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Abstract: Feline obesity elicits a plethora of metabolic responses leading to comorbidities, with 

potential reversal during weight loss. The specific metabolic alterations and biomarkers of organ 

dysfunction are not entirely understood. Untargeted, high-throughput metabolomic technologies 

may allow the identification of biological components that change with weight status in cats, 

increasing our understanding of feline metabolism. The objective of this study was to utilize 

untargeted metabolomic techniques to identify biomarkers and gain mechanistic insight into the 

serum metabolite changes associated with reduced food intake and weight loss in overweight cats. 

During a four-wk baseline period, cats were fed to maintain body weight. For 18 wk following 

baseline, cats were fed to lose weight at a rate of ~1.5% body weight/wk. Blood serum metabolites 

were measured at wk 0, 1, 2, 4, 8, 12, and 16. A total of 535 named metabolites were identified, with 

up to 269 of them being altered (p- and q- values < 0.05) at any time point. A principal component 

analysis showed a continual shift in metabolite profile as weight loss progressed, with early changes 

being distinct from those over the long term. The majority of lipid metabolites decreased with 

weight loss; however, ketone bodies and small lipid particles increased with weight loss. The 

majority of carbohydrate metabolites decreased with weight loss. Protein metabolites had a variable 

result, with some increasing, but others decreasing with weight loss. Metabolic mediators of 

inflammation, oxidative stress, xenobiotics, and insulin resistance decreased with weight loss. In 

conclusion, global metabolomics identified biomarkers of reduced food intake and weight loss in 

cats, including decreased markers of inflammation and/or altered macronutrient metabolism. 
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1. Introduction 

Pets are becoming more integral members of the family, with 68% of US households 

owning a pet and 38% of US households owning a cat in 2016 [1]. Unfortunately, there is 

an alarming incidence of obesity in companion animals in the US and obesity is now 

considered the most common nutritional disorder in pets [2]. A survey conducted by the 

Association for Pet Obesity Prevention reported that 58.9% of US cats, or 50.5 million, are 

overweight (28%) or obese (30.9%) [3]. To further complicate the issue, many owners have 

a skewed perception of what constitutes healthy pet weight [4,5]. A general classification 
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defines an overweight cat as one weighing 10–20% over their ideal body weight (BW) and 

an obese cat weighing >20% above their ideal BW [6]. Each unit increase of body condition 

score (BCS) above ideal (BCS = 5) is roughly 10–15% over ideal BW [7,8]. 

Similar to humans, feline obesity is associated with comorbidities that have 

detrimental effects on health. The traditional development of obesity is due to a positive 

imbalance between energy intake and energy expenditure [2]. Aspects of the 

domestication and humanization of pets also contribute to obesity. These risk factors 

include neutering [4,5,9], decreased physical activity, increased food intake, and access to 

highly palatable high-fat and/or high-carbohydrate diets [10–12]. While obesity 

prevention would ideally avoid these conditions, it is necessary to develop effective and 

safe obesity treatment methods. The recommendation for safe and reasonable weight loss 

for cats is 1% to 1.5% of BW lost per wk [13,14]. To safely avoid inducing hepatic lipidosis 

during weight loss, cats should eat at least 50% of their maintenance energy requirement 

(MER) [6]. Previous experimental and clinical trials have used caloric restrictions between 

59% and 80% of MER without evidence of hepatic lipidosis [15]. 

Obesity is a complex and multifactorial disease not only involving genetics, but also 

environmental and lifestyle factors [16]. Metabolomics, similar to genomics and proteomics, 

may now be used to analyze samples in order to gain insight on global metabolite responses 

to stimuli and link phenotype with genotype [17]. Obesity is a disease that affects whole-body 

function and elicits a plethora of metabolic responses, yet the specific alterations in metabolism 

and organ dysfunction are not entirely understood [18]. Metabolomic assays may be used to 

identify biomarkers of disease and/or evaluate the effects of nutritional intervention [19]. Such 

assays may not only increase our understanding of host metabolism and physiology, but may 

lead to the development of metabolite panels for use in veterinary practice or by pet food 

professionals. In veterinary clinics, metabolite signature panels may serve to diagnose disease 

and aid in the lifestyle, nutritional, and pharmaceutical management of pets with obesity, type 

2 diabetes mellitus (DM), and other metabolic abnormalities. Likewise, pet food researchers 

may use metabolomic tools and/or targeted metabolite panels to develop and assess 

therapeutic diets intended to improve metabolism, reduce clinical signs, and increase the 

quality of life of pets. 

While the field of metabolomics has developed rapidly in regard to human health, 

much less is known about the global metabolite profiles of domestic cats [20–22]. Recent 

studies have evaluated nutritional interventions in cats and dogs, but few have described 

the metabolomic changes in those that are overweight or obese [23–27]. Given the lack of 

knowledge in the area in general, and the lack of studies and data in obligate carnivores, the 

objective of this study was to determine effects of weight loss and moderate-protein, high-

fiber diet consumption on the fasted serum metabolome of cats. Although it would be 

impossible to predict many specific metabolites given the lack of research and knowledge 

in the area, we hypothesized that weight loss would beneficially alter the serum metabolite 

profile, including the reduction in markers of inflammation, immune response, and insulin 

resistance, and would alter lipid and protein metabolite profiles as well. 

2. Results and Discussion 

2.1. Food Intake, Weight Loss, Body Composition, and Global Serum Metabolomics 

A complete description of the food intake, BW, body composition, serum chemistry, 

and fecal microbiota data of cats is available in our previous publication [28]. Briefly, food 

intake was significantly lower for wk 1–18 than during the baseline period. Food intake 

was not different from wk 8 to 18 (47.7 to 44.7 g/d [153.2 to 143.7 kcal ME/d]), but cats 

continued to lose weight. All cats lost weight and body fat as a result of caloric restriction. 

Mean BW (7.7 vs. 6.2 kg) and mean BCS (7.6 vs. 6.0) decreased significantly from wk 0 to 

wk 16. Mean fat mass was significantly lower at wk 8, 12, and 16 (2.4–1.8 kg) than at wk 0 

(2.9 kg). Body fat percentage was also significantly lower at wk 8, 12, and 16 (36.8–30.7%) 

than at wk 0 (40.9%). Mean lean body mass was significantly lower at wk 12 and 16 (3.7 
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kg) than at wk 0 (3.9 kg). Mean bone mineral content was significantly lower at wk 12 and 

16 (92.7 and 92.4 g, respectively) than at wk 0 (108.2 g). Most serum biochemical results 

remained within the respective reference ranges of the clinical laboratory throughout the 

study. The exception was the significantly higher creatinine concentrations (reference 

range, 0.4 to 1.6 mg/dL) from wk 1 (1.74 mg/dL) to 16 (1.91 mg/dL) than the concentration 

at wk 0 (1.59 mg/dL). Mean triglyceride concentrations were significantly lower at wk 1–

16 than the concentration at wk 0 (56.0 mg/dL). Relative abundance of fecal Actinobacteria 

increased and Bacteroidetes decreased with weight loss. At the genus level, Blautia, Dorea, 

Eubacterium, Oscillospira, Peptococcus, and Ruminococcus increased with weight loss, while 

Lactobacillus, Butyricicoccus, and Phascolarctobacterium decreased. Alpha diversity (species 

richness) and beta diversity were not affected. 

A total of 535 named biochemicals were identified, with up to 269 metabolites being 

altered (p- and q- values < 0.05) at any time point. Principal component analysis (PCA, 

Figure 1) showed a continual shift in metabolite profile as weight loss progressed. 

Components one and two explained 14.3% and 10.3% of the variability, respectively. 

Although distinct clusters did not form, a biphasic relationship seemed to distinguish the 

early (wk 1–4) and late (wk 8–16) responses to weight loss. Broadly speaking, wk 1 and 2 

appeared similar to baseline, wk 4 was variable, and wk 8, 12, and 16 were more 

differentiated from baseline. All of the metabolites discussed below were statistically 

significant with a combined p- and q- value ≤ 0.05. 

Random forest analysis was performed to identify and rank the top metabolites 

affected by weight loss by comparing metabolite profiles at wk 0 with the other time 

points (i.e., wk 1, 2, 4, 8, 12, and 16). As demonstrated by the large mean decrease accuracy 

(MDA) values in Figures 2 and 3, Supplementary Tables S1–S4, weight loss quickly and 

dramatically altered metabolite profiles. Even though predictive accuracy improved with 

greater weight loss over time, accuracy was between 81% and 87% during the initial four 

wk. Random forest analysis showed that lipid- and amino acid-based metabolites made 

up 15 to 21 of the top 30 metabolites identified at each time point. Moreover, while some 

metabolites such as N-acetylglycine (amino acid (AA) metabolism), sarcosine (AA 

metabolism), choline phosphate (lipid metabolism), and 2-hydroxyisobutyrate (Figures 2 

and 3) had consistently high MDA values through the entire study, others were indicative 

of initial (e.g., uracil, lactate, nicotinamide, myo-inositol) or long-term (e.g., thymol 

sulfate; 1-methylhistidine; 12, 13-dihydroxyoctadecanoic acid (DiHOME); 9, 10-DiHOME) 

weight loss. 

