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Abstract: Ecdysterone is a phytosteroid widely discussed for its various pharmacological, growth-
promoting, and anabolic effects, mediated by the activation of estrogen receptor beta (ERbeta).
Performance-enhancement in sports was demonstrated recently, and ecdysterone was consequently
included in the Monitoring Program, to detect potential patterns of misuse in sport. Only few
studies on the pharmacokinetics of ecdysterone in humans have been reported so far. In this
study, post-administration urine samples in twelve volunteers (single dose of 50 mg of ecdys-
terone) were analyzed using dilute-and-inject liquid-chromatography—tandem mass spectrome-
try. Identification and quantitation of ecdysterone and of two metabolites, 14-deoxy-ecdysterone
and 14-deoxy-poststerone, was achieved. Ecdysterone was the most abundant analyte present in
post-administration urine samples, detected for more than 2 days, with a maximum concentra-
tion (Cmax) in the 2.8-8.5 h urine (Cmax = 4.4-30.0 pg/mL). The metabolites 14-deoxy-ecdysterone
and 14-deoxy-poststerone were detected later, reaching the maximum concentrations at 8.5-39.5 h
(Cmax = 0.1-6.0 pg/mL) and 23.3-41.3 h (Cpax = 0.1-1.5 pg/mL), respectively. Sex-specific differ-
ences were not observed. Cumulative urinary excretion yielded average values of 18%, 2.3%, and
1.5% for ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone, respectively. Ecdysterone
and 14-deoxy-ecdysterone were excreted following first-order kinetics with half-lives calculated with
three hours, while pharmacokinetics of 14-deoxy-poststerone needs further evaluation.

Keywords: ecdysterone; metabolites; excretion profile; urinary pharmacokinetics

1. Introduction

Ecdysterone (chemical structure Figure 1a) is a steroid hormone naturally present in
plants. It is the most widely used active ecdysteroid, and its pharmacological effects have
been discussed since the 1980s [1,2]. Studies reported the ability of this natural steroid hor-
mone to stimulate protein synthesis, and change carbohydrate and lipid metabolism [3,4].
It has also been highlighted that ecdysterone is correlated with an increased cell immu-
nity, and that it is also endowed with adaptogenic, anti-diabetic, hepatoprotective, and
anti-tumor properties [4,5]. Moreover, growth-promoting and anabolic effects in animals
and in humans have been reported [5-23]. In vitro and in silico studies have shown that
the anabolic effect of ecdysterone is mediated by activation of estrogen receptor beta (ER
beta) [8,24-27]. Ecdysterone is marketed as able to increase strength and muscle mass and
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improve performance, without showing any classical side effects of anabolic androgenic
steroids (AAS) [4,5]. For these reasons, the use of dietary supplements containing this
“natural” steroid may be considered to be very attractive for athletes aiming to maximize
their performance, and it has become a topic of high interest within, but not limited to, the
sport context.

Figure 1. Chemical structure of (a) ecdysterone, of (b) 14-deoxy-ecdysterone, (c) 14-deoxy-poststerone,
and (d) ponasterone (ISTD).

Only recently (since 2020), ecdysterone has been included in the Monitoring Program
of the World Anti-Doping Agency (WADA), under the section “Anabolic Agents, In-and
Out-of-Competition” [28], to assess potential patterns of misuse in sport. This decision has
been based mainly on the results of a controlled administration trial in humans, which
demonstrated its performance-enhancing effects in power training [29].

Studies on the metabolism of ecdysterone have been conducted mostly in animals and
only a few refer to humans [10,30-34]. While ecdysterone does not seem to undergo phase
II metabolism [30,34], studies concur on its biotransformation, leading to the formation
of dehydroxylated metabolites. However, structure assignment and information on the
excretion profiles differ in some studies. Indeed, while Tsitsimpikou et al. reported a
2-deoxy-ecdysterone and deoxy-ecdysone as urinary metabolites [32], Brandt reported
the 14-deoxy-ecdysterone [33]. In both studies, the metabolism was evaluated after an
administration to a male volunteer of a dietary supplement called “Ecdysten”, for a final
ecdysterone content of 20 mg. Blood levels of ecdysterone following the administration of
a nutritional supplement containing ecdysterone have also been reported [35].

Recently, in a single dose administration study, 51.5 mg of pure ecdysterone has been
administered to one healthy volunteer, and the presence of 14-deoxy-ecdysterone was con-
firmed in the post-administration urine samples, in comparison to the in-house synthesized
reference [34]. Parr et al. reported ecdysterone as the most abundant analyte in post-
administration urine samples, with a wider detection window than 14-deoxyecdysterone,
which was excreted later [34]. These results are similar to the one reported by Brandt [33],
while Tsitsimpikou et al. reported that ecdysterone is detected in urine mainly as deoxy-
ecdysone metabolite, followed by the parent compound and the 2-deoxy-ecdysterone
metabolite [32].
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This study aimed to investigate and provide consistent analytical information regard-
ing the urinary excretion and the pharmacokinetics of ecdysterone and its metabolites
in humans. More specifically, we have followed the elimination of ecdysterone and its
metabolites, after the administration of a single oral dose of 50 mg in twelve volunteers.

