from
the multiphase flow or by directly delivery of droplets to the MS without extraction. The
coupling of DMF devices to ESI-MS requires the transfer of droplets from the device to the
ESI emitters and the dissociation of the droplet manipulation and spray voltages. This is
achieved by using sandwiched capillary emitters and pump based sampling capillaries con-
nected to external emitters for closed and open systems, respectively [112,114]. Generally
microfluidic platforms are coupled offline with MALDI-MS by either spotting samples onto
MALDI plates or by direct MALDI analysis of the fabricated material of the microfluidic
device. Online coupling has, however, been established [78,114].

Analog platforms utilize droplet ejectors such as embedded capillaries or integrated
piezoelectric microdispenser for target spotting and they can be programmed for automated
positioning. Droplet and DMF platforms can be coupled online as they enable contactless
spotting of samples by exploiting their segmented flow. The precise handling of small
fluids and the automation of sample preparation, concentration and separation provided
by microfluidic platforms has improved MS sensitivity and reproducibility. Microfluidics
can also increase separation times as the distance or steps between the separation and
MS detector is reduced [48,114]. The microfluidic device, RootChip, has been applied for
measuring changes in metabolite concentrations, such as calcium and phytohormones, and
revealing the specific signal transduction responses in Arabidopsis thaliana roots treated
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with biotic (flg22) and abiotic (sodium chloride (NaCl)) elicitors [117]. The RootChip allows
the simultaneous stimulation of a single organ; in this case, the treatments were applied
on one side of the root, while the cell responses are studied on the untreated side. The
RootChip device can thus enable the testing of combined treatments without exposing
the cells to the individual treatments. Microfluidics in plant–environment interaction
studies can, therefore, enable the elucidation of environmental stress sensing, signaling,
and intercellular and molecular mechanisms [117]. Microfluidics can deliver fluid droplets
directly into MS analytical systems to increase throughput analysis and data reliability. The
improvement of data reliability and accurate mass detection through the development of
novel data acquisition workflows/algorithms is an active research area.

2.2.1.4. Virtual Metabolomics Mass Spectrometer

Emerging analytical workflows for MS and MS/MS spectral data acquisition are
bound to improve accurate mass detection and thereby enhance metabolite identification.
The coupling of chromatographic separation with MS/MS is the widely used and one
of the most powerful approaches used for metabolite identification. MS/MS spectra are
obtained by either data-dependent acquisition (DDA) or data-independent acquisition
(DIA). In the DDA workflow, the MS instrument changes from a full scan MS to MS/MS
when precursor ions overcome a predefined threshold of intensity or other criteria such as
isotope pattern, mass defect, and the presence of diagnostic ion or characteristic neutral
loss, thus resulting in poorer sampling of lower abundant precursor ions. DIA workflows,
such as MSE, involve alternating scans acquired at low or high collision energy to obtain
full scan precursor ions, accurate mass fragments and neutral loss information. However,
matching the precursor ions to product ions when there is substantial chromatographic
co-elution or overlap is challenging. Algorithms are thus employed to intelligently select
precursor ions, thus improving the efficiency of MS/MS spectral acquisition [29,118,119].

Recent software such as Virtual Metabolomics Mass Spectrometer (ViMMS) enables
the prototyping, implementation, optimization and validation of new acquisition methods
in silico [119,120]. These algorithms improve MS/MS acquisition by determining precur-
sor cleanliness or by reducing irrelevant spectra acquisition and automatically adjusting
to various chromatographic conditions to provide improved reproducibility [118,121].
The intelligent automation of precursor ion selection reduces the need for highly experi-
enced or skilled analyst and makes the successive metabolite identification process less
challenging [78,121]. Such an efficiency gain could also spark a renewed interest in LC-
MSn-based approaches where spectral trees are formed to gain deeper insight in the frag-
mentation pathways involved in the breaking apart of the metabolite structures, thereby
facilitating metabolite annotation as shown for polyphenols standards and flavonoids
in plant extracts [122,123]. In addition to the aforementioned technologies in MS-based
platforms, advances in NMR for improved metabolite resolution and identification have
been made [124].

2.2.2. Nuclear Magnetic Resonance (NMR)-Based Platforms

NMR is popular for its high reproducibility; however, in contrast to MS, it has poorer
sensitivity, lower dynamic range and resolving power and, therefore, it typically results in a
restricted metabolite coverage in plant metabolomic studies. NMR technology has recently
been improved by the development of miniaturized radiofrequency coils, superconducting
magnets, cryogenic probes and multidimensional NMR techniques [18,125]. These devel-
opments have thus enabled the improvement of resolution, acquisition time, multi-nuclei
detection and performance of magnets at temperatures close to 4 Kelvin (K), due to using
cryocoolers or closed cycle helium (He) refrigerators that automatically recycle He, thus
eliminating the need for constant liquid helium (He) or liquid nitrogen (N2) refills [125,126].
The study of metabolites by NMR was enabled by the 13C optimized cryogenic probes. The
development of a 1H-13C dual-optimized probes enables 2D NMR experiments at natural
abundance [125].
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The application of 2D NMR improves NMR sensitivity by reducing resonance overlap
and provides information on chemical bonding between nuclei. However, 2D NMR exper-
iments are time consuming and therefore challenging to use in large-scale metabolomic
studies [29]. Acquisition time in 2D NMR experiments can be increased by various ap-
proaches. One approach is the use of diffusion and/or relaxation filters that reduce the
interscan delay (i.e., relaxation time). Non-uniform sampling (NUS) is another approach
that entails the recording of randomized data points instead of all data points. Ultrafast
(UF) 2D NMR is another approach that enables the acquisition of a 2D spectrum in a single
scan. These approaches are described in more detail in [34,125]. Metabolite fingerprint-
ing of Bougainvillea spectabilis leaves exposed to high levels of air pollution was achieved
with 2D NMR, and revealed the differential concentrations of amino acids, sugars, krebs
cycle intermediates, phenylpropanoids, flavonoids, and production of putrescine, gamma-
aminobutyric acid (GABA) and trigonelline metabolites in response to the air pollution
stress [127]. Additional technologies have also been developed to enhance NMR sensitivity
of which some are highlighted in the next paragraphs.

Dynamic nuclear polarization (DNP) is another advancement that enhances NMR
sensitivity. DNP enhances the NMR signal by transferring the polarization of the electron
spins to the nuclei prior to delivering the sample to the NMR spectrometer. DNP thus
allows the detection of metabolites, particularly natural products, present in low concentra-
tion in complex mixtures [34,126]. DNP has been applied for the abundant detection of
13C nuclei in the metabolomic analysis of tomato extracts [128]. DNP has the potential of
increasing metabolite coverage to facilitate the use of NMR in untargeted studies of plant
responses to environmental conditions.