Many of the metabolites with the highest MDA in early weight loss (wk 1–4 vs. wk 

0) were related to lipid metabolism (e.g., scyllo-inositol, choline phosphate, 

propionylcarnitine, phosphoethanolamine, Figures 2 and 3). Other metabolites with 

consistently high MDA values were nicotinamide (cofactors and vitamins), 2-hydroxy-3-

methylvalerate (AA metabolism), ethyl glucuronide (xenobiotic metabolism), lactate 

(carbohydrate metabolism), and uracil (nucleotide metabolism) (Figures 2 and 3). Late 

weight loss (wk 8–16 vs. wk 0) was characterized by altering metabolites associated with 

lipid (10-undecenoate [11:1n1]; 12, 13-DiHOME; 9, 10-DiHOME), AA (ophthalmate and 1-

methylhistidine), and xenobiotic (thymol sulfate and 2-hydroxyisobutyrate) metabolism 

(Figures 2 and 3). One metabolite associated with peptide metabolism, gamma-glutamyl-

2-aminobutyrate, had a consistently high MDA from wk 8–16 vs. wk 0 (Figures 2 and 3). 
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Figure 1. Principal component analysis of metabolite profiles demonstrates shifts that 

accompanied weight loss in cats. 



Metabolites 2021, 11, 324 5 of 30 
 

 

 

Figure 2. Top 30 serum metabolites differing between wk 1, 2, 4, 8, 12, and 16 of weight loss and baseline in cats as identified by random forest analysis. 
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Figure 3. Top 30 serum metabolites that differed in cats and group prediction accuracy at (a) wk 1 versus baseline, (b) wk 2 versus baseline, (c) wk 4 versus baseline, (d) 

wk 8 versus baseline, (e) wk 12 versus baseline, and (f) wk 16 versus baseline, according to random forest analysis. 
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2.2. Metabolite Profiles Associated with Lipid Metabolism 

Of the 269 metabolites altered with weight loss in this study, over half of them (i.e., 

144) were related to lipid metabolism (Tables 1 and 2, Supplementary Table S1). 

Metabolites of inositol (myo-inositol, scyllo-inositol, and inositol 1-phosphate, Table 2) 

and phospholipid metabolism (choline phosphate, phosphoethanolamine, and 

glycerophosphoethanolamine, Figure 4) immediately decreased by wk 1 of weight loss 

and remained lower at all wk vs. wk 0. In humans, abnormalities in myo-inositol 

metabolism have been associated with insulin resistance and its depletion has been found 

in tissues affected by diabetic microvascular and neurological complications in animal 

models and humans [29], but these metabolites have yet to be studied well in cats. 

Additionally, increases in myo-inositol may reduce insulin resistance [30–34]. When 

metabolized in the liver, fatty acids (FA) may be oxidized within the mitochondria to 

produce acetyl-CoA (generate ATP or sterols). FA may also be converted to 

triacylglycerols and exported as VLDL or stored as lipid droplets. Finally, FA may be 

metabolized into various phospholipids or sphingolipids [35]. The conversion of FA to 

sphingolipid or phospholipid metabolites has been linked to obesity, insulin resistance, 

type 2 DM, and cardiovascular disease [35–37]. Choline plays a role in the cell membrane 

structure, methyl metabolism, and lipid metabolism. The majority (>95%) of choline is 

used to synthesize phosphatidylcholine (PC) [38], which was shown to be greater in high-

fat diet (HFD) fed obese mice [39]. Monoacylglycerols, mainly 2-palmitoylglycerol (wk 1 

fold change = 3.05, Table 1), were increased by wk 1 of weight loss and remained higher 

throughout weight loss. 

Table 1. Serum metabolites related to lipid metabolism that were increased in cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1 wk 2 wk 4 wk 8 wk 12 wk 16 

wk 0 wk 0 wk 0 wk 0 wk 0 wk 0 

Medium Chain Fatty Acid 10-undecenoate (11:1n1) 1.11 1.21 1.40 1.52 1.48 1.60 

Fatty Acid Synthesis 

malonylcarnitine 1.21 1.35 1.57 1.77 1.84 1.58 

malonate (propanedioate) 1.36 1.44 1.38 1.30 1.37 1.36 

2-methylmalonyl carnitine 1.22 1.40 1.68 1.96 2.14 1.86 

Fatty Acid Metabolism 

(Acyl Glycine) 

hexanoylglycine 1.55 1.56 1.98 2.22 2.33 2.11 

N-octanoylglycine 1.22 1.3 1.55 3.04 2.78 1.70 

Fatty Acid Metabolism 

(Acyl Carnitine) 
Hydroxybutyrylcarnitine  0.94 1.13 1.32 1.85 2.00 1.63 

Ketone Bodies 
acetoacetate 1.54 1.59 1.93 1.91 1.54 1.08 

3-hydroxybutyrate (BHBA) 1.51 1.72 1.95 2.09 2.00 1.74 

Monoacylglycerol 

1-palmitoylglycerol (1-monopalmitin) 1.41 1.5 1.69 1.85 1.68 1.74 

2-palmitoylglycerol (2-monopalmitin) 3.05 1.81 2.18 2.74 2.59 1.92 

1-linoleoylglycerol (1-monolinolein) 1.37 1.65 1.81 1.59 1.45 1.65 

1-arachidonylglycerol 1.79 2.35 2.73 2.45 2.18 2.41 
 1-docosahexaenoylglycerol 1.52 2.31 2.53 2.15 1.76 2.26 

Sphingolipid Metabolism 
stearoyl sphingomyelin 1.07 1.09 1.19 1.35 1.24 1.37 

oleoyl sphingomyelin 1.11 1.13 1.33 1.32 1.24 1.35 

Numbers in red text were significantly higher than the baseline (wk 0). 



Metabolites 2021, 11, 324 9 of 30 
 

 

 

Figure 4. Fold change of metabolites related to phospholipids in cats during weight loss. * mean values were lower in 

comparison with wk 0 (p < 0.05). 

Long-chain FA and polyunsaturated FA (PUFA) were lower at wk 8, 12, and 16 vs. 

wk 0. The medium-chain FA 10-undeconoate (11: 1n1) was increased by wk 1 (fold change 

= 1.11) and remained higher at all wk vs. wk 0. Blood lipids may be derived from the diet, 

from adipose tissue, or the liver. These lipids are an important source of energy for the 

host and are stored primarily as triglycerides in adipose tissue [39]. Obesity is generally 

associated with elevated plasma, serum, and liver concentrations of non-esterified FA 

(NEFA), especially saturated FA (SFA) [40]. Furthermore, higher concentrations of stearic 

acid (p = 0.035), total SFA (p = 0.051), and palmitoleic acid (p = 0.068) along with lower 

linoleic acid (p = 0.084) concentrations have been reported in obese men [41]. Another 

study reported that total SFA (palmitic acid [C16:0] and stearic acid [C18:0]) and 

monounsaturated FA were lower (p < 0.005) after eight wk of energy restriction (–15% 

MER) in obese adults [42]. Although cats are true carnivores and do not develop 

cardiovascular disease in the same way that humans do, blood lipid profiles are indicative 
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of their metabolic status and are important in regard to obesity and type 2 DM. Not 

surprisingly, most long-chain FA in this study were lower at wk 8, 12, and 16 vs. wk 0. 

Interestingly, monoacylglycerols, which are intermediates of lipolysis, were increased 

with weight loss. 

Markers of primary bile acid metabolism, cholate, and taurocholate (Table 2), 

immediately and dramatically decreased with reduced food intake and weight loss, with 

a fold change of 0.03 and 0.14, respectively, at wk 1. Markers of secondary bile acid 

metabolism, deoxycholate, and ursodeoxycholate (Table 2), also decreased with weight 

loss. Bile acids do not only function to digest lipids in the diet, but are signaling molecules 

that regulate metabolism and inflammation in obesity, type 2 DM, dyslipidemia, and 

nonalcoholic fatty liver disease [43]. In humans, total bile acid concentrations are 

positively correlated with BMI [44] and with type 2 DM [45,46]. The same relationship 

may be expected in cats, but has not yet been studied to our knowledge. Mevalonate 

(Table 2), the product of rate-limiting enzyme HMG-CoA reductase (HMGR), was 

significantly lower after wk 8 vs. wk 0 (fold change = 0.65). Cholesterol, the major product 

of HMGR, remained unchanged. The cholesterol-derived primary and secondary bile 

acids were greatly decreased with weight loss. Cholate, in particular, was reduced by a 

fold change of 0.03 and 0.01 at wk 1 and wk 16 vs. wk 0, respectively. Taurocholate and 

deoxycholate had similar reductions. The bile acid precursor 7-Hoca was essentially 

unchanged, with an increase only at wk 8 vs. wk 0 (fold change = 1.1), suggesting a 

reduced need for emulsifying bile acids to aid in lipid digestion and absorption. 