2. Results

The analysis of the urine samples has been performed using LC-MS/MS and the mass
spectrometer was operated in multiple reaction monitoring (MRM) acquisition mode, using
positive ionization (ESI+). The protonated molecular ion [M+H]* for ecdysterone was
detected at m/z 481.3, for 14-deoxy-ecdysterone and ponasterone (isomers) at 465.3 m/z,
and for 14-deoxy-poststerone at 347.2 m/z. For the quantitation of the samples, the ion
transition m/z 481.3 — 445.3 has been used for ecdysterone, m/z 465.3 — 303.2 for 14-
deoxy-ecdysterone, m/z 465 — 447.3 for ponasterone (ISTD), and finally m/z 347.2 —
329.1 for 14-deoxy-poststerone.

2.1. Validation of the Analytical Methodology

Prior to its application, complete validation of the analytical methodology was per-
formed according to the European Medicines Agency (EMA) [36] and the International
Council for Harmonization (ICH M10) [37] guidelines for Bioanalytical Method Validation.

The analytical procedure was validated in terms of selectivity, linearity, limit of detec-
tion (LOD), and limit of quantitation (LOQ), precision and accuracy, matrix effect, stability,
and carry over.

2.1.1. Selectivity

The selectivity was studied by analyzing six individual blank urine samples to deter-
mine if anything in the matrix interfered with the analyte(s) of interest and the internal
standard (ISTD). No interfering signals at the retention time of ecdysterone (RT = 2.99), 14«-
deoxy ecdysterone (14-deoxy-ecdysterone) (RT = 3.52), 14-deoxy-poststerone (RT = 4.07),
and ponasterone (internal standard, ISTD) (RT = 4.81) were detected. Additionally, no
interferences with other isomeric ecdysteroids, i.e., ecdysone and 143-deoxy-ecdysterone,
occurred due to their chromatographic resolution from the target analytes.

2.1.2. Linearity of the Calibration Curves, LOD, and LOQ

For the response function, blank urine samples were spiked with ecdysterone at
12 calibration levels from 1 to 5000 ng/mL. In the case of 14-deoxy-ecdysterone and
14-deoxy-poststerone, 10 calibration levels, 1 to 1000 ng/mL, were used. Each level of
calibrants was prepared in duplicates. Calibration curves were constructed based on
the peak area ratios of the analytes to the ISTD (y-axis) versus the nominal standard
concentration (x-axis).

Back calculation was performed to determine the concentrations of ecdysterone, 14-
deoxy-ecdysterone, and 14-deoxy-poststerone in each calibration standard, which were
used for the quantitation of the analytes in quality control samples (QCs) and post-
administration urine samples by applying the equation y = ax? + bx + ¢, using the Mass
Hunter Quant Software Version 10 from Agilent. The weighted quadratic regression was
applied after the evaluation of linearity, according to Mandel'’s fitting test (F-test), which
resulted in a significantly better fit of the second-order calibration function (quadratic),
in comparison to the first-order regression function (linear), with p = 99%. Furthermore,
by testing the homogeneity of variance according to DIN 38402 T51, a significant differ-
ence between variances (p = 99%) was reported. Consequently, the weighted factor 1/x
was applied. The best fit for ecdysterone and 14-deoxy-ecdysterone was indicated by the
correlation coefficients (R?) of 0.997 and 0.998, respectively.

The LOD was calculated using the standard deviation (SD) of the response and the
slope of calibration (LOD = 3.3 x S.D./slope) [38], and corresponded to 0.24 ng/mL for
ecdysterone and to 0.34 ng/mL for 14-deoxy-ecdysterone.
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The LOQ was determined based on the lowest concentration in which the % error of
accuracy was within +-20% and coefficient of variation (CV) < 20% [37], and corresponded
to 1 ng/mL for both ecdysterone and 14-deoxyecdysterone.

Results are reported in Table 1.

Table 1. Calibration model LOD and LOQ.

Analyte Calibration Model Weighted Calibration Range (ng/mL) R? LOD (ng/mL) LOQ (ng/mL)
Ecdysterone Quadratic 1/x 1-5000 0.997 0.24 1
14-deoxy-ecdysterone Quadratic 1/x 1-1000 0.998 0.34 1

2.1.3. Accuracy and Precision

For the evaluation of intra-day accuracy, expressed as the percentage of relative error
(RE%) and precision, reported as the percentage of coefficient of variation (CV%), five
replicates of the quality control samples (QCs) at the low concentration (LQC), at two
different medium concentrations (MQC1 and MQC2), and at high concentration (HQC),
were analyzed in the same day. The intermediate precision was evaluated by injecting
the LQC, MQC, and HQC in three different days. The results of accuracy, intraday, and
intermediate precision for ecdysterone and 14-deoxy-ecdysterone were all within the
acceptance values (CV% < 15%, RE < 15%), indicating that the analyte and the metabolite
concentration in the urine samples could be determined with reasonable precision and
accuracy. Details are reported in Table 2.