Additionally, the detection of metabolites within intact tissue samples has been made
possible by the advancements in high-resolution magic-angle spinning NMR spectroscopy
(HRMAS) [126]. The development of microprobes for magic-angle spinning (µMAS) of sub-
microgram specimens with high-resolution in HRMAS, allows site-specific metabolomic
characterization of varying plant and tissue regions without the need for sample prepara-
tion. Therefore, HRMAS provides the opportunity to explore the specific tissue metabolism
with more or less the same precision as MSI [126]. HRMAS has been applied to monitor
plant responses to abiotic stresses. For instance, the study of soybean leaves grown with
and without water-deficiency stress with HRMAS, revealed differences in the metabolite
profiles. A total of 30 metabolites were identified, with the amino acid metabolites present
in the metabolite profile of soybean leaves with water-deficient stress [129]. HRMAS
can therefore aid in elucidating plant response mechanisms. The identification of novel
metabolites will greatly contribute to the discovery of unidentified pathways and thus the
elucidation of plant response mechanisms.

The de novo identification of novel metabolites from complex mixtures with NMR
can be enhanced with on-line hyphenation of separation techniques. A flow cell matching
the high performance liquid-chromatography (HPLC) module is used to connect the NMR,
instead of a probe, thus resulting in HPLC-NMR. In HPLC-NMR, the separated analyte
is eluted from the column to the flow cell and subsequently to the NMR spectrophotome-
ter [34]. High performance liquid-chromatography-solid phase extraction-NMR (HPLC-
SPE-NMR) is another hyphenated NMR technique that enriches the analyte by allowing
the removal of the HPLC mobile phase, prior to NMR data acquisition. HPLC-SPE-NMR
decreases the analyte chromatographic peak volume and, therefore, achieves greater sensi-
tivity compared to HPLC-NMR. Additionally, HPLC-SPE-NMR has been enhanced with
the integration of a photodiode array detector (PDA) and MS for authentication and the
structural characterization of secondary metabolites from complex plant extracts [34,130].
For instance, HPLC-PDA-HRMS-SPE-NMR analysis of Coleonema album leaves enabled
the structural identification of 23 coumarins [131]. An automated HPLC-MS-SPE-NMR
approach was used to characterize flavonoid structures in crude tomato extracts [130]. De-
spite the accomplishments of these technologies in improving NMR sensitivity, resolution
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and acquisition time, advances in software tools and databases are still required to aid in
metabolite analysis [125].

Novel software tools consisting of machine and deep learning algorithms have been
developed to provide accurate prediction of chemical shifts and automation to manual
phasing, water removal, baseline correction, peak picking and spectral fitting methods,
thereby improving accurate quantification of metabolites for reliable structural elucida-
tion. These automatic deconvolution algorithms include Bayesian Automated Metabolite
Analyser for NMR spectra (BATMAN) [132], Bayesil [125], AQuA [133], MagMet [125] and
rDolphin [134], and they contribute to making NMR faster, consistent and user-friendly.
The integration of this software with online websites/databases such as NMRShiftDB fur-
ther enhances NMR accuracy and molecular coverage with increasing data, thus enhancing
structural discoveries and elucidation [84,125,135]. Hence, recent efforts have been made
to make NMR data publicly available through the development of software tools and
databases for the discovery and structural elucidation of natural products [136].

Small Molecules Accurate Recognition Technology (SMART), a machine learning
based tool, for example, enables the interpretation of 2D-NMR spectra and the acceleration
of discovering and characterizing novel natural products [137]. Additional examples in-
clude the ImatraNMR [138] and SimpeleNMR [138] tools for quantitative NMR analysis.
ImatraNMR and SimpeleNMR tools were applied in the 2D NMR analysis of 4 Arabidopsis
thaliana strains under controlled and ozone exposure conditions. Metabolite differences
were revealed, with GABA found to be produced in the plants responses to the ozone
exposure (i.e., changes in oxidative stress) [138]. These 4IR technological and software
developments in NMR will, therefore, enable rapid analysis for large datasets and po-
tentially increase the widespread use of NMR-based plant metabolomics [139]. In this
review, we mainly focus on LC-MS and LC-MS/MS platforms and their data processing
and analysis workflows.

2.3. Machine Learning Methods for Metabolomic Data Mining and Interpretation

Axiomatically, metabolomics studies, particularly untargeted approaches, generate
complex, with inherent covariance structure, and information-rich big data sets that are
challenging to handle and interrogate. With technological advancements in analytical
platforms (Section 2.2) and an increasing complexity in the study design, untargeted
metabolomics data are increasingly becoming more heterogeneous, big data in terms of vol-
ume, velocity and variety [5,140]. Thus, the availability of big data in (plant) metabolomics
reflects a new era of data-driven research employing powerful computational tools, involv-
ing AI and machine learning algorithms, to maximally mine and find novel knowledge in
this (big) data [5,141]. The typical approach used in mining and interpreting untargeted
metabolomics data is well-described in literature; it is a multistep workflow, employing
dedicated mathematical modeling and chemometric algorithms (Figure 3) [26,142,143].

The philosophies of data science—the extracting of information from (big) data—
have recently undergone an aggiornamento, with a resurgence in interests in linear and
nonlinear machine learning (ML) methods [144–146]. Furthermore, historically, nonlinear
ML methods have not been widely used due to difficulty in deriving statistical inference,
and thus biological interpretation. However, with increasing appreciation of nonlinearity
in biological (big) data, nonlinear ML algorithms are increasingly being explored and
applied in interrogating data, in life sciences [102,147–150]. ML is a subdomain of AI that
provides machines with the ability to learn directly from data and past experiences through
computational algorithms to facilitate better informed decisions or actions, without the
involvement of experts. ML methods are categorized as either supervised-, unsupervised-,
or reinforcement learning algorithms [151]. The algorithms can be further categorized
based on their learning techniques, which are classification, regression, clustering, and
dimensionality reduction (Figure 3) [151,152].
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In plant metabolomics, several ML-based methods (Figure 3) are increasingly being ex-
plored to attain a comprehensive insight and understanding of the plant biological systems
under different conditions (Table 2). Deep learning (DL) algorithms and artificial neural net-
works (ANNs) have been employed in biomarker discovery from natural products/herbal
medicines [153,154]. Additionally, [155] explored ANN and DL algorithms in their studies
to reveal the diversity of specialised metabolome in different Camelina sativa varieties. Deep
convolutional neural networks (DCNN) have also been used as an alternative of ANNs
in the mass spectrometry imaging-based detection of specific secondary metabolites in
tomato [156]. Support vector machine (SVM) has been applied in plant metabolomics
research for the classification, identification and predictive power of metabolite content in
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exploring the medicinal properties of plants [148,157]. Random forests (RF) have also been
used in optimization of metabolic fingerprinting and metabolite detection studies [158,159].
Other ML-based methods such as the nearest neighbour, Naive Bayes and decision trees
have also been used in biological pathway predictions for a deeper understanding of
metabolic pathways and networks in plants for crop improvement [160,161].