Markers of glycerolipid metabolism, glycerol 3-phosphate (G3P), and 

glycerophosphoglycerol (Table 2) decreased by wk 1 vs. wk 0 (fold change = 0.59 and 0.72, 

respectively). Some lysolipids decreased with weight loss, with many changes occurring at 

wk 4 or later. Many dicarboxylate FA (i.e., 2-hydroxyadipate and 1,11-

undecanedicarboxylate, Table 2) decreased with weight loss. While markers of branched-

chain amino acid (BCAA) metabolism (butyrylcarnitine and propionylcarnitine, Table 2) 

decreased, those of acylglycine and acylcarnitine metabolism increased throughout weight 

loss (Table 1). C3 acylcarnitine is a by-product of isoleucine and valine catabolism, while C5 

acylcarnitines are intermediates of mitochondrial isoleucine and leucine catabolism. Both 

C3 and C5 acylcarnitines have been reported to increase with human obesity [47]. 

Furthermore, propionylcarnitine, butyrylcarnitine, and hexanoylcarnitines have been 

identified as being greater in obese men [41]. Butyrylcarnitine was lower from wk 2 to 16 vs. 

wk 0, and propionylcarnitine was lower at all wk vs. wk 0 in the current study. 

Table 2. Serum metabolites related to lipid metabolism that were decreased in cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1 wk 2 wk 4 wk 8 wk 12 wk 16 

wk 0 wk 0 wk 0 wk 0 wk 0 wk 0 

Long Chain Fatty Acid 

pentadecanoate (15:0) 0.93 0.90 0.85 0.80 0.80 0.81 

palmitate (16:0) 1.00 0.99 0.96 0.87 0.87 0.90 

margarate (17:0) 0.97 0.98 0.88 0.76 0.81 0.77 

stearate (18:0) 1.02 1.03 0.96 0.85 0.88 0.87 

arachidate (20:0) 1.04 1.06 0.97 0.82 0.86 0.86 

Polyunsaturated Fatty 

Acid (n3 and n6) 

stearidonate (18:4n3) 0.91 0.87 0.81 0.66 0.55 0.49 

eicosapentaenoate (EPA; 20:5n3) 0.95 0.94 0.86 0.70 0.65 0.74 

linoleate (18:2n6) 0.96 0.96 0.88 0.83 0.82 0.85 

linolenate (18:3n3 or 6) 0.88 0.88 0.79 0.71 0.69 0.64 

dihomo-linolenate (20:3n3 or n6) 1.00 0.97 0.93 0.83 0.75 0.74 

Fatty Acid, 

Dicarboxylate 

2-hydroxyadipate 0.79 0.70 0.65 0.60 0.57 0.71 

suberate (octanedioate) 0.81 0.70 0.77 0.65 0.60 0.79 

sebacate (decanedioate) 0.82 0.73 0.79 0.65 0.62 0.76 
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1,11-undecanedicarboxylate 0.77 0.69 0.75 0.68 0.66 0.91 

tetradecanedioate 0.90 0.81 0.83 0.80 0.75 0.84 

hexadecanedioate 0.77 0.69 0.72 0.70 0.69 0.74 

docosadioate 0.84 0.81 0.83 0.70 0.76 0.72 

3-carboxy-4-methyl-5-propyl-2-

furanpropanoate (CMPF) 
0.82 0.81 0.72 0.56 0.63 0.82 

Fatty Acid 

Metabolism (also 

BCAA Metabolism) 

butyrylcarnitine 0.85 0.78 0.80 0.81 0.80 0.69 

propionylcarnitine 0.65 0.63 0.59 0.67 0.63 0.62 

Fatty Acid, 

Monohydroxy 

2-hydroxyoctanoate 0.81 0.79 0.87 0.71 0.55 0.48 

2-hydroxydecanoate 0.86 0.77 0.86 0.67 0.47 0.41 

3-hydroxysebacate 0.58 0.60 0.49 0.46 0.47 0.64 

3-hydroxylaurate 0.74 0.71 0.75 0.64 0.64 0.64 

3-hydroxymyristate 0.86 0.82 0.85 0.69 0.77 0.70 

5-hydroxyhexanoate 0.94 0.82 0.78 0.71 0.64 0.83 

5-hydroxydecanoate 0.84 0.69 0.76 0.67 0.58 0.78 

16-hydroxypalmitate 0.90 0.78 0.81 0.80 0.73 0.69 

Endocannabinoid N-palmitoyltaurine 1.02 0.96 0.96 0.82 0.75 0.76 

Inositol Metabolism 

myo-inositol 0.66 0.66 0.76 0.77 0.81 0.74 

scyllo-inositol 0.60 0.59 0.70 0.79 0.78 0.65 

inositol 1-phosphate (I1P) 0.73 0.82 0.71 0.75 0.68 0.58 

Lysolipid 

2-palmitoleoylglycerophosphocholine 0.83 0.78 0.61 0.61 0.38 0.54 

1-palmitoylplasmenylethanolamine 0.66 0.72 0.65 0.67 0.54 0.50 

1-oleoylplasmenylethanolamine 0.57 0.74 0.62 0.52 0.35 0.32 

1-oleoylglycerophosphoethanolamine 0.74 0.65 0.53 0.47 0.54 0.60 

1-linoleoylglycerophosphoethanolamine 0.78 0.75 0.65 0.60 0.70 0.70 

1-arachidonoylglycerophosphoethanolamine 0.86 0.82 0.75 0.69 0.76 0.73 

1-oleoylglycerophosphoinositol 0.93 1.24 1.05 0.30 0.31 0.26 

1-linoleoylglycerophosphoinositol 1.13 1.17 0.88 0.65 0.65 0.72 

1-linoleoylglycerophosphoserine 0.76 0.80 0.28 0.22 0.23 0.12 

1-arachidonoylglyercophosphate 1.11 0.84 0.41 0.61 0.36 0.37 

oleoyl-linoleoyl-glycerophosphoinositol 0.83 0.84 0.80 0.58 0.59 0.56 

palmitoyl-linoleoyl-glycerophosphoinositol 0.82 0.88 0.84 0.63 0.59 0.58 

Glycerolipid 

Metabolism 

glycerol 3-phosphate (G3P) 0.59 0.52 0.70 0.67 0.77 0.68 

glycerophosphoglycerol 0.72 0.62 0.60 0.61 0.60 0.60 

Glycerolipid 

Metabolism 
sphingosine 0.53 0.41 0.34 0.23 0.36 0.16 

Mevalonate 

Metabolism 
mevalonate 1.11 0.95 0.84 0.68 0.65 0.59 

Sterol 

beta-sitosterol 0.88 0.94 0.80 0.74 0.79 0.79 

campesterol 0.85 0.89 0.81 0.80 0.77 0.80 

fucosterol 0.94 0.91 0.81 0.65 0.72 0.61 

Steroid cortisol 0.38 0.33 0.44 0.84 0.67 0.69 

Primary Bile Acid 

Metabolism 

cholate 0.03 0.01 0.01 0.00 0.01 0.01 

taurocholate 0.14 0.19 0.17 0.19 0.19 0.19 

Secondary Bile Acid 

Metabolism 

deoxycholate 0.38 0.41 0.35 0.26 0.32 0.29 

ursodeoxycholate 0.55 0.60 0.51 0.24 0.31 0.36 

Numbers in green text were significantly lower than the baseline (wk 0). 
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Carnitine transports FA into the mitochondrion to produce energy via -oxidation; 

therefore, carnitine is often used to promote weight loss [48]. Furthermore, obese mice 

and humans have displayed a depletion of carnitine in liver tissue [39,41]. It may be that 

lower carnitine in an obese state leads to the insufficient β-oxidation of NEFA, resulting 

in NEFA being stored as triglycerides in adipose tissue and ultimately, an accumulation 

of fat [17]. The majority of FA, including palmitate and stearate (Table 2), were decreased 

with weight loss. The ketone bodies acetoacetate and 3-hydroxybutyrate (BHBA) 

increased throughout the weight-loss period (Table 1). A study by Schmedes et al. 

reported an elevated (p < 0.001) concentration of the ketone bodies, BHBA, and 

acetoacetate, and a lower (p < 0.001) concentration of choline, glucose, tyrosine, and lactate 

in serum of overweight female subjects after a 6-wk very-low-calorie diet (average energy 

= 617 kcal/d) [49]. Carbohydrate restriction leads to a reduction in insulin secretion. When 

circulating insulin concentrations are low, stored fat in adipose tissue undergoes lipolysis 

[50,51]. Once hormone-sensitive lipase is liberated, NEFA in the hepatic mitochondria are 

preferentially used for β-oxidation to produce acetyl-CoA and ketone bodies, rather than 

the fats being esterified into triglycerides [52]. Decreased insulin release promotes a 

metabolic shift toward lipid oxidation and the utilization of FA and ketones for energy 

[53]. This is reflected by an increase in ketone bodies and a decrease in triglycerides in 

fasting serum samples. Our results in cats agree with these previous reports, with 

acetoacetate and BHBA increasing up to 1.93 and 2.09 fold, respectively (Table 1). 