Table 2. Intraday accuracy, intraday precision and intermediate precision of ecdysterone and 14-deoxy-ecdysterone *.

Intraday (1 = 15) Intermediate

Compound Qc Cm(‘;;‘;i;ion Mean Concentration Temen =
(ng/mL) + SD RE (%) CV (%) CV (%)

LQC 1 0.92 +0.11 —7.6 12.2 9.9
Ecdysterone 1°MQC 250 248 £9.9 -0.7 4.0 2.7
2° MQC 2500 2470 £70 -14 2.8 39
HQC 5000 4770 + 160 —4.7 34 3.3
LQC 1 1.0+ 0.1 —34 12.3 11.8
14-deoxy- 1° MQC 50 497+12 —0.7 24 33
ecdysterone 50 \oC 500 507 + 14 14 27 3.8
HQC 1000 949 + 32 —5.1 34 45

* Each value is presented as mean =+ SD. CV, coefficient of variation; RE, relative error.

2.1.4. Matrix Effect

For the evaluation of the matrix effect, blank urine samples of six different volunteers
from individual donors (3 female and male) were analyzed.

The matrix effect was evaluated by spiking ecdysterone and 14-deoxy-ecdysterone
at LQC and HQC, in matrix and non-matrix samples. For each analyte and ISTD, the
matrix factor (MF) was determined by calculating the ratio of the peak area in the presence
of matrix to the peak area, in the absence of matrix (analytes and ISTD spiked in the
methanol:water 10:90, v/v). The ISTD normalized MF was calculated by dividing the MF of
the analytes by the MF of the ISTD. The CV of the ISTD-normalized MF calculated was
lower than 15% in all 6 lots of matrix at LQC and HQC, except for 14-deoxy-ecdysterone at
the LQC, in which it corresponded to 20%. Details are reported in Table 3. These results
showed a high variability. Thus, matrix-matched calibrants were used for quantitation.
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Table 3. Evaluation of matrix effects of ecdysterone and 14-deoxy-ecdysterone in human
urine samples.

. Matrix Effect % o
Compound Level Concentration (ng/mL) (Mean + SD) * CV%
LQC 1 85+ 7 8.0
Ecdysterone
HQC 5000 94+4 4.7
LQC 1 79 £ 16 20
14-deoxy-ecdysterone
HQC 1000 90+7 7.5

* Each value is presented as mean £ SD. CV, coefficient of variation.

2.1.5. Stability

The stability of ecdysterone and 14-deoxy-ecdysterone in urine was determined in
triplicates, using the LQC and HQC samples, which were analyzed immediately and again
after storage, as reported in Table 4. Freshly prepared QC samples (at t = 0) were used as
baseline to assess the stability.

Table 4. Evaluation of the stability of ecdysterone and 14-deoxy-ecdysterone.

Ecdysterone 14-deoxy-ecdysterone
LQC* HQC* LQC * HQC *
Time/Cycle Stability% Stability % Stability% Stability%

Oh 100 100 100 100
Bench-top 4h 100 101 103 101
8h 104 98 101 100
24h 100 100 97 101
Long term 0 100 100 100 100
2 weeks 94 87 91 87
Freeze-Thaw 0 100 100 100 100
3 cycles 111 103 110 103

* Each value is presented as mean (1 = 3).

To evaluate the bench-top stability, LQC and HQC samples were left at room tem-
perature for 4, 8, and 24 h, before analysis. Freeze and thaw stability was evaluated after
three cycles for LOC and HQC. Long-term stability was evaluated analyzing the LQC and
HQC samples, after storing them at —20 °C for two weeks. The results of the stability tests
applied were calculated using the peak area ratio of the analytes to the ISTD, which were
compared to the baseline (t = 0). Comparing the mean of the ratios after a specific storage
condition to the mean of the ratio at t = 0. The results obtained were all within the +15%.
Details are reported in Table 4.

2.1.6. Carry Over

Carry over was tested after the injection of a HQC sample. No signal higher than
the 20% of the LOQ for ecdysterone and 14-deoxy-ecdysterone was detected in the blank
samples (methanol). Thus, carry-over was considered irrelevant.

2.2. Post-Administration Urine Analysis and Evaluation of the Urinary Excretion Profiles of
Ecdysterone and Its Metabolites

The elimination of ecdysterone and its metabolites in post-administration urine sam-
ples, after a single dose administration of pure ecdysterone to 12 subjects, was evalu-
ated. For calibration, blank urine samples were spiked with increasing concentrations of
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concentration (ug/mL)

ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone reference standard solutions
(matrix-matched standard).