However, in metabolomics studies that investigate plant responses to abiotic stresses,
the exploration and application of ML methods is still to be encouraged. The integration
and use of these ML and deep learning (DL) algorithms in the metabolomics data analysis
pipeline hold the promise of transforming the future of metabolomics research. The ML
and DL methods offer the flexibility to effectively analyze and integrate a large volume of
multi-omics data (e.g., metabolomics, transcriptomics, genomics, and proteomics) given a
large enough sample size and enough biological context [162,163], thus providing better
predictive models. This would advance the understanding of regulatory network rules and
mechanistic events at cellular and chemical space of the plant, illuminating its responses to
abiotic stresses. Thus, the paragraphs below dive into describing some of the ML methods,
pointing out their applications in metabolomics studies to illustrate their potentials to
support metabolomics analysis workflows and facilitate possible integration with other
omics data types.

2.3.1. Support Vector Machines

Support vector machines (SVMs) are classification and regression ML algorithms that
separate data into two classes [165,166]. SVM algorithms map samples as data points
from various classes in a high-dimensional feature space. The SVM then constructs an
optimal hyperplane that maximizes the distance to the nearest point of each class (i.e.,
margin) [146,167]. Maximizing the margin enables the SVMs to correctly classify new data
points that lie within the margin on either side of the hyperplane [146]. SVMs have been
reported to outperform PLS-discriminant analysis (PLS-DA) for feature extraction and
classification accuracy of metabolomics data [168].

The support vector machine recursive feature elimination (SVM-RFE) algorithm has
proven useful in identifying metabolic biomarkers in untargeted LC-MS datasets. This
iterative algorithm ranks metabolites according to their ability in discriminating the two
phenotypes/conditions (i.e., control and treated samples). Features most informative
of discriminating phenotype or condition are ranked higher than those less informative,
thus this ranking system is ideal for biomarker discovery as it ranks based on predictive
accuracy [167]. The clustered support vector machine (CSVM), a clustering ML algo-
rithm, divides input data into multiple clusters and trains a SVM within each cluster to
separate the data in the clustered feature space, thus reducing the number of relevant
features [169,170]. Furthermore, SVMs also play a role in metabolite annotation workflows,
as in the SIRIUS 4, a tool for molecular structure identification, an SVM is used to aid in
the determination of a molecular formula for a candidate molecule (Figure 3) [171].

SVMs can thus facilitate the visualization of relationships between plant samples, their
classification and discovery of contributing markers or natural products that correlate to
biological origin, such as abiotic stress, with strong confidence [148,172]. SVMs, as with the
classical supervised statistical methods, are, however, widely used for the discrimination
of two different classes and, due to their limitations, they are rarely used for multi-class
analysis. Hence, ML algorithms such as decision trees (DTs) have been developed and
applied for the analysis of plant complex multifactorial characteristics [167,173,174].
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Table 2. Selected recent metabolomics studies showcasing 4IR technologies, particularly the use of ML methods in plant research.

Metabolomics Study ML Method 1 Reference

ML-modelling for prediction of metabolic pathways of plant enzymes. SVM, ANN, NB, DTC [160]
Identification of central and predictive molecular components of plant metabolic stress response. SVMs, NNC, DTC [157]

Untargeted metabolomics to reveal diversity of the metabolome in seeds of Camelina species. DL, ANN [155]
Characterisation of adaptive and signalling responses based on metabolite content under abiotic stresses. SVM, DPClus [148]

Detection of aflatoxin metabolite in chilli pepper using machine vision. SVM, RF [158]
Detection and resolution on plant metabolites (S.lycopersium) using mass spectrometry imaging. DCNN [156]

Discovery of Q-markers from Jinqi Jiangtang for medicinal purposes. ANN [154]
Prediction of metabolic pathways in correlation networks in the pericarp of a tomato. ML algorithms [161]

Discovery and identification of biomarkers using ML algorithms in metabolomic studies. ANN, DL [153]
Enhancement of plant metabolite fingerprinting using ML methods. SVM, RF [164]

1 SVM, Support Vector Machines; ANN, Artificial Neural Networks; NB, Naïve Bayes; NNC, Nearest Neighbour Classifiers; DTC, Decision Tree Classifiers; DL, Deep Learning; RF, Random Forest; DCNN, Deep
Convolution Neural Networks.
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2.3.2. Decision Trees

Decision trees (DTs) are ML algorithms that perform classification and/or regression
of both categorical and continuous input and output variables in a tree-like structure
composed of a root node, internal nodes and leaf nodes. A DT organizes or separates
dataset (i.e., input at the root node) into smaller homogenous subsets or sub-populations
(i.e., output at the leaf nodes) based on the most significant classifier among the independent
variables [175,176]. The internal nodes represent the values of the attributes, whereas the
leaf nodes represent the final decisions or predictions and the label of the class after
following the path from the root to the leaf nodes [166].

In plant metabolomics, DTs have been applied in the extraction of metabolite features
that discriminate different rice cultivars [173], in the identification of 11 anti-inflammatory
biomarkers from 57 Asteraceae species leaf extracts [153] and in the prediction of the most fre-
quent substructures based on the mass spectral features and retention index (Figure 3) [177].
A DT based on the fragmentation patterns of metabolites approach was used for the an-
notation of 28 unique avenanthramides in oat seedling extracts [178]. Additionally, DTs
have also been used in predicting plant responses to drought, salinity, heat and cold
stress [174]. DTs are, however, underexplored in plant metabolomics and their applications
could provide the opportunity for multifactorial plant characteristic analysis, such as the
investigation of plant response mechanisms to multiple stresses, and identification of
discriminant metabolite biomarkers that correlate to the abiotic stress within the complex
metabolomics data [179]. A general advantage of DTs is their interpretability as compared
to many other classifiers such as random forest (RF) discussed in the next section. However,
the comprehensibility of DTs is at the expense of lower predictive accuracy compared
to other classifiers such as SVMs. Fortunately, the classification accuracy of DTs can be
improved by ensemble learning (EL) methods [180].

2.3.3. Ensemble Learning

Ensemble learning (EL) methods are used to enhance the predictive performance of
statistical learning and model fitting techniques by constructing a linear combination of a
base learning algorithm. Common EL methods include random forest (RF) and bootstrap
aggregating or bagging algorithms [175,176]. RF is a decision tree-based classification
algorithm that is capable of handling high-dimensional data with many features, noise,
unbalanced and missing values. RF aggregates multiple decision trees through bagging and
bootstrapping methods and classifies new data based on the consensus of the classification
trees [166,181]. RF, unlike DT algorithms, separates a sample of features for each separation
instead of trying to separate all the features, thus reducing the variance and improve
predictive accuracy. Bagging is an approach that repeatedly extracts samples from the same
set of data, and with the use of bootstrapping methods, the predictability of this approach
for classification is maximized through the direct log-likelihood optimization [166,176].
RFs, in addition to SVMs, are the widely applied ML algorithms in life sciences [182].