Eicosanoids are oxygenated bioactive metabolites derived from C-20 FA (including 

arachidonic acid), and include prostaglandins, thromboxanes, leukotrienes, and lipoxins 

[54]. They are mediators of acute inflammation, fever, and diseases such as cancer, 

atherosclerosis, and thrombosis. Therefore, preventing eicosanoid synthesis and action, 

or modifying the type of eicosanoid to be synthesized is the aim of many drugs. 

Eicosanoid-related metabolites were decreased with weight loss in the current study. 

Thromboxane B2 was lower at wk 16 vs. wk 0 (fold change = 0.31), and 12-

hydroxyeicosatetraenoic acid (HETE) was reduced more quickly, with a fold change of 

0.56 and 0.25 by wk 1 and wk 16 vs. wk 0, respectively (Figure 5). Triglyceride-rich 

lipoprotein (TGRL) lipolysis products cause inflammatory stimuli that possibly alter the 

endothelial barrier function and have pro-atherogenic and pro-inflammatory properties 

[55]. Monohydroxy FA (i.e., 3-hydroxysebacate, 5-hydroxyhexanoate, 5-

hydroxydecanoate, and 13-HODE + 9-HODE, Figure 5, Table 2) and dihydroxy FA (12, 

13-DiHOME and 9, 10-DiHOME, Figure 5) decreased with weight loss. Linoleic acid-

derived 13-hydroxyl ocatadecadienoic acid (HODE) and 9-HODE are the major oxidized 

components of low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL), 

respectively [56,57]. Other products of linoleic acid oxidation include 12, 13-DiHOME, 9, 

10-DiHOME, and epoxy octadecenoic acid (EpOME). Research by Wang et al. reported 

that significant amounts of these oxidized lipids are released during TGRL lipolysis [55]. 

During weight loss in the current study, 12, 13-DiHOME was primarily reduced, with a 

fold change of 0.74 and 0.24 at wk 1 and wk 16 vs. wk 0, respectively. The metabolite 9, 

10-DiHOME was also lower at wk 8, 12, and 16 vs. wk 0, while 13-HODE and 9-HODE 

were lower from wk 4 to 16 vs. wk 0 of weight loss (Figure 5). These results in the study 

of cats agree with the human and rodent literature that obesity is a state of low-grade 

inflammation and that weight loss can reduce this state. 

A correlation analysis identified 17 lipid metabolites from an untargeted analysis that 

were positively correlated with fasted serum triglyceride concentrations, and 4 lipid 

metabolites from an untargeted analysis were positively correlated with fasted serum 

cholesterol concentrations (Supplementary Table S5). Another 33 lipid metabolites, 

including ketone bodies (3-hydroxybutyrate and acetoacetate), were positively correlated 

with body fat mass and fat percentage. Finally, 26 lipid metabolites were positively 

correlated with BW (Supplementary Table S6). 
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Figure 5. Fold change of metabolites related to eicosanoids and oxidized lipids in cats during 

weight loss. * mean values were lower in comparison to wk 0 (p < 0.05). 

2.3. Metabolite Profiles Associated with Amino Acid and Peptide Metabolism 

Approximately 40% of the metabolites altered by reduced food intake and weight 

loss were related to AA metabolism (i.e., 100) and peptide metabolism (i.e., 14) (Tables 3 

and 4, Supplementary Table S2). The sub-pathways of AA metabolism had variable 

results, containing metabolites that both increased and decreased with weight loss. Most 

metabolites of lysine metabolism (i.e., N-6-trimethyllysine, glutarylcarnitine, and 3-

methylglutarylcarnitine, Table 3) were higher at wk 1 or 2 vs. wk 0 and remained higher 

throughout the study. Conversely, glutarate was decreased by wk 1 vs. wk 0 (fold change 

= 0.75, Table 4) and remained lower at all wk vs. wk 0. Metabolites of glycine, serine, and 

threonine metabolism had differing results, with N-acetylglycine being higher at wk 1 vs. 

wk 0 (fold change = 1.37, Table 3), and sarcosine being lower (fold change = 0.62, Table 4). 

Glutamate was lower at wk 1, 2, and 16 versus wk 0 (fold change = 0.71, 0.73, and 0.67, 

respectively, Table 4), while glutamine was only higher at wk 12 vs. wk 0 (fold change = 

1.19, Table 3). In obese children as compared to normal-weight children, glutamine was 

also increased with weight loss [58]. In humans, it was also reported that the association 

between obesity and the activation of the hexosamine pathway, which consumes 

glutamine upon the formation of glucosamine-6-phosphate from fructose 6-phosphate 

[59,60], and the glucosamine and hexosamines subsequently formed from it, are known 

to be associated with the development of insulin resistance [60,61]. There was an increase 

in 1-methylhistidine by wk 1 vs. wk 0 (fold change = 1.2, Table 3), and it remained higher 

at all wk vs. baseline. Most metabolites of phenylalanine and tyrosine metabolism were 

decreased with weight loss, with N-acetylphenylalanine being lower at wk 1 vs. wk 0 (fold 

change = 0.87), o-cresol sulfate being lower at wk 2 vs. wk 0 (fold change = 0.49), and others 
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being lower at wk 4 vs. wk 0 (Table 4). Similarly, in humans, insulin resistance and an 

increased risk of developing type 2 DM are associated with elevated concentrations of 

aromatic AA (tyrosine and phenylalanine) and BCAA (isoleucine, leucine, and valine), 

with the aromatic AA and BCAA being reported to decrease after weight loss in obese 

individuals [47,62–65]. 

Table 3. Serum metabolites related to amino acid and peptide metabolism that were increased in cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1wk 2wk 4wk 8wk 12wk 16

wk 0wk 0wk 0wk 0 wk 0 wk 0 

Amino Acids 

Glycine, Serine and Threonine Metabolism N-acetylglycine 1.37 1.41 1.51 1.61 1.66 1.63 

Glutamate Metabolism glutamine 1.05 1.10 1.09 1.10 1.19 1.06 

Histidine Metabolism 1-methylhistidine 1.20 1.20 1.17 1.28 1.34 1.28 

Lysine Metabolism 

N6-acetyllysine 1.01 1.08 1.15 1.19 1.15 1.17 

N-6-trimethyllysine 1.16 1.21 1.19 1.25 1.22 1.24 

glutarylcarnitine (C5) 1.19 1.32 1.43 1.46 1.53 1.47 

3-methylglutarylcarnitine (1) 1.41 1.43 1.68 1.95 2.2 1.74 

Phenylalanine and Tyrosine Metabolism 3-(4-hydroxyphenyl)lactate 1.09 1.09 1.15 1.16 1.17 1.09 

Tryptophan Metabolism 
kynurenine 1.04 1.05 1.16 1.18 1.19 1.19 

tryptophan betaine 1.03 1.02 1.14 1.29 1.77 2.25 

Leucine, Isoleucine and Valine Metabolism 

isovalerylglycine 1.21 1.08 1.18 1.28 1.41 1.38 

3-hydroxy-2-ethylpropionate 1.32 1.19 1.30 1.63 1.53 1.48 

6-hydroxynorleucine 1.10 1.14 1.18 1.24 1.25 1.15 

Methionine, Cysteine, SAM and Taurine 

Metabolism 

N-formylmethionine 1.04 1.06 1.07 1.10 1.11 1.10 

2-aminobutyrate 1.23 1.20 1.29 1.50 1.41 1.28 

Urea cycle; Arginine and Proline Metabolism pro-hydroxy-pro 1.16 1.47 1.63 1.55 1.50 1.92 

Glutathione Metabolism ophthalmate 0.99 1.20 2.02 3.68 3.09 2.64 

Felinine Metabolism felinine 1.07 1.00 1.04 1.06 1.11 1.08 

Peptides 

Gamma-glutamyl Amino Acid 

gamma-glutamylalanine 1.07 1.03 1.24 1.36 1.37 1.28 

gamma-glutamylglutamine 1.12 1.12 1.16 1.25 1.20 1.18 

gamma-glutamylisoleucine  1.23 1.22 1.23 1.35 1.22 1.25 

gamma-glutamylleucine 1.16 1.14 1.17 1.19 1.14 1.15 

gamma-glutamylvaline 1.20 1.12 1.15 1.24 1.19 1.14 

gamma-glutamyl-2-aminobutyrate 1.41 1.56 1.77 2.11 1.99 1.91 

Dipeptide Derivative 
N-acetylcarnosine 1.24 1.33 1.37 1.37 1.27 1.36 

anserine 1.08 1.09 1.11 1.16 1.22 1.17 

Dipeptide prolylglycine 1.27 1.35 1.34 1.49 1.38 1.33 

Numbers in red text were significantly higher than the baseline (wk 0). 