In this study, ecdysterone was detected in all subjects, following the administration of
50 mg of pure ecdysterone. The 14-deoxy-ecdysterone and a new metabolite, the 14-deoxy-
poststerone, were detected and confirmed by comparing the retention time and the mass
spectra with the reference standard material, using LC-MS/MS.

The developed and validated method enabled the quantitation of ecdysterone and 14-
deoxy-ecdysterone in post-administration urine samples and consequently their excretion
profiles were evaluated.

Concentration data below the LOQ (but not below the LOD) were included to evaluate
the excretion profile, as their inclusion can result in a better fit of the excretion profile model,
while excluding or replacing them with zero could lead to biased pharmacokinetic parame-
ters [39—42]. However, there is an increased uncertainty in the quantitative measurement
of these low-level concentrations.

Results of the excretion profile of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-
poststerone, considering the concentration versus time and the rate of excretion versus
middle-point time curves, are reported in Figures 2 and 3, respectively.
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Figure 2. Urinary excretion profile (concentration-time curve) of ecdysterone (a), 14-deoxy-ecdysterone (b), and 14-deoxy-
poststerone (c), following a single-dose administration of 50 mg of pure ecdysterone in humans (1 = 12).
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Figure 3. Urinary excretion profile (rate of excretion-midpoint time curve) of ecdysterone (a), 14-deoxy-ecdysterone (b), and

14-deoxy-poststerone (c), following a single-dose administration of 50 mg of pure ecdysterone in humans (1 = 12).

Following a single-dose administration of 50 mg of ecdysterone, the parent compound
resulted to be the most abundant analyte in all post-administration urine samples. Its
maximum concentration was detected in the 2.8-8.5 h urine, ranging from 4.4-30.0 pug/mL.
The maximum excretion rate (mg/h) was detected in the 0.4—4.4 h urine, ranging from
0.1-4.8 mg/h. Ecdysterone was detectable in urine samples, after 45 min from administra-
tion and for more than 2 days (58 h).
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The metabolite 14-deoxy-ecdysterone was also detectable in all urine samples ana-
lyzed. The maximum concentration was detected in the 8.5-39.5 h urine, ranging from
0.1-6.0 ug/mL. The maximum excretion rate was determined in the 10.1-29.5 h urine,
ranging from 0.02-0.24 mg/h. 14-Deoxy-ecdysterone was already detected after 2.95 h and
remained detectable for about 3 days (75 h).

In contrast to the parent compound and to the 14-deoxy-ecdysterone, 14-deoxy-
poststerone was only detected in 10 out of 12 subjects. For 5 volunteers, it was possible to
obtain an excretion profile curve.

The maximum concentration was detected in the 23.3-41.3 h urine, ranging from
0.1-1.5 pg/mL. The detection window of 14-deoxy-poststerone ranged from 8.50 to 97 h.

The mean (1 = 12) of the maximum urinary concentration (Cpax), time to maximum
urinary concentration (Tmax), maximum urinary rate of excretion (ERmax), and maximum
urinary middle-point time (midpoint timenay) were calculated and the details are reported
in Table 5.

Table 5. Urinary excretion profile parameters calculated as the mean of 12 subject + standard deviation (SD), after
administration of a single dose of 50 mg of pure ecdysterone.

Compound Excretion Profile Parameters
Cmax (ug/mL) Tmax (h) ERmax (mg/h) Midpoint Timemax (h)
Ecdysterone 121492 46418 17 +14 21413
mean & SD
14-deoxy-ecdysterone 14416 19.7 + 8.9 01401 1754 7.0
mean £+ SD
14-deoxy-poststerone 0.8 +0.7* 301 +7.2* 0.1+0.1* 27.8+3.7*%

mean + SD

@ I @
S S S
! ! !

cumulative excretion (%)
8
L

* Calculated from n = 5.

2.3. Evaluation of Urinary Pharmacokinetic Parameters—Cumulative Amount and Half-Life

For each subject considered in this study (n = 12), the amount of ecdysterone, 14-
deoxy-ecdysterone, and 14-deoxy-poststerone excreted in urine (cumulative amounts,
Du), after administration of 50 mg of pure ecdysterone were calculated. The cumulative
urinary excretion curves of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone,
expressed as percentages relative to the dose administered (50 mg) versus sampling time
(hours) are displayed in Figure 4. The cumulative excretion percentages range from
2.8-47.2% for ecdysterone, from 0.4-6.1% for the 14-deoxy-ecdysterone, and from 0.01-4.9%
for 14-deoxy-poststerone. These results showed that the cumulative excretion percentages
of 14-deoxy-ecdysterone and 14-deoxy-poststerone were much lower than the one obtained
for ecdysterone, which was excreted in urine samples, faster than the metabolites (Figure 4).