In omics sciences, RF has aided in extracting biological insights by detecting genotype
from environment interactions [183]. RFs are, however, relatively new to metabolomics
studies and are proving to be powerful classifiers due to their high classification accu-
racy, ability to determine the variable/feature importance (i.e., identifying variables that
contribute to the prediction results) (Figure 3), avoidance of overfitting and tolerance
to outliers and missing values [184–186]. Additionally, RFs have been reported to per-
form better on metabolomics data for phenotypic classification and feature extraction, as
compared to other classification methods. For instance, RF with 100% accuracy outper-
formed the SVM, PLS and linear discriminant analysis (LDA) classifiers in the analysis
of clinical metabolomic data of healthy and colorectal cancer diagnosed patients’ urinary
samples [185,187].

Considering clinical metabolomic data are relatively similar, in terms of complexity
and size, to plant metabolomic data, the application of RFs in plant metabolomics, particu-
larly for plant-environmental data, thus offers great potential to accurately extract features
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that discriminate the plant phenotypic responses to environmental conditions such as abi-
otic stresses, and therefore improving data interpretation. RFs are, however, disadvantaged
by their complex visualization and lack of statistical significance measurements such as a
p-value. RFs thus provide a list of the most important metabolites without a cut-off value
to select any “significant metabolites”. The feature extraction process for RFs is, however,
not reliable in situations where variables differ in their scale of measurement or number
of categories [168,188]. Hence, alternative approaches, such as Bayesian models (BMs),
with enhanced feature extraction and high reproducibility of metabolomic data, have been
considered for such situations [189,190].

2.3.4. Bayesian Models

Bayesian models (BMs) are a group of probabilistic models that conduct their analyses
based on the Bayes’ theorem, which calculates the probability using the previously obtained
probability and information of the data collected. BMs are employed for either classification
or regression problems and clustering [175,176,191]. BMs modify probability distribution to
identify possible concepts by assuming independence between the variables and calculating
the conditional probability for each instance based on the assumed classes [166,176]. BMs
are promising for metabolomic analysis as they allow the incorporation of prior knowledge
with experimental data to facilitate better predictions, capture relationships in non-linear
interactions between metabolites and phenotypes, reduce model overfitting, and identify
significant individual metabolites [189,190].

BMs applied in metabolomics have resulted in confident/reliable compound annota-
tions through Bayesian-based tools such as the Integrated Probabilistic Annotation (IPA)
method. The IPA method incorporates multiple sources of information within the an-
notation process to increase the predictive power of assigning measured m/z values to
putative formulas (Figure 3). Additionally, the confidence in annotations are quantified
and re-evaluated when new information is provided, thus improving annotations, par-
ticularly for data obtained from similar biological samples using the same experimental
procedure [192]. MS2LDA, a Bayesian Latent Dirichlet Allocation (LDA) model, extracts
peak patterns in LC-MS/MS data that represent molecular substructures (Figure 3) to
enable the grouping of molecules based on shared substructures regardless of overall
spectral similarity, thus enhancing the extraction of plant metabolite building blocks that
facilitate metabolite annotation and that could be linked to phenotypic differences through
differential analysis [8]. SIRIUS 4.0, a computational tool for metabolite identification
from MS/MS data, implements a Bayesian network scoring that enables it to identify the
molecular formula and structure of a query compound with high accuracy (Figure 3), thus
resulting in enhanced and more confident compound identification [171,193].

The identification of molecular formulas and structures for large compounds (i.e.,
>500 Da) is, however, still challenging, particularly for plant extracts that contain large
conjugated compounds above 700 Da. Organic compound Determination by Integral As-
signment of elemental Compositions (ZODIAC), a network-based algorithm for estimating
molecular formula, is an alternative approach that combats this problem. ZODIAC uses
Bayesian statistics to re-rank SIRIUS molecular formula candidates. The ZODIAC score
increases the confidence in formula annotation, particularly for large compounds, and
reduces the error rates. Analysis of tomato (Solanum lycopersicum) extracts with ZODIAC
resulted in the decrease in error rates from 4.44% to 2.22% and the discovery of three
novel molecular formulas not found in any structural databases [194]. These powerful
Bayesian-based tools can, therefore, contribute to the elucidation of plant response mecha-
nisms to abiotic stress by facilitating the accurate extraction of structural properties and
identification of novel metabolites involved in the plants response to abiotic stress. BMs
can, however, be complex, difficult to implement, and computationally quite expensive, in
terms of the power requirements. Hence, alternative methods are also considered such as
artificial neural networks (ANNs) [195,196].
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2.3.5. Artificial Neural Networks

Despite the considerable efforts of the aforementioned ML methods to rapidly and
accurately characterize non-linear complex samples and their metabolite properties, false
positive signals, co-eluting metabolites and retention time shifts are still major bottlenecks
that effect data analysis and interpretation of plant MS-based metabolomics. Artificial
neural networks (ANNs) and deep learning (DL) methods are proposed to solve these
issues and other bottlenecks involved in the mining of metabolomics data [154,197].

ANNs are interconnected information processing systems that resemble the human’s
nervous system. ANNs can be used for classification and/or regression of non-linear
systems and are characterized by their architecture, patterns of interconnected processing
units (i.e., neurons), method of determining the weights on the connections (i.e., learning
algorithm) and their activation function [176,198]. The general ANN architecture consists
of an input layer, where the data is introduced into the system, hidden layer(s), where
learning occurs and the information obtained is linked to the output layer that provides
the resultant decision/prediction. The connections are based on the weight values de-
fined during the training process and, therefore, the output values will be very close to
those defined in the training model [166,175]. ANNs can be divided into two categories:
conventional ANNs and deep ANNs, also referred to as DL or deep neural networks
(DNNs). DNNs have multiple processing layers (i.e., multiple hidden layers) that enable
them to learn and fit raw data through representation at multiple levels of hidden layers.
Hence, more and improved representation of observed patterns in the upper or upstream
layers is achieved [162,175]. DNNs are advantageous in their ability to extract features
automatically, thus eliminating potential bias, and to function as either a supervised or
unsupervised method. The commonly used DNN is the convolution neural network
(CNN). Alternative DNNs include unsupervised pretrained networks, recurrent neural
network (RNN) and recursive neural network [175,197,199]. DNN and ANN models have
been widely applied in the data processing and data interpretation steps of metabolomic
pipelines (Figure 3) [197,200].