Metabolites of BCAA (leucine, isoleucine, and valine) metabolism were 

inconsistently changed by weight loss, with 2-hydroxy-3-methylvalerate being the only 

metabolite to decrease by wk 1 vs. wk 0 (fold change = 0.57, Table 4) and remain lower at 

all wk. Valine was not changed with weight loss in the current study, but leucine was 

lower at wk 12 vs. wk 0 (Table 4). High fasted BCAA and aromatic AA concentrations 

have been documented in obese humans [66] and are thought to contribute to obesity-

related comorbidities such as insulin resistance and glucose intolerance [47]. Reportedly, 

obese men had plasma valine and leucine concentrations that were 23% and 14%, 

respectively, higher than lean men [41]. BCAA catabolism may be inhibited with obesity, 

as obese ob/ob mice and Zucker rats reportedly had depressed activities of BCAA 
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aminotransferase and the branched-chain α-ketoacid dehydrogenase enzyme complex 

[67]. Conversely, HFD-fed mice have been shown to have lower serum BCAA 

concentrations [68,69]. In approximately 1300 humans aged 40–79, higher BCAA 

concentrations were related to older age, male sex, metabolic syndrome, obesity, 

cardiovascular disease risk, dyslipidemia, hypertension, and uric acid [70]. Medium- and 

long-chain acylcarnitines, by-products of the mitochondrial catabolism of BCAA, 

branched-chain keto acids, and BCAA distinguished obese people with insulin resistance 

from those without [71]. In a study of nearly 900 hypertension patients, BCAA, tyrosine, 

and phenylalanine were associated with metabolic syndrome and impaired fasting 

glucose [72]. Finally, elevations in BCAA and alanine were associated with insulin 

resistance, whereas higher concentrations of glutamine and glycine were associated with 

a lower likelihood of insulin resistance [73]. 

Table 4. Serum metabolites related to amino acid metabolism that were decreased in cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1 wk 2 wk 4 wk 8 wk 12 wk 16 

wk 0 wk 0 wk 0 wk 0 wk 0 wk 0 

Amino Acids 

Glycine, Serine and 

Threonine Metabolism 

sarcosine (N-Methylglycine) 0.62 0.72 0.61 0.50 0.57 0.53 

threonine 0.95 0.92 0.87 0.82 0.78 0.80 

Glutamate Metabolism glutamate 0.71 0.73 0.82 0.81 0.95 0.67 

Lysine Metabolism glutarate (pentanedioate) 0.75 0.64 0.67 0.61 0.63 0.71 

Phenylalanine and 

Tyrosine Metabolism 

N-acetylphenylalanine 0.87 0.81 0.81 0.80 0.77 0.80 

phenyllactate (PLA) 0.70 0.68 0.72 0.74 0.74 0.69 

o-cresol sulfate 0.68 0.49 0.26 0.27 0.36 0.47 

Gentisate 0.79 0.85 0.58 0.72 0.45 0.59 

3-[3-(sulfooxy)phenyl]propanoic acid 0.79 0.86 0.47 0.56 0.47 0.47 

3-(3-hydroxyphenyl)propionate 0.68 0.75 0.45 0.52 0.45 0.48 

3-(4-hydroxyphenyl)propionate 0.45 0.57 0.37 0.32 0.31 0.28 

4-hydroxycinnamate sulfate 0.66 0.69 0.43 0.38 0.31 0.28 

Tryptophan 

Metabolism 

N-acetyltryptophan 0.85 0.78 0.76 0.65 0.68 0.70 

indolelactate 0.87 0.87 0.91 0.89 0.87 0.83 

indolepropionate 0.71 0.66 0.64 0.59 0.61 0.56 

picolinate 0.95 0.89 0.72 0.58 0.58 0.48 

indole-3-carboxylic acid 0.82 0.79 0.78 0.53 0.49 0.49 

Leucine, Isoleucine 

and Valine 

Metabolism 

leucine 1.02 1.00 0.98 0.93 0.89 0.95 

2-hydroxy-3-methylvalerate 0.57 0.55 0.60 0.65 0.70 0.66 

Methionine, Cysteine, 

SAM and Taurine 

Metabolism 

methionine 0.91 0.88 0.85 0.76 0.71 0.79 

N-acetylmethionine 0.85 0.83 0.79 0.83 0.80 0.80 

methionine sulfoxide 0.73 0.74 0.71 0.60 0.60 0.69 

S-adenosylhomocysteine (SAH) 0.63 0.56 0.63 0.72 0.46 0.50 

Cystathionine 0.80 0.80 0.79 0.68 0.76 0.76 

hypotaurine 0.31 0.31 0.35 0.41 0.36 0.28 

taurine 0.72 0.72 0.72 0.72 0.68 0.62 

N-acetyltaurine 0.86 0.86 0.82 0.81 0.84 0.74 

Urea cycle; Arginine 

and Proline 

Metabolism 

urea 1.05 0.95 0.93 0.83 0.83 0.79 

citrulline 0.96 0.94 0.98 0.91 0.87 0.85 

N-delta-acetylornithine 0.94 0.89 0.86 0.81 0.77 0.74 

N-methylproline 0.86 0.88 0.80 0.80 0.74 0.80 

Numbers in green text were significantly lower than the baseline (wk 0). 

Metabolites of methionine, cysteine, S-adenosylmethionine (SAM), and taurine 

metabolism mostly decreased with weight loss, and methionine sulfoxide, S-
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adenosylhomocysteine (SAH), taurine, hypotaurine, and N-acetyltaurine all decreased by 

wk 1 vs. wk 0 (fold change = 0.73, 0.63, 0.72, 0.31, and 0.86, respectively, Table 4) and 

remained lower throughout weight loss. Methionine restriction in rodents reduced 

circulating lipids, increased metabolic flexibility, enhanced insulin sensitivity, and limited 

fat deposition by increasing the total daily energy expenditure [74–80]. Taurine plays a 

role in the conjugation of cholesterol and bile acids and has been thought to play a role in 

obesity [17]. In a previous study with Labrador Retriever dogs, a decrease in postprandial 

urinary taurine concentration indicated an alteration in lipid metabolism in overweight 

dogs, and that taurine may be a possible biomarker [27]. In humans, plasma total cysteine 

has a positive relationship with BMI, with higher total cysteine being present in 

overweight individuals [81–85]. Urea cycle metabolites such as urea and citrulline were 

lower at wk 8, 12, and 16 vs. wk 0 (Table 4), while pro-hydroxy-pro was higher at wk 2, 4, 

8, 12, and 16 vs. wk 0 (Table 3). Markers of creatine metabolism had opposing results, with 

both creatine and creatine phosphate being lower at wk 1 and 2 vs. baseline, and creatinine 

and its precursor guanidinoacetate being higher at wk 1–16 and 4–16 vs. baseline, 

respectively (Figure 6). 

 

Figure 6. Fold change of metabolites related to creatinine metabolism in cats during weight loss. * 

mean values were lower in comparison with wk 0 (p < 0.05). ¤ mean values were higher in 

comparison with wk 0 (p < 0.05). 

Glutamine is the most abundant AA in plasma, and glycine is generated from serine, 

which is derived from pyruvate. Both of these AA, which are precursors of urea 

biosynthesis and glucose metabolism [86], were previously reported to be lower (p < 0.05) 

in obese individuals [87,88]. Protein restriction has been reported to increase glycine and 

serine concentrations [89]. Serine, glycine, and threonine metabolic pathways were 

significantly higher in humans that had Roux-en-Y gastric bypass surgery and sustained 

weight loss (RYGB-SWL) compared to ones who regained BW (RYGB-WR); most of the 

statistically different metabolites between the RYGB-SWL and RYGB-WR groups were 

involved in AA metabolism, one-carbon metabolism, and nucleotide metabolism [90]. 

Similarly, in the current study, metabolites of glycine, serine, and threonine were 

observed to be higher at all wk during weight loss vs. wk 0. 
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Arginine and glycine synthesize creatine, which is broken down in skeletal muscle 

to produce creatinine [91]. Previous research has shown an increase of creatinine in the 

urine of obese humans (p < 0.01) [92] and in the serum of HFD-fed mice (p < 0.05) [69]. 