6] —es-oo 64

cumulative excretion (%)
cumulative excretion (%)

time (h)

(@)

(b) (©)

Figure 4. Cumulative urinary excretion curve of ecdysterone (a), 14-deoxy-ecdysterone (b), and 14-deoxy-poststerone (c),
following a single-dose administration of 50 mg pure ecdysterone in male and female (1 = 12).
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The distributions of cumulative urinary excretion percentage of ecdysterone, 14-deoxy-
ecdysterone, and 14-deoxy-poststerone are reported as box-plots in Figure 5. The mean val-
ues correspond to 18% with an SD of +13%, 2.3% =+ 1.74%, and 1.5% =+ 2.1%, respectively.
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Figure 5. Box-plots of urinary cumulative excretion for ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone

(a) and their comparison in male and female, after administration of 50 mg of ecdysterone (b); * significantly different

p < 0.05 (b).

A comparison of the urinary cumulative percentages of ecdysterone, 14-deoxy-
ecdysterone, and 14-deoxy-poststerone after administration of 50 mg of pure ecdysterone
in male and female, was performed using a T-test. No significant differences between male
and female (p < 0.05) were observed for ecdysterone and 14-deoxy-ecdysterone, while
significant differences (p < 0.05) were observed for the metabolite 14-deoxy-poststerone.
Results are reported in the boxplots in Figure 5.

The half-lifes of ecdysterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone in
post-administration urine samples were calculated using two different methods—rate of
excretion method and the sigma-minus method. The calculated half-life for ecdysterone
and 14-deoxy-ecdysterone were found to be similar and corresponded to about 3 h. The
half-life of 14-deoxy-poststerone instead was much longer using the rate of excretion than
the sigma minus method.

Details of the cumulative amount of the analyte and the metabolites excreted in urine
samples, as well as the calculated half-life, are reported in Table 6. The In-transformed
excretion rate used to calculate the elimination rate constant (k) of ecdysterone and the
corresponding half-life is displayed in Figure 6.

Table 6. Urinary pharmacokinetic parameters calculated as the mean of 12 subject & standard
deviation (SD), after administration of a single dose of 50 mg of pure ecdysterone.

Compound Cumulative Du (mg) Half Life (h)
Rate of Excretion Sigma-Minus
Ecdysterone
mean + SD 8.8 £6.6 34+1.0 3.0£1.0
14-deoxy-ecdysterone 11+09 31413 22409
mean + SD
14-deoxy-poststerone 0.7 4+ 1.1 9.74+95% 44410%

mean + SD
* Calculated from n = 5; ** calculated from n = 10.
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Figure 6. Ecdysterone In-transformed excretion rate.

3. Discussion

In this study, an LC-MS/MS method was successfully developed for the identification
and quantitation of ecdysterone and its metabolites. The analytical method was validated
for ecdysterone and 14-deoxy-ecdysterone only. After the administration of a single dose
of 50 mg of pure ecdysterone to twelve healthy subjects (five males and seven females),
the excretion profile and urinary pharmacokinetic parameters of ecdysterone and its
metabolites were evaluated. Ecdysterone was the most abundant analyte detected in post-
administration urine samples. Its early detectability in urine (45 min post administration),
indicates its rapid absorption and excretion. The kinetics of elimination of ecdysterone
was evaluated using the log-linear rate of excretion versus the middle-point time, and
corresponded to a first-order.

Ecdysterone was detected in post-administration urine samples for more than 2 days,
and its Cpax in urine was reached in the 2.8-8.5 h. From the results of the cumulative
urinary excretion, we can assume that after 12 h, ecdysterone reaches a plateau, indicating
that it is almost completely eliminated, the maximum amount of ecdysterone in urine
samples is reached, and that it corresponds to 18%. Ecdysterone was found to have a short
urinary half-life, which corresponds to 3.4 and 3.0 h, when using the rate of excretion and
the sigma-minus method, respectively.

In this study, the presence of the metabolite 14-deoxy-ecdysterone was observed in
the post-administration urine samples and its formation was confirmed for all 12 subjects
considered. The urinary detection of 14-deoxy-ecdysterone after administration of ecdys-
terone was previously reported by Brant and Parr et al. in humans [33,34], Kumpun in
mice [10], and Destrez in calves [43,44]. Instead, Tsitsimpikou et al. reported the formation
of 2-deoxy-ecdysterone and deoxy-ecdysone as urinary metabolites [32]. Kumpun at al.
reported the formation of a deoxy-metabolite as caused by gut bacteria [10]. This should
be confirmed by further metabolic studies.

The 14-deoxy-ecdysterone was excreted later than the parent compound, probably
due to its less polar physico-chemical characteristics. It was detected in post-administration
urine samples for about 3 days, reaching the Cpax in the 8.5-39.50 h urine.