An optimized back-propagation ANN (BP-ANN) was applied in the classification and
discovery of quality markers with bioactivity from the Jinqi Jiangtang (JQJT), a Chinese
herbal medicine, metabolomic dataset. The BP-ANN outperformed the PLS in terms of
accuracy and low error rate [154]. DNNs reported in metabolomics studies include a
CNN model, peakonly [201], for peak detection and integration. The peakonly algorithm
classifies LC-MS data into regions of noise, chemical peaks and uncertain peaks, thereby
eliminating false noise peaks and determines peak boundaries for integration. DeepSpec-
tra [202], a CNN-based model, enables phenotype characterization directly from raw spec-
tral data. DeepSpectra has been applied in the prediction of biomass and protein content
in environmental datasets. ChromAlignNet, a RNN-based model, for peak alignment of
GC-MS data enables the alignment of complex data without the requirement of additional
parameter selection and reference chromatograms [197,200]. Furthermore, DNNs have also
been used to predict collision cross section (CSS) values, properties of ion-mobility MS that
can be used to eliminate the time-consuming search of unknown metabolite identification
by matching the CSS values with metabolites in spectral databases, which will also increase
confidence in identification [197]. ANNs are showing great promise in detecting plant
diseases and discriminating between healthy and diseased plants through hyperspectral
imaging data. The advancement of these models in hyperspectral imaging could translate
to the development of ANNs for mass spectrometry imaging (MSI) [203].

Altogether, plant metabolomic studies are likely to benefit from such versatile ANN
and DL models, due to their ability to encode and model complex non-linear datasets. For
instance, in the case of investigating plant response mechanisms to abiotic stresses, ANN
and DL models will facilitate classification and extraction of relevant features with high
accuracy from raw data, due to their ability to eliminate noise and false signals, and separate
co-eluting metabolites. Additionally, their capability in predicting the presence/absence of
substructures with high accuracy based on the spectral information and molecular formulas,
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will facilitate enhanced metabolite identification and discovery of novel metabolites that
will aid in elucidating plant response mechanisms to abiotic stress and the modeling of
active pathways [197].

2.3.6. Machine Learning for Pathway Modeling

The identification and understanding of metabolic pathways is important in eluci-
dating the underlying biological processes/mechanisms, such as the causes of metabolite
diversity, of an organism. Substantial knowledge on metabolic pathways, particularly plant
pathways, have been elucidated and curated in various databases such as Kyoto Gene
and Genome Encyclopedia (KEGG); however, there still remain unidentified metabolic
pathways with their associated gene–enzyme–metabolite relationships [204,205]. The re-
construction of metabolic pathways assists in the identification of unidentified pathways.
This process is complex and widely based on hypothesis-driven models (i.e., constraint-
based and kinetic models) that use gene annotation and ontology, prerequisite knowledge
that include stoichiometry, thermodynamic and evolutionary assumptions, and enzyme
kinetics [161,206,207].

The reconstruction of metabolic pathways is, however, challenged by the vast num-
ber of genes belonging to large gene families, which encode metabolic enzymes, and the
expensive, time-consuming biochemical and genetic experimental approaches [205,208].
Additionally, the advancements of data acquisition technologies have resulted in increased
large and complex omics datasets, which makes it challenging for hypothesis-driven
models to incorporate and extract meaningful information from the data for pathway
modeling [206,209]. For instance, constraint-based models (CBMs) are limited by their
steady-state assumption and insufficiency to accurately capture cellular dynamics such
as metabolic responses, whereas kinetic models are limited by the unknown mechanistic
kinetic rate law for most enzymes involved in specific reactions and the computational chal-
lenges associated with parameter estimation and model expansion [207,210,211]. Hence,
alternative mathematical and computational models with the capability of predicting
organism-specific metabolic pathways directly from omics data are required to address
these challenges. Data-driven models have been reported to predict biological systems’
behavior, without prerequisite knowledge, from captured data [206,207,212].

Data-driven models are based on ML principles that enable them to predict pathway
dynamics from experimental data without any knowledge on the organism’s metabolism.
This systematic approach increases the prediction accuracy with increasing data [210].
However, data-driven models cannot provide mechanistic explanations of phenomena,
thus they are combined with hypothesis-driven models to provide mechanistic insights
in a sample-specific manner [209,211]. In such hybrid-models, experimental data is in-
tegrated with the hypothesis-driven models to extract mechanistic information that is
provided as input data for unsupervised or supervised ML algorithms that result in output
data as relevant features that improve prediction accuracy and genotype to phenotype
predictions [36,213]. ML algorithms optimize CBMs and kinetic models using known
pathway instances curated in databases as training data to facilitate predictions based on
experimental data and not exclusively on prior knowledge [207], to extract features in
existing pathway and models [36], and to map multi-omic data onto a metabolic model that
contains different integrated omics and model data through different ML algorithms [214].
Furthermore, the integration of ML algorithms with hypothesis-driven models, enables
the models to accurately extract complex patterns from non-linear biological samples,
improve predictability and provide cause–effect information about the metabolites in the
pathway [209,214,215]. Several tools have been developed based on the aforementioned
ML algorithms with the aim of modeling metabolic pathways.

Probabilistic modeling for Untargeted Metabolomics Analysis (PUMA), a Bayesian
inference-based probabilistic approach, is an example of a model that predicts pathways
that are likely to be active based on the metabolomics measurements, followed by prob-
abilistic annotations, which assign chemical identities to the measurements. A pathway
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is predicted to be active if the measurements generated from a particular path is greater
than the user-defined threshold [216]. The recently developed Lilikoi v2.0 R software,
implements a DL neural network classifier in addition to six ML algorithms including RF
and SVM, for the prediction and visualization of metabolic pathways. Lilikoi requires
metabolomics data matrix with a column of categorial variables (i.e., treated/control) for
classification as input data, which is analyzed prior to the construction of the pathway [217].
RetroPath Reinforcement Learning-based metabolic space exploration (RetroPath RL) im-
plements the Monte Carlo Tree Search (MCTS) reinforcement learning method (Figure 3)
to discover and suggest experimentally relevant pathways. Due to its focus on exploring
the research space, RetroPath RL can propose multiple pathways for the same compound.
This feature will greatly aid in the elucidation of plant response mechanisms to stresses, as
plants consist of metabolites involved in multiple pathways. RetroPath RL, however, has
its limits, particularly in pathway ranking [218,219].