Ophthalmate, a metabolite of glutathione metabolism, was doubled at wk 4 (fold change 

= 2.02) in the current study and remained higher with weight loss (Table 3). In general, 

most peptide-related metabolites were increased with weight loss. Particularly 

noteworthy are gamma-glutamylisoleucine, gamma-glutamyl-2-aminobutyrate, N-

acetylcarnosine, and prolylglycine, which were higher at wk 1 vs. wk 0 (fold change = 1.23, 

1.41, 1.24, and 1.27 respectively) and remained higher at all wk (Table 3). 

A correlation analysis identified five amino acid and one peptide metabolites from 

an untargeted analysis that were negatively correlated with fasted serum cholesterol 

concentrations; two amino acid and one peptide metabolites from an untargeted analysis 

that were negatively correlated with fasted serum triglyceride concentrations; nine amino 

acid and two peptide metabolites from an untargeted analysis that were positively 

correlated with fasted serum creatinine concentrations; and eleven amino acid and one 

peptide metabolites from an untargeted analysis that were positively correlated with 

fasted serum blood urea nitrogen concentrations (Supplementary Table S5). Additionally, 

ten amino acid and one peptide metabolites were negatively correlated with body fat 

percentage, while six amino acid and one peptide metabolites were negatively correlated 

with BW (Supplementary Table S6). The gut microbiome can influence the blood 

metabolites of the host, including indole-containing metabolites, phenyl derivatives, and 

flavones [93]. It was previously reported that enteric bacteria (Escherichia coli, Clostridium 

sporogenes) can convert tryptophan to indoles, and Bifidobacterium infantis can increase 

plasma levels of tryptophan [94–96]. In the present study, body fat percentage was 

negatively correlated with two tryptophan-based metabolites, and positively correlated 

with tryptophan and one phenylalanine/tyrosine-based metabolite (Supplementary Table 

S6). These results may be due to substrate availability and/or the alteration of gut bacteria. 

However, further studies are needed to evaluate the effects of dietary composition, food 

intake, and weight loss on the relationships among host metabolites and the gut 

microbiota. An improved understanding may consequently allow for improved dietary 

interventions for the treatment of obesity in cats. 

2.4. Metabolite Profiles Associated with Carbohydrate and Energy Metabolism 

Reduced food intake and weight loss affected nine and seven metabolites related to 

carbohydrate and energy metabolism, respectively (Table 5, Supplementary Table S3). 

Lactate and glycerate were decreased by wk 1 (fold change = 0.68 and 0.88, respectively) 

and remained lower with weight loss, while fructose and mannose were increased by wk 

1 (fold change = 1.15 and 1.27, respectively) and remained higher with weight loss (Figure 

7). Previous research has demonstrated that subcutaneous fat is a source of lactate [97] 

and that HFD-induced obese mice or obese Zucker rats lacking the leptin receptor have a 

higher concentration of lactate in the urine, blood, and liver tissue [69,98–101]. Because 

lactate is a precursor of gluconeogenesis, greater plasma lactate in obese models may 

reflect alterations in hepatic glucose and lipid metabolism. The decrease in serum lactate 

and glycerate observed in the current study may indicate a beneficial shift in glucose 

metabolism with weight loss. Fructose is converted to glycerol and acyl groups for 

synthesis of triglycerides in the liver [102]. Higher fructose at all wk vs. wk 0 agrees with 

the previously discussed decreases in fasting serum triglyceride concentrations [28]. 

Citrate was only higher at wk 16 vs. wk 0 (fold change = 1.09, Table 5), and alpha-

ketoglutarate was only lower at wk 2 vs. wk 0 (fold change = 0.81, Table 5). Fumarate and 

phosphate were lower at all wk vs. wk 0 (Table 5). The literature suggests that alpha-

ketoglutarate is a positive predictor of obesity [103], yet alpha-ketoglutarate was only 

lower at wk 2 vs. wk 0 in the current study. Pyruvate enters the tricarboxylic acid cycle 

(TCA) via citrate, which is regulated in the plasma by insulin, glucose, FA utilization, 

cholesterol synthesis, and liver clearance and excretion [68]. Plasma citrate has been 
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reported to be higher in diabetic rats [104] and HFD-fed obese mice [68], and lower with 

insulin administration in children [105]. In contrast, lower serum citrate has been reported 

in humans with type-2 DM [106]. 

Table 5. Altered serum metabolites related to carbohydrate and energy metabolism in cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1 wk 2 wk 4 wk 8 wk 12 wk 16 

wk 0 wk 0 wk 0 wk 0 wk 0 wk 0 

Carbohydrates 

Pentose Metabolism ribose 0.68 0.52 0.48 0.59 0.73 0.59 

Aminosugar Metabolism 
glucuronate 1.03 0.98 0.93 0.90 0.91 0.85 

N-acetylneuraminate 0.74 0.72 0.61 0.62 0.56 0.54 

Energy 

TCA Cycle 

citrate 1.09 1.07 0.99 0.98 1.05 1.09 

succinylcarnitine 1.18 1.23 1.33 1.51 1.65 1.53 

alpha-ketoglutarate 0.83 0.81 0.85 0.94 0.92 0.95 

succinate 0.81 0.83 0.84 0.91 0.91 0.83 

fumarate 0.56 0.54 0.59 0.75 0.70 0.69 

Oxidative Phosphorylation phosphate 0.93 0.93 0.91 0.92 0.90 0.88 

Numbers in red text were significantly higher, while numbers in green text were significantly lower than the baseline (wk 0). 

 

Figure 7. Fold change of metabolites related to carbohydrates in cats during weight loss. * mean 

values were lower in comparison with wk 0 (p < 0.05). ¤ mean values were higher in comparison 

with wk 0 (p < 0.05). 

A correlation analysis identified one carbohydrate and one energy metabolites from 

an untargeted analysis that were positively correlated with fasted serum cholesterol 

concentrations, while two carbohydrate metabolites from an untargeted analysis were 

positively correlated with fasted serum triglyceride concentrations (Supplementary Table 
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S5). Another energy metabolite was negatively correlated with body fat percentage 

(Supplementary Table S6). 

2.5. Metabolite Profiles Associated with Nucleotide, Xenobiotic, and Cofactor and Vitamin 

Metabolism 

The remaining metabolites altered by reduced food intake and weight loss were 

related to nucleotide (26 metabolites), xenobiotic (38 metabolites), and cofactor and 

vitamin (19 metabolites) metabolism (Tables 6 and 7, Supplementary Table S4). Markers 

of xanthine- or inosine-containing purine metabolism were decreased, with xanthine, 2′-

deoxyinosine, and urate quickly decreasing by wk 1 vs. wk 0 (fold change = 0.48, 0.46, and 

0.74, respectively, Table 7). Some markers of pyrimidine metabolism such as uracil (Figure 

8), 2′-deoxyuridine, and cytidine were decreased (Table 7), while others such as orotate 

were increased (Table 6) with weight loss. It has been shown that uridine infusion induced 

insulin resistance in rats [107] and has been correlated with insulin resistance in 

hypertensive patients [108]. Results of the current study show lower uridine at wk 2, 4, 

12, and 16 vs. wk 0 (fold change = 0.69, 0.68, 0.7, and 0.61, respectively). Uracil forms 

uridine when it is combined with a sugar ribose by a glycosidic linkage [109]. Uracil was 

lower at all wk vs. wk 0, with a fold change of 0.53 at wk 1 vs. wk 0 (Figure 8). Most 

xenobiotics decreased with weight loss. Markers of benzoate metabolism, such as 4-

ethylphenylsulfate and 4-vinylphenol sulfate, were lower at wk 1 vs. wk 0 (fold change = 

0.41 and 0.49) and continued to decrease with weight loss (Table 7). Similar results were 

observed in xenobiotics related to food and plant components (i.e., ergothioneine and 

pyrraline), drugs (i.e., 4-acetylphenol sulfate and hydroquinone sulfate), and chemicals 

(i.e., O-sulfo-L-tyrosine and ethyl glucuronide), with all being decreased with weight loss 

(Table 7). Conversely, the chemical-related xenobiotic 2-hydroxyisobutyrate increased 

with weight loss (fold change = 1.87 at wk 16 vs. wk 0, Table 6). 

Correlation analysis identified five xenobiotic metabolites from an untargeted analysis 

that were negatively correlated with fasted serum cholesterol concentrations, two xenobiotic 

and one nucleotide metabolites from an untargeted analysis that were positively correlated 

with fasted serum triglyceride concentrations, four xenobiotic and one nucleotide metabolites 

from an untargeted analysis that were positively correlated with fasted serum creatinine 

concentrations, and fifteen xenobiotic and two nucleotide metabolites from an untargeted 

analysis that were positively correlated with fasted serum blood urea nitrogen concentrations 

(Supplementary Table S5). Likewise, three xenobiotic and one nucleotide metabolites were 

negatively correlated with body fat percentage, and six xenobiotic and one nucleotide 

metabolites were negatively correlated with BW (Supplementary Table S6). 