Unlike ecdysterone, that after reaching the maximum excretion rate showed a decline
to the base level, in several subjects, a first increase of the excretion rate of 14-deoxy-
ecdysterone to a maximum level was followed by a second peak (Figure 3). Thus, it
might be assumed that there is a rate-limiting step in the pharmacokinetics process of
14-deoxy-ecdysterone or that it remains longer in other compartments, before it is excreted
in urine.

Results from the cumulative excretion of 14-deoxy-ecdysterone, in contrast to ecdys-
terone, showed that the plateau was reached at different times in the different subjects
considered. Specifically, in 58.3% of subjects the plateau was reached between 2540 h, in
25% it was reached between 15 to 25 h, and in the remaining 16.6% between 40-62 h. These
results indicate an inter-individual variability in the formation, absorption, and excretion
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rate of the metabolite. The maximum amount of 14-deoxy-ecdysterone reached in urine
samples corresponded to 2.3% (mean, n = 12). As for ecdysterone, a short half-life was also
observed for 14-deoxy-ecdysterone, calculated as 3.1 and 2.2 h, using the rate of excretion
and the sigma-minus method, respectively.

In humans, 14-deoxy-poststerone was detected as a new metabolite. Its identity
was confirmed in post-administration human urine samples, in comparison to authentic
reference material. The 14-deoxy-poststerone was detectable in post-administration urine
samples for about 4 days and the Cphax was reached in the 23.3-41.3 h urine. The maximum
amount excreted in urine corresponds to 1.5%. In mice, Kumpun et al. [10] already reported
it as metabolite of ecdysterone, as well. Unlike the ecdysterone parent compound and
14-deoxy-ecdysterone, 14-deoxy-poststerone was only identified in 10 out of 12 subjects.
Analogous to the formation of progestins from cholesterol in human steroid biosynthesis,
14-deoxy-poststerone may be generated by side-chain cleavage. Postulated by Kumpun
et al., this may be catalyzed either by a cytochrome P450 enzyme or generated by gut
microorganisms [10].

As a consequence, if these reactions are caused by the gut bacteria, individual vari-
ability in the metabolic profile needs to be considered. No correlation between the concen-
tration of 14-deoxy-ecdysterone and 14-deoxy-poststerone was observed. To understand
whether the latter can be selected as a target metabolite for an ecdysterone administration,
further investigations are needed.

The cumulative excretion percentage of 14-deoxy-poststerone reached a plateau be-
tween 36 to 61 h post-dosage. Similar to the trend of the excretion rate of 14-deoxy-
ecdysterone, a small increase in the excretion rate of 14-deoxy-poststerone, after the maxi-
mum peak was achieved, was observed. The half-life of 14-deoxy-poststerone calculated
using the excretion rate method corresponded to 9.7 & 9.5 h, while with the sigma-minus it
corresponded to 4.4 + 1.0 h. This can be explained as a result of the fluctuation observed
during the elimination phase, influencing the linearity of the line constructed to obtain the
k-value, which is used to calculate the half-life.

The results of the Cax obtained in this study showed that there is a high inter-
individual variability in the excretion of ecdysterone and its metabolites. Statistical
evaluation was conducted to compare the percentage of excreted ecdysterone, 14-deoxy-
ecdysterone, and 14-deoxy-poststerone, between females and males. No significant differ-
ence was found for ecdysterone and 14-deoxy-ecdysterone, while for 14-deoxy-poststerone,
a significant difference (p < 0.05) between female and male was observed.

Excretion profile results obtained when using the rate of excretion or the concentration,
indicate that the knowledge of urinary information (e.g., volume, collection time) can
influence the point in which the highest concentration or excretion rate is detected.

In total, up to 50.3% (mean = 21.1%, n = 12) of the administered dose was recovered in
urine (as a parent drug and metabolites). The remaining dose might be unabsorbed due
to low bioavailability, or might be excreted by other pathways, such as biliary excretion,
sweat, saliva, feces, or it can also be transformed to another metabolite that is not yet
detected and quantified within this study.

Although the findings of this study provide consistent information regarding the
urinary excretion and pharmacokinetics of ecdysterone and its metabolites in human
urine, the method was validated only for ecdysterone and 14-deoxy-ecdysterone. For 14-
deoxy-poststerone, no full validation was performed. Furthermore, no investigation on the
excretion as phase II metabolites was carried out. However, earlier investigations showed
no excretion of ecdysterone or 14-deoxy-ecdysterone as conjugates. Further investigations
on phase II conjugates of 14-deoxy-poststerone are planned for the future.