Ranking pathways with accuracy has been achieved by the adoption of a SVM in
the multi-label classifier, iMPT-FRAKEL, which uses compound fingerprints to identify
metabolic pathways of compounds [204]. Pathway Activity Level Scoring (PALS), available
as a Python library, command line tool, and web application, analyzes metabolites grouped
as metabolic pathways by ranking changing pathways or intensities in sets of metabolites
over different experimental conditions [220]. The aforementioned ML-based tools or
models hold great potential in the identification and discovery of pathways from poorly or
lack of characterized experimental data and highlight information on signaling pathways,
gene expression regulation and epigenetics within the system studied. The extraction
of such information in plant-environmental metabolomic studies will contribute to the
elucidation of plant response mechanisms to stress. Furthermore, the differences in plant
response mechanisms to specific stresses can also be highlighted.

2.4. Large-Scale Metabolite Annotation

The developments in metabolomics platforms enable large-scale MS/MS experi-
ments containing thousands of distinct spectra from a single sample. These detected
features and their MS/MS spectra can be used for matching to spectral libraries and
can include indicative fragmentation patterns that provide information on the often yet
unknown chemical structures that were fragmented [221,222]. However, this process is
still cumbersome and laborious for large-scale data, particularly for plant metabolomics
data which is vastly diverse in physiochemical properties [222,223]. Hence, we are cur-
rently witnessing the development of tools that can analyze such large-scale, complex
metabolomic data using computational networking approaches such as molecular net-
working (MN), which provides visualization of all the detected features and their chemical
relationships by grouping structurally similar features into a network to enable mining of
the metabolome (Figure 4) [224–226].

2.4.1. Spectral Similarity and Substructure Based Annotation

GNPS, a web-based ecosystem for the sharing, storage and analysis of raw, processed
or annotated MS spectral data, enables the generation and analyses of molecular networks
(Figure 4) [6,227]. MN through GNPS also enables rapid dereplication, the process of
identifying known metabolites, as well as detection of analogs and the discovery of novel
metabolites from the acquired MS spectral data [224,228]. Dereplication is achieved by
automatically matching the thousands of MS/MS spectra acquired to public MS/MS
spectral libraries within GNPS [224,229]. The large-scale spectral matching of MS spectral
data is one approach that GNPS uses to facilitate the analysis of vast number of samples,
as exemplified by the analysis of 15 batches of Microctis Folium (Microcos paniculata L.)
leaf extracts that resulted in the identification of 168 metabolites, of which 165 metabolites
were identified for the first time in Microctis Folium, and approximately 500 analogues
could also be annotated [227]. In addition to GNPS, MS2LDA is another metabolome
mining tool that uses an unsupervised Latent Dirichlet Allocation (LDA) algorithm to



Metabolites 2021, 11, 445 25 of 41

group molecules based on shared molecular substructures (i.e., as conserved fragments
and neutral loss features), referred to as Mass2Motifs, regardless of their overall spectral
similarity (Figure 4) [8,230].
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to provide detailed structural and chemical molecular information for large-scale MS data exploration and annotation.

The ms2lda.org web application allows us to inspect the extracted Mass2Motifs and
annotate them by expert knowledge, comparison of mass fragments and neutral losses to
those in MS/MS libraries, or by either comparison to Mass2Motifs extracted from earlier
experiments [8,230]. This process is, however, laborious, particularly for large-scale data,
and thus MS2LDA has been improved for automating the matching process to include the
analysis of multiple samples with MotifSets of structurally characterized Mass2motifs from
MotifDB together with “free Mass2Motifs” to capture the yet “unknown” chemistry not
captured yet in MotifDB [231]. MS2LDA was applied to MS/MS data of 70 Rhamnaceae
plant species and resulted in the extraction of 200 Mass2Motifs, of which 25 were anno-
tated with substructures. Characterized Mass2Motifs enabled the probing of substructural
diversity within the plant family. For instance, only the Rhamnoid clade was found to
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develop diversity in flavonoid glycoside, whereas the Ziziphoid clade developed more
variety in the triterpenoid pathway [9]. Thus, MS2LDA enables the extraction of sub-
structural diversity within each class of metabolites from complex datasets and provides
meaningful biochemical interpretation. Furthermore, an increase in structurally character-
ized Mass2Motifs will accelerate the identification of metabolites within plants dark matter
with high confidence and thereby enhance understanding of plant mechanisms [9,231].
Despite these advances, structural elucidation of entire (plant) metabolites remains chal-
lenging in untargeted metabolomics workflows [171]. In the following sections, a number
of computational metabolomics tools are highlighted that further enhance the annotation
of either complete structures, substructures, or chemical compound class information to
(plant) metabolomics profiles.

2.4.2. Structure-Based Annotation

Compound Structure Identification (CSI): FingerID is a web-service tool for searching
in molecular structure databases using MS/MS data (Figure 4) [171,232]. CSI:FingerID
converts a spectrum into a fragmentation tree that is searched against a database of known
trees to predict a molecular fingerprint of the unknown compound. Although CSI:FingerID
achieves increased identification rates compared to other related methods, it searches
fragmentation trees individually [171,233]. Integration of CSI:FingerID with SIRIUS 4, a
software tool for the computational annotation of MS/MS data, enables the full LC-MS/MS
dataset to be processed instead of an individual compound [171,234].

The SIRIUS 4 tool offers molecular formula annotation and, when integrated with
CSI:FingerID, structure database search and ranked annotations (Figure 4). This is achieved
by first analyzing isotope patterns and fragmentation trees to determine the molecular
formula of the query compound, followed by the use of CSI:FingerID to predict molecular
fingerprint of the resultant spectrum and fragmentation tree. The predicted fingerprint
is searched against the structural database to identify the most likely candidate [171,235].
SIRIUS 4 is capable of deducing information of unknown compounds, through Zodiac,
now including molecules with higher masses (>500 Da) that are particularly of interest
to plant metabolomics researchers, that are not structurally annotated and thus facilitate
the mining of the metabolome [194]. Similarity score functions are crucial for the accurate
matching of experimentally acquired spectra to library spectra for structural elucidation
and for the assessment of spectral pair similarities [236].