Table 6. Serum metabolites related to nucleotide, xenobiotic, and cofactor and vitamin metabolism that were increased in 

cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1 wk 2 wk 4 wk 8 wk 12 wk 16 

wk 0 wk 0 wk 0 wk 0 wk 0 wk 0 

Nucleotide 

Purine Metabolism, Adenine containing 
N6-methyladenosine 1.10 1.33 1.60 1.66 1.62 1.63 

N6-carbamoylthreonyladenosine 1.02 1.12 1.27 1.36 1.30 1.22 

  7-methylguanine 1.08 1.06 1.07 1.06 1.11 1.12 

Pyrimidine Metabolism, Orotate containing orotate 1.10 1.08 1.17 1.26 1.38 1.20 

  N4-acetylcytidine 1.13 1.11 1.27 1.31 1.21 1.22 

Pyrimidine Metabolism, Thymine containing 3-aminoisobutyrate 1.11 1.25 1.13 1.29 1.19 1.18 

Xenobiotics 

Food Component/Plant 4-allylphenol sulfate 1.05 1.06 1.14 1.28 1.32 1.44 

Chemical 2-hydroxyisobutyrate 1.18 1.27 1.34 1.63 1.9 1.87 

Vitamins and Cofactors 

Tocopherol Metabolism alpha-CEHC sulfate 1.07 1.06 1.09 1.44 1.44 1.53 

Numbers in red text were significantly higher than the baseline (wk 0). 
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Table 7. Serum metabolites related to nucleotide, xenobiotic, and cofactor and vitamin metabolism that were decreased in 

cats undergoing weight loss. 

Metabolic Pathway Metabolite 

Fold Change 

wk 1 wk 2 wk 4 wk 8 wk 12 wk 16 

wk 0 wk 0 wk 0 wk 0 wk 0 wk 0 

Nucleotide 

Purine Metabolism, 

(Hypo)Xanthine/ 

Inosine containing 

hypoxanthine 0.81 0.74 0.72 0.78 0.80 0.70 

xanthine 0.48 0.44 0.51 0.66 0.63 0.70 

2’-deoxyinosine 0.46 0.51 0.45 0.55 0.74 0.63 

urate 0.74 0.70 0.77 0.84 0.74 0.84 

Purine Metabolism, 

Guanine containing 
guanine 0.68 0.58 0.49 0.65 0.62 0.61 

Pyrimidine 

Metabolism, Uracil 

containing 

2’-deoxyuridine 0.63 0.60 0.68 0.86 0.79 0.75 

 Pyrimidine 

Metabolism, Cytidine 

containing 

cytidine 0.89 0.86 0.80 0.79 0.67 0.68 

Xenobiotics 

Benzoate Metabolism 

2-hydroxyhippurate (salicylurate) 0.89 0.93 0.88 0.73 0.64 0.62 

4-hydroxyhippurate 0.87 0.87 0.58 0.58 0.58 0.50 

4-ethylphenylsulfate 0.41 0.46 0.24 0.34 0.26 0.22 

4-vinylphenol sulfate 0.49 0.36 0.31 0.24 0.19 0.19 

3-methoxycatechol sulfate (2) 0.45 0.67 0.38 0.55 0.46 0.46 

methyl-4-hydroxybenzoate sulfate 0.35 0.22 0.14 0.18 0.24 0.49 

Food Component/Plant 

gluconate 0.64 0.63 0.76 0.71 0.37 0.34 

equol sulfate 0.67 0.84 0.47 0.41 0.17 0.07 

ergothioneine 0.85 0.80 0.79 0.74 0.64 0.57 

ferulic acid 4-sulfate 0.37 0.65 0.35 0.08 0.14 0.23 

indoleacrylate 0.81 0.85 0.84 0.70 0.72 0.73 

thymol sulfate 0.72 0.57 0.41 0.22 0.14 0.10 

methyl glucopyranoside (alpha + beta) 0.93 0.92 0.80 0.63 0.55 0.39 

pyrraline 0.82 0.83 0.72 0.60 0.72 0.78 

Drug 

4-acetylphenol sulfate 0.40 0.44 0.44 0.26 0.89 0.29 

hydroquinone sulfate 0.70 0.78 0.46 0.47 0.44 0.51 

salicylate 0.73 0.71 0.65 0.50 0.34 0.31 

Chemical 

O-sulfo-L-tyrosine 0.84 0.8 0.76 0.77 0.80 0.69 

ethyl glucuronide 0.17 0.24 0.31 0.28 0.91 1.36 

2-aminophenol sulfate 0.83 0.91 0.67 0.63 0.54 0.60 

3-hydroxypyridine sulfate 0.69 0.74 0.54 0.45 0.65 0.78 

Vitamins and Cofactors 

Nicotinate and 

Nicotinamide 

Metabolism 

nicotinamide 0.43 0.44 0.61 0.62 0.57 0.55 

Riboflavin Metabolism riboflavin (Vitamin B2) 0.95 0.81 0.75 0.69 0.61 0.77 

Tocopherol Metabolism gamma-tocopherol 0.82 0.89 0.76 0.64 0.55 0.56 

Vitamin B6 Metabolism pyridoxine (Vitamin B6) 0.72 0.74 0.69 0.74 0.54 0.46 

Numbers in green text were significantly lower than the baseline (wk 0). 
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Figure 8. Fold change of metabolites related to pyrimidine metabolism in cats during weight loss. 

* mean values were lower in comparison with wk 0 (p < 0.05). 

In summary, this study used untargeted metabolomic analyses to identify hundreds 

of serum metabolites affected by weight loss in cats. Most of the metabolites identified 

from this study have not been reported previously. Because the cat is a strict carnivore, its 

metabolism is quite different from that of humans and rodent models. Therefore, these 

data are expected to serve as a foundation for future studies focused on feline obesity, 

metabolism, and health. A random forest analysis comparing metabolite profiles across 

time points demonstrated that lipid- and amino acid-based metabolites made up one-half 

to two-thirds of the top 30 metabolites most influential in regard to predictive accuracy. 

Our analyses also show that while some metabolites such as N-acetylglycine (amino acid 

metabolism), sarcosine (amino acid metabolism), and choline phosphate (lipid 

metabolism) were highly predictive of weight loss throughout the entire study, other 

metabolites were indicative of initial (e.g., uracil; lactate; nicotinamide; myo-inositol) or 

long-term (thymol sulfate; 1-methylhistidine; 12, 13-DiHOME; 9, 10-DiHOME) weight 

loss. The majority of metabolites associated with lipid metabolism decreased with weight 

loss, which was likely due to a reduction in food intake (diet acid-hydrolyzed fat = 8.9%, 

and caloric restriction 33–40% of baseline intake, wk 5–10, respectively). However, ketone 

bodies and small lipid particles (monoacylglycerol, FA, and medium-chain FA) were 

increased, indicating that obese cats undergoing weight loss use lipolysis and FA 

oxidation to produce energy. The majority of metabolites associated with carbohydrate 

metabolism were decreased with weight loss, which was thought to be due to lower 

intake. Metabolites associated with protein metabolism had a variable result with weight 

loss, which may indicate that cats are in a state of constant flux in regard to muscle mass 

loss and synthesis during energy deficit. Finally, metabolic mediators of inflammation, 

oxidative stress markers, xenobiotics, and biomarkers of insulin resistance were decreased 

with weight loss. This dataset provides an improved understanding of feline metabolism, 

with a specific focus on how it is impacted by reduced food intake and weight loss. Not 

only did this study identify biomarkers of weight loss in general, but many that are 

indicative of the early or late phases of weight loss, which may serve as a foundation for 

future research using targeted analysis. Such research may lead to the development of 

metabolite signature panels with an application in veterinary practice, whereby 

biomarkers may help diagnose disease and aid in the lifestyle, nutritional, and 

pharmaceutical management of obese cats. Targeted metabolite panels may also be used 

to develop and test therapeutic diets intended to improve metabolism and reduce clinical 

signs of obese cats. 
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3. Materials and Methods 

3.1. Animals and Diet 

Eight neutered adult male domestic shorthair cats with a mean BW = 7.7 ± 0.42 kg 

and mean BCS = 7.6 ± 0.38 on a 9-point scale [110] were used. Mean age at the start of the 

study was 7.78 ± 0.03 years. Cats were housed in a particular temperature (20 °C) and 

light-controlled (16 h light: 8 h dark cycle) room at the University of Illinois. Cats were 

individually housed for two 2 h periods each day during feedings to allow for individual 

food intake records. During the other 20 h/d, cats were group housed and allowed to 

socialize with one another and exercise outside of their cages in the room. All animal 

procedures were approved by the University of Illinois Animal Care and Use Committee 

prior to animal experimentation. All cats were fed a dry commercial diet (Nutro 

Veterinary Nutrition Feline Weight Loss Adult Chicken & Whole Brown Rice Formula, 

The Nutro Company, Franklin, TN) throughout the duration of the study, which was 

formulated to meet nutrient recommendations for adult domestic cats in accordance with 

the National Research Council [111]. Water was available ad libitum at all times. 