4. Materials and Methods
4.1. Chemicals and Reagents

Reference standards of ecdysterone (23,3(3,14,20[3,22R,25-hexahydroxy-53-cholest-7-
en-6-one, parent compound, PC, purity > 95%) was purchased from Steraloids (Newport,
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RI, USA), while Ponasterone (23,3(3,14x,203,22R-pentahydroxy-53-cholest-7-en-6-one,
used as internal standard, ISTD) was obtained from Santa Cruz Biotechnology, Inc. (Hei-
delberg, Deutschland). Alpha-14-deoxy-ecdysterone (M1) and alpha-14-deoxy-poststerone
(M2) were purchased from Extrasynthese (Genay CEDEX, France).

4.2. Oral Administration of Ecdysterone and Urine Collection

The study was approved by the ethical committee of the German Sport University
Cologne, and was carried out following the regulations of the Helsinki declaration. Twelve
healthy subjects (7 females and 5 males) with a mean age (standard deviation [SD]) of
26 (3.1) y, weight of 74 (12.0) kg, and height of 174 (8.3) cm participated in the study.
A single-dose of 50 mg of pure ecdysterone dissolved in 50 cl of alcoholic solution was
administered to the subjects. All doses were administered at 9.00 a.m. in the morning.
The urine samples were collected one day before (blank samples) and five days after the
administration of ecdysterone. Sampling time (h) and urine volume (mL) were recorded.
Aliquots of urine samples were stored frozen at —18 °C, until analysis.

4.3. Standard Solutions and Quality Control Samples

Stock solutions of ecdysterone, ponasterone (ISTD), 14-deoxy-ecdysterone, and 14-
deoxy-poststerone were prepared in methanol, at a concentration of 1 mg/mL. Working so-
lutions were prepared by diluting the stock solution of ecdysterone, 14-deoxy-ecdysterone,
and 14-deoxy-poststerone, in methanol, and were used for preparation of the calibrants.
Serial dilution with appropriate amounts of working solutions were prepared in the pooled
blank urine samples (matrix-matched standards), to obtain the final concentrations of 1, 2.5,
5, 10, 25, 50, 100, 250, 500, 1000, 2500, and 5000 ng/mL of ecdysterone, and concentrations
ranging from 1 to 1000 ng/mL for 14-deoxy-ecdysterone and 14-deoxy-poststerone, to
prepare the respective calibration standard ranges, in a final volume of 1 mL. Appropriate
amount of a working solution of ponasterone (10 ng/mL) was prepared and used to spike
the blank urine samples, obtaining a final concentration of 100 ng/mL in all calibrants.

Quality control (QC) samples were independently prepared at 4 different levels of
concentration—for ecdysterone 1 ng/mL (LQC), 250 ng/mL (MQC1), 2500 ng/mL (MQC2),
and at 5000 ng/mL (HQC). However, for 14-deoxy-ecdysterone and 14-deoxy-poststerone,
the QC samples were prepared at 1 ng/mL (LQC), 50 ng/mL (MQC1), 500 ng/mL (MQC2),
and at 1000 ng/mL (HQC).

4.4. Sample Preparation

Urine samples (200 pL) spiked with 10 pL of the ISTD ponasterone (working solution
10 ng/mL) and diluted to 1 mL with methanol:water (10:90, v/v). The tubes were vortex-
mixed and then centrifuged at 9677 RCF for 8 min.

The supernatants were transferred to autosampler vials and analyzed.

4.5. Urine Analysis

The analysis of ecdysterone and its metabolite in calibration and urine samples was
performed by LC-MS/MS on an Agilent 1200 Infinity series, coupled to an Ultivo triple
quadrupole tandem MS system, utilizing a Jet Stream electrospray ionization (ESI) source
and an Ion Funnel (Agilent Technologies GmbH, Waldronn, Germany).

4.5.1. Chromatographic Conditions

Chromatographic separation was achieved with an Agilent Eclipse Plus C18 column
(2.1 mm x 50 mm, particle size 1.8 um). The gradient program started at 12% of eluent B
and linearly increased to 40% in 4 min, then to 98% in 1.20 min, 0.30 min hold, followed
by 0.20 min equilibration at 12% of eluent B. The linear gradient was applied at a flow
rate of 0.45 mL/min, resulting in a total run time of 5.7 min plus 1 min for column
equilibration. Solvent A comprised of aqueous formic acid (H,O:FoOH, 99.9:0.1, v/v) and
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acetonitrile:formic acid (ACN:FoOH, 99.9:0.1, v/v) was used as solvent B. The sample
injection volume was 5 pL.

4.5.2. Mass Spectrometric Parameters

The mass spectrometer was operated in multiple reaction monitoring (MRM) acqui-
sition mode, using positive ionization (ESI+). The protonated molecular ion [M+H]" for
ecdysterone, ponasterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone, were detected
at m/z 481.3 for ecdysterone, at 465.3 m/z for ponasterone and 14-deoxy-ecdysterone
(isomers), and at 347.2 m/z for 14-deoxy-poststerone.