2.4.3. Spectral Similarity Scoring for Library Matching and Correlation of Spectra

Spec2Vec, inspired by a natural language processing based algorithm, is a novel spec-
tral similarity score that learns the relations between fragments to enable accurate spectral
library matches. Spec2Vec computationally calculates similarity scores more efficiently
than cosine-based scores, correlates more closely with structural similarity and identifies
relationships between different spectra that are chemically related, especially for larger
molecules with two or more subtle local modifications. Spec2Vec thus enables the rapid
querying spectra of unknown molecules against all spectra in large databases and the
selection of potential candidates for further exploration [236]. Additionally, Spec2Vec will
enhance interpretation as it facilitates the correct assignment of metabolites, whose chemi-
cal class can be annotated and used to supplement metabolite annotation [237]. Despite
its remarkable performance, Spec2Vec was not trained for the task of returning a higher
similarity score for spectral pairs of structurally more closely related metabolites; therefore,
very recently, MS2DeepScore was introduced that uses a Siamese neural network to predict
the structural similarity between two chemical structures solely based on their MS/MS
fragmentation spectra [238]. MS2DeepScore outperforms classical spectral similarity mea-
sures as well as Spec2Vec in retrieving chemically related compound pairs from large mass
spectral datasets, thereby illustrating its potential for spectral library matching.
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2.4.4. Chemical Compound Class-Based Annotation

ClassyFire, a web-based program, enables systematic chemical classification into a
formal chemical ontology (Figure 4). ClassyFire automatically assigns all known chemical
compounds to the predefined taxonomy ChemOnt based on their chemical structures
and structural features [239,240]. The ClassyFire server and database consists of more
than 77 million compounds that vary from drugs, toxins, phytochemicals, natural and
synthetic molecules. Access to this database via the web server enables rapid, large-scale
and automated chemical classification that can aid in the annotation or enrichment of
known and unknown compounds [237,239,241]. MolNetEnhancer is a software package
that incorporates the outputs of GNPS MN, MS2LDA, in silico annotation tools such as
SIRIUS+CSI:FingerID, and the automated chemical classification through ClassyFire, into a
single workflow (Figure 4) [237].

MolNetEnhancer reveals detailed information on molecular families and the subtle
structural differences between them, thus resulting in enhanced molecular networks that
facilitate rapid metabolite exploration of large complex datasets by providing a global
visual of chemical diversity [226,237]. Another chemical classification tool is NPClassifier, a
DL tool for automated structural classification of natural products (NP), that uses chemical
fingerprints as input encoding and classifies NP at three levels; 7 Pathways, 70 Superclasses
and 653 Classes. NPClassifier has the potential to accelerate NP discovery by enabling
large-scale metabolome mining [242,243].

Most recently, the chemical class assignment and ontology prediction using mass
spectrometry (CANOPUS) DNN tool for systematic compound class annotation was in-
troduced. CANOPUS predicts compound classes from fragmentation spectra, including
biologically relevant classes. CANOPUS specifically targets compounds that have no spec-
tral or structural reference data available and predicts classes for which no MS/MS training
data available [241,244]. CANOPUS assigns compound classes to all MS/MS features
for which fragmentation trees can be computed in a LC-MS/MS run and automatically
provides structural insights of novel compounds from crude samples, thus accelerating
the structural elucidation process or allowing prioritization of a subset of metabolite fea-
tures to further examine [244]. CANOPUS and the aforementioned computational tools
and technological advancements are increasingly being applied in metabolomics studies.
Whilst there is a lot of promise in these kinds of approaches, exactly how they benefit and
improve plant metabolomics workflows is yet to be witnessed. We refer the interested
reader to a recent review that further explains the workings of substructure-based, chemical
compound class-based, and network-based strategies for metabolite annotation [245].

2.4.5. Large-Scale and Repository-Wide Metabolomics Analyses

The 4IR technologies will improve plant metabolomics workflows and facilitate com-
plex design studies by, for instance, investigating plant response mechanisms to multiple
stresses simultaneously. Automation in sample preparation and in analytical platforms,
equipped with analytical intelligence will enable large metabolite coverage, rapid, au-
tomatic and potentially remote data acquisition from complex samples such as plants.
Development and implementation of machine and deep learning algorithms will aid in
data mining and pathway modelling by ensuring acquisition of reliable data with min-
imal noise and artifacts, which relevant features associated to the particular stress are
extracted from and confidently annotated through spectral library matches, thus achieving
rapid large-scale annotations of metabolites that contribute to elucidating the metabolome
studied, in this case the plant metabolome in response to abiotic stresses. The expected
transition from experiment-based analysis toward repository-wide analysis has recently
gained traction by the introduction of the MASST [246] and ReDU [247] frameworks that
allow researchers to locate similar MS/MS spectra across all public datasets, i.e., akin to
doing a BLAST search with a genetic sequence. An increasing number of these public
datasets are annotated with consistent metadata through a controlled vocabulary (i.e.,
ReDU) or ontologies (i.e., MetaboLights [7]). Thus, if a researcher finds hits across different
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public datasets, the metadata (sample information) can provide valuable information on the
possible source of that fragmented component in their sample. Moreover, plant researchers
can easily select subsets of publicly available datasets of the plant-based origins relevant to
their experiment to compare their data to and facilitate the annotation of plant metabolites.

3. Metabolomics and Plant Responses to Abiotic Stresses—Current Frameworks

Abiotic stresses are changes in the environmental conditions that negatively affect
plants’ growth and development, metabolism and physiology. The main abiotic stresses
include extreme temperatures, drought, waterlogging, light, radiation, salinity, heavy
metals and chilling [14,18]. Abiotic stresses activate complex cellular responses that are
increasingly being elucidated by progresses made in exploring and understanding plant
responses to abiotic stress factors at the whole-plant, physiological, cellular, biochemical
and molecular levels. As briefly mentioned in Section 1.2, plant responses to abiotic stress
involve the activation of multi-layered events comprising complex gene interactions and
crosstalk with different molecular pathways and networks. Current knowledge (and
understanding) of plant responses to abiotic stresses (Section 1.2) is still the tip of an
iceberg. Comprehensive and accurate metabolic descriptions (models) are imperatively
needed and essential for devising a roadmap for the next generation of crops resilient to
environmental deterioration.

As mentioned in Section 1.1, metabolomics is increasingly enabling the decoding
of the language of cells at molecular level, advancing the understanding of regulatory
network rules and mechanistic events at cellular and chemical space of the plant under
consideration. The application of this multidisciplinary omics science in studying plant
responses to abiotic stresses has gained a momentum, generating insights into molecular
events that govern plant ‘defensome’. To illustrate such applications, in this review, we
focus on drought and salinity stress conditions. Drought and salinity are the two most
impactful abiotic stresses, affecting 45% and 19.5% of the world’s agricultural lands, re-
spectively. These two (globally) major abiotic stresses (drought and salinity) lead to an
annual economic loss above USD 20 billion in developing countries [248]. While drought
stress is caused by water deficit, salinity is the result of accumulation of ions (sodium
and chloride) in the rhizosphere [248–250]. Both stresses affect morphological, physio-
logical and biochemical processes in plants, resulting in growth suppression and, failing
stress alleviation, eventually in cell death. The onset of drought and salt stresses in plants
prompts stress-responsive mechanisms including the signal perception and transduction
via several signalling pathways including second messenger signalling (ROS, Ca2+), the
kinase-signalling cascades (MAPK) and hormone signalling [251–253]. Stress signal per-
ception triggers several stress-responsive processes encompassing genetic reprogramming,
activation of ion channels and synthesis of osmolytes.