Source and MRM optimization were performed using the MassHunter software
(Agilent Technologies Inc. Santa Clara, CA, USA). Resulting parameter capillary voltage of
4000 V, nozzle voltage of 500 V, drying gas flow of 5 L/min (nitrogen) at 150 °C, sheath
gas flow of 12 L/min (nitrogen) at 375 °C, and nebulizer pressure of 30 psi (nitrogen) were
used for the experiments. Table 7 reports the mass spectrometric parameters for the MRM
transition of ecdysterone, ponasterone, 14-deoxy-ecdysterone, and 14-deoxy-poststerone.
The chromatograms and mass spectra are reported as the supplemental material.

Table 7. Mass spectrometric parameters for MRM transitions for ecdysterone, its metabolites, and the ISTD.

Analytes Retention Time (min)  Precursor Ion (m/z)  Product Ion (m/z) Collision Energy Polarity
Ecdysterone

quantifier 481.3 445.3 13 positive
qualifier 299 481.3 427.3 13 positive
qualifier 481.3 371.2 9 positive
qualifier 481.3 80.9 57 positive
14-deoxy-ecdysterone

quantifier 465.3 303.2 21 positive
qualifier 465.3 80.9 53 positive
qualifier 35 465.3 285.2 25 positive
qualifier 465.3 267.2 29 positive
qualifier 465.3 104.9 73 positive
qualifier 465.3 90.9 89 positive
14-deoxy-poststerone

quantifier 347.2 329.1 16 positive
qualifier 407 347.2 173.0 28 positive
qualifier 347.2 90.9 68 positive
qualifier 347.2 105.0 56 positive
Ponasterone

quantifier 465.3 447.3 9 positive
qualifier 4381 465.3 90.9 89 positive
qualifier 465.3 80.9 37 positive

4.6. Evaluation of Excretion Profile and Pharmacokinetic Parameters in Urine

In this study, the excretion profile, the cumulative amount excreted in urine, and the
half-life of ecdysterone and its metabolites, after a single-dose administration of 50 mg of
pure ecdysterone were evaluated according to [45].
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To obtain the excretion rates, Equation (1) was applied:

Ci X Vl
Erate,1 (ti — ti—l) (1)

For each urine sample, the calculated concentration (C;, ng/mL) of ecdysterone, 14-
deoxy-ecdysterone, and 14-deoxy-poststerone was adjusted as a function of the dilution
factor applied (1:5) and of the volume of urine collected (V;, mL), obtaining the correspond-
ing amount of drug in urine (expressed in ng), which was divided by the interval between
the time values of the sampling and the previous sampling (; — t;_1).

The excretion profile curves of ecdysterone and its metabolites for each subject were
then obtained by plotting the calculated rate of excretion values (ng/h) versus time (middle-
point of sample collection, hours) or simply the calculated concentrations (ng/mL) versus
time (sampling time, hours). The first collected interval started at 0 h after the oral admin-
istration of ecdysterone at 9 a.m.

For each sample, the amount of drug excreted in urine was calculated and added
to the amount of drug recovered in the previous urine sample to obtain the cumulative
urinary drug excretion, which was plotted in a graph versus the sampling time (hours).

The half-life using the elimination rate constant (k) was calculated by applying
Equation (2):

by = 2 @

Two different methods were used to calculate the elimination rate constant (k). In the
rate of excretion method, k was obtained from the slope of the elimination phase of the
In-transformed excretion curve (Figure 6).

In the sigma minus method, k was obtained from the slope of the elimination phase of
the In-transformed remaining drug to be excreted.

Mass Hunter Quant Software from Agilent was used for data acquisition and analysis.
Origin Pro 9.1 software (OriginLab Corporation, Northampton, MA, USA) was used for
data visualization and statistical treatment of data.

5. Conclusions

The elimination of ecdysterone and its metabolites in human urine, following a single-
dose administration of 50 mg of pure ecdysterone was evaluated in twelve volunteers, using
a validated LC-MS/MS method, by diluting and injecting the urine samples. Ecdysterone
was found to be the most abundant compound, excreted in detectable amounts already
after 45 min, indicating its rapid absorption and excretion. Ecdysterone was detected in
urine samples for more than 2 days, with a half-life of about 3 h. Two metabolites were also
detected in urine samples, 14-deoxy-ecdysterone and 14-deoxy-poststerone. These resulted
in a later excretion than the parent compound and could been detected in urine samples
for about 3 and 4 days, respectively. Thus, the metabolites could be selected as the target
analytes for a longer detection time of an ecdysterone intake. The results obtained within
this study showed that about 50% of the administered dose was recovered in urine (sum of
ecdysterone and the two metabolites).

Supplementary Materials: MRM chromatograms and product ions of ecdysterone (a), 14-deoxy
ecdysterone (b), 14-deoxy poststerone (c) and ponasterone (d) is available online at https://www.
mdpi.com/article/10.3390/metabo11060366/5s1.
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