Several metabolic studies on different plants have indicated altered primary and
secondary metabolite profiles in response to salinity and drought stresses (Table 3). Sug-
ars, amino acids, and organic acids and their derivatives are the most altered primary
metabolites in osmotic stressed plants [254–256]. Additionally, the perturbed metabolism of
secondary (specialized) metabolites (phenolics acids, flavonoids, phytohormones) has also
been detected in several metabolic studies in response to salinity and drought
stresses [257–259]. Comprehensive characterisation of stress-responsive metabolic profiles
and fluxes is essential for the elucidation of the molecular mechanisms used by plants to
combat abiotic stress conditions. Such knowledge can be translated into suitable biotechno-
logical tools for the development of stress-tolerant crop plants for sustainable food security.

Metabolomics was applied to elucidate the integrative biochemical networks of two
spring-wheat cultivars (Bahar—drought-susceptible; Kavir—drought-tolerant) to drought
stress. Metabolome changes of wheat leaves exposed to 7 days of drought stress was
investigated with LC-MS. Three hundred peaks were detected per sample, with 165 and
146 identified metabolites for Bahar and Kavir, respectively. The main metabolites changed
due to drought stress were amino acids, organic acids and sugars. In Bahar, proline,
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methionine, arginine, lysine, aromatic and branched chain amino acids were increased.
In contrast, only the purine metabolic pathway was significantly affected by the drought
stress in Kavir. Metabolomics in this study thus provided better understanding in the
wheat plant response mechanisms to drought stress [256].

Additionally, metabolomics has also been used to investigate two foxtail millet (Setaria
italica) cultivars of Yugu2 and An04 subjected to salinity stress. A total of 720 metabolites
were identified from the LC-MS data, with 150 metabolites involved in the response
to salt stress, ranging from organic acids, sugars, phenolics, amino acids and others.
The flavonoids were significantly up-regulated in the roots, with the majority of them
and other secondary metabolites being observed in Yungu2. This metabolomics analysis
revealed the flavonoid pathway, starch and sucrose metabolism, glutathione metabolism,
glycophospolipid metabolism, ascorbate and aldarate metabolism, phenylpropanoid and
shikimate pathways to be involved in the responses to salinity stress. The authors also
noted metabolites such as lysophospholipids, which play a role in response to salinity
stress. Therefore, they suggest that there are diverse existing or new response mechanisms
in foxtail millet to cope with salinity stress [260].

Table 3. An overview of metabolism alterations in response to drought and salinity stresses, and their corresponding roles
in plant stress responses.

Metabolite Group Stress-Responsive Roles Plant Species References

Amino acids ROS scavenging (proline), protein
stabilisation and synthesis, redox control

Dianthus superbus, Lens
esculenta [261,262]

Polyols Protection of photosynthesis systems,
ROS scavenging, protein stabilisation

Rice, apple leaves, Fraxinus
excelsior,
Zea mays

[263–266]

Organic acids Energy production, signalling molecules,
antioxidant activities Oryza sativa, Wheat [249,267]

Sugars
Signalling molecules, carbon energy

reserve, maintenance of redox
homeostasis, osmoprotectants

Solanum
lycopersicum, Triticum aestivum [268,269]

Polyamines
Activation of antioxidant enzymes,
regulation of ion channels activity,

protein and membrane stabilisation
Tobacco, Triticum aestivum [270,271]

Phenolics Hormonal regulation, antioxidant
activity, photosynthetic activity

Patagonian shrublands,
Amaranthus tricolor [272,273]

4. Conclusions and Perspectives

Metabolomics has been crucial in elucidating cellular and molecular mechanisms of
plant-environmental interactions. There are still some bottlenecks that limit or hamper
the comprehensiveness of biological insights derived from this multidisciplinary omics
science, metabolomics. Some of these challenges include the complexity, non-linearity
and volume of the generated (metabolomics) datasets, the lack of accurate metabolite
annotation, the difficulty in assigning precursor ions to product ions for overlapping
chromatographic peaks, and the lack of large-scale analysis tools and reconstruction of
metabolic pathways. These challenges can be addressed by the implementation or a revival
of 4IR technologies in plant metabolomics workflows. For example, the automation of
sample preparation methods has reduced the sample preparation time with minimum
variation and human error, thereby resulting in large-scale metabolite extraction, increased
metabolome coverage and the potential to discover novel metabolites that will illuminate
pathways involved in plant response molecular and cellular events, thereby elucidating
plant response mechanisms. Furthermore, the advancement and incorporation of analytical
intelligence in instruments facilitates accurate quantification of metabolites through auto-
matic optimization of chromatographic conditions to enhance peak picking and resolution,
and reproducibility of the data for accurate and confident metabolite annotation. Machine
and deep learning algorithms can handle non-linear data, thus accurately identifying
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complex relationships within plant data, and extracting relevant metabolic features that
correlate to biological origin (i.e., abiotic stress) without bias or approximation. Machine
learning and computational tools with predictive capabilities and rapid search of unknown
metabolites in databases aid in metabolic pathway and molecular formula predictions, and
rapid metabolite annotation and/or structural elucidation at various levels from chemical
compound class, via substructures, to complete metabolite structures, thus facilitating
comprehensive large-scale mining of (plant) metabolomes.

We expect that future developments of 4IR technologies in plant metabolomics will fur-
ther increase automation and connectivity within workflows. For instance, robotic systems
may link prepared samples from the automated sample preparation method instruments to
the analytically intelligent instruments with a custom software that utilizes the internet of
things and wireless telecommunication technologies to automatically upload the resultant
data onto a cloud server for download or sharing by the user, thus enabling remote data
acquisition and analysis. Additionally, portable analytical devices that facilitate metabolite
data acquisition directly from the plant tissue without extraction, will be developed and
may be mounted on to drones for field purposes. An increase in novel computational
tools for processing and analysis of spectral imaging data is anticipated. Development
of computational tools based on machine and deep learning algorithms for predicting
and grouping metabolite functional activity will enable pathway constructions and eluci-
date/predict the synergistic behavior of metabolites/pathways in response to the changing
environment, thus further elucidating plant response mechanisms. The integration of
4IR technologies will also facilitate rapid data analysis. For instance, the integration of
analytical intelligent instruments with cloud servers, computational tools and algorithms,
will enable simultaneous (i.e., real time) metabolite acquisition and metabolite annotation,
thus enhancing rapidity of plant metabolomic studies and rapid elucidation of plant re-
sponse mechanisms to stress. The first examples of tools that are the building blocks of
such large-scale analyses were highlighted in this review. From our review, it becomes
clear that in the last two decades, metabolomics workflows have matured and that we
are at the dawn of a new era where computational metabolomics analysis workflows in
combination with more automated data sampling and acquisition will decrease the barrier
to implement metabolomics studies in research programs in academia and industry. We
believe that this will increase the rate of development for next generation of crops that are
highly productive and resilient to climate change.
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