This experiment was performed as a repeated-measures design. The first 4 wk of the 

study represented the baseline period, when all cats were fed to maintain their starting 

BW. After baseline (wk 0), BW was measured twice a wk and food intake was adjusted to 

target weight loss at approximately 1.5% BW/wk. Because this colony of cats were 

previously fed to maintain a healthy BW and BCS, an appropriate estimation of the ideal 

BW and MER to maintain BW was known. Cats were fed individually twice a day from 

8:30 a.m. to 10:30 a.m., and from 3:00 p.m. to 5:00 p.m. in their assigned cages. Any uneaten 

food was weighed and recorded at the end of the feeding period. Daily food intake, twice-

weekly BW, and weekly BCS were recorded throughout the study. 

3.2. Blood Collection and Serum Preparation 

Overnight fasted (at least 12 h) blood samples (5 mL) were collected via radial, 

femoral, or jugular venipuncture at wk 0, 1, 2, 4, 8, 12, and 16. Animals were restrained, 

but sedation was not necessary because procedures were familiar to the cats and stress 

was minimal. Blood was collected into evacuated tubes (BD Vacutainer serum separator 

tubes, Becton, Dickinson, and Company, Franklin Lakes, NJ, USA) and allowed to clot at 

room temperature. All tubes were centrifuged at 13,000× g for 15 min at 4 °C. The 

supernatant (serum) then was pipetted into cryogenic vials. Samples were stored at −80 

°C until further analysis. 

Serum was analyzed by Metabolon (Metabolon, Inc., Durham, NC, USA) to evaluate 

changes in global metabolite profiles and to identify markers of weight loss. Samples were 

shipped on dry ice and immediately stored at −80 °C upon arrival. Each sample was 

inventoried into the Metabolon Laboratory Information Management System (LIMS) and 

assigned a unique identifier to track all handling, tasks, and results. Samples were 

prepared using the automated MicroLab STAR® system (Hamilton Company, Salt Lake 

City, UT, USA). For quality control purposes, a recovery standard was added prior to the 

first step of the extraction process. To remove protein, dissociate small molecules bound 

to protein or trapped in the precipitated protein matrix, and to recover chemically diverse 

metabolites, proteins were precipitated with methanol under vigorous shaking for 2 min 

(GenoGrinder 2000, Glen Mills, Clifton, NJ, USA) followed by centrifugation. The 

resulting extract was divided into fractions for analysis by liquid chromatography–mass 

spectroscopy (LC–MS) and gas chromatography–mass spectroscopy (GC–MS), and a 

fraction was reserved for backup. Samples were placed briefly on a TurboVap® (Thermo 

Fisher Scientific Inc., Waltham, MA, USA) to remove the organic solvent. For LC, the 

samples were stored overnight under nitrogen before preparation for analysis. For GC, 

each sample was dried under vacuum overnight before preparation for analysis. 
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3.3. GC/MS and LC/MS/MS Analysis 

Ultrahigh Performance Liquid Chromatography–Tandem Mass Spectroscopy 

(UPLC–MS/MS): The LC/MS portion of the platform was based on a Waters ACQUITY 

ultra-performance liquid chromatography (UPLC) and a high resolution/accurate mass 

spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The sample extract was 

dried and then reconstituted, in acidic or basic LC-compatible solvents. One aliquot was 

analyzed using acidic positive ion optimized conditions and the other using basic negative 

ion optimized conditions, in two independent injections using separate dedicated 

columns (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm). Extracts reconstituted in acidic 

conditions were gradient-eluted from a C18 column using water and methanol containing 

0.1% formic acid. The basic extracts were similarly eluted from C18 using methanol and 

water but with 6.5 mM ammonium bicarbonate. The third aliquot was analyzed via 

negative ionization, following elution from a HILIC column (Waters UPLC BEH Amide 

2.1 × 150 mm, 1.7 µm) and using a gradient consisting of water and acetonitrile with 10 

mM ammonium formate. The MS analysis alternated between MS and data-dependent 

MS/MS scans using dynamic exclusion (scan range = 80–1000 m/z). 

The samples destined for analyses by GC–MS were dried under vacuum for a 

minimum of 18 h prior to being derivatized under dried nitrogen using bistrimethyl-

silyltrifluoroacetamide (BSTFA). Derivatized samples were separated on a 5% 

diphenyl/95% dimethyl polysiloxane fused silica column (20 m × 0.18 mm ID; 0.18 um film 

thickness) with helium as a carrier gas and a temperature ramp from 60 °C to 340 °C in a 

17.5 min period. Samples were analyzed on a Thermo Finnigan Trace DSQ fast-scanning 

single quadrupole mass spectrometer using electron impact ionization (EI) and operated 

at unit mass resolving power (scan range = 50–750 m/z). 

Three types of controls were analyzed in concert with the experimental samples: a 

pooled matrix sample generated from a small volume of each sample served as a technical 

replicate throughout the data set; extracted water samples served as process blanks; and 

a cocktail of quality control (QC) standards spiked into every analyzed sample for 

instrument performance monitoring and chromatographic alignment. Instrument 

variability was determined by calculating the median relative standard deviation (RSD) 

for the standards that were added to each sample, prior to injection into the mass 

spectrometers. The RSD for this study was 4%. Overall process variability for this study 

was 11% and was determined by calculating the median RSD for all endogenous 

metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples. 

Experimental samples were randomized across the platform run with QC samples spaced 

evenly among the injections. 

Raw data were extracted, peak-identified, and QC processed with Metabolon’s 

hardware and software. Metabolites were identified by comparison to library entries of 

purified standards or recurrent unknown entities. Identification of known chemical 

entities was performed by comparing to Metabolon’s reference library entries of purified 

standards. Biochemical identifications were based on three criteria: retention index (RI) 

within a narrow RI window of the proposed identification, accurate mass match to the 

library +/− 0.005 amu, and the Mass Spectral (MS) MS/MS forward and reverse scores 

between the experimental data and authentic standards. The MS/MS scores were based 

on a comparison of the ions present in the experimental spectrum to the ions present in 

the library spectrum. Currently, more than 3300 commercially available purified standard 

compounds have been acquired and registered into Metabolon Sunquest Mitogen™ LIMS 

(Sunquest Information Systems, Tucson, AZ, USA) for distribution to both the liquid 

chromatography (LC) and gas chromatography (GC) platforms for the determination of 

their analytical characteristics. Additional mass spectral entries have been created for 

structurally unnamed biochemicals, which were identified by virtue of their recurrent 

nature (both chromatographic and mass spectral). 

Curation procedures using Metabolon proprietary visualization and interpretation 

software were carried out to ensure that a high quality data set was made available for 
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statistical analysis and data interpretation. The QC and curation processes were designed to 

ensure accurate and consistent identification of true chemical entities, and to remove those 

representing system artifacts, mis-assignments, and background noise. Library matches for 

each compound were checked for each sample and corrected if necessary. Peaks were 

quantified using area-under-the-curve. For studies spanning multiple days, a data 

normalization step was performed to correct variation resulting from instrument inter-day 

tuning differences. Each compound was corrected in run-day blocks by registering the 

medians to equal one (1.00) and normalizing each data point proportionately (termed the 

“block correction”). For studies that did not require more than one day of analysis, no 

normalization was necessary other than for purposes of data visualization. 

3.4. Statistical Analysis 

All data were analyzed by use of statistical software [112]. The experimental design 

consisted of a single factor (wk) experiment with repeated measures, with cat and wk as 

fixed effects. Differences among treatments were determined using a Fisher-protected 

least significant difference (LSD) with a Tukey adjustment to control for experiment-wise 

error. A probability of p ≤ 0.05 was accepted as statistically significant. 

To evaluate changes in global metabolic profiles due to weight loss, a heat map was 

made using 535 normalized known metabolites. Hierarchical clustering was used to show 

large-scale differences in metabolic patterns, and the determination of distinct clusters 

was done using Array Studio with complete linkage and distance correlation settings. 

PCA was performed using all named metabolites to provide a simultaneous comparison 

of metabolic alterations that accompanied weight loss. Random forest (RF) analyses were 

performed to provide an estimate of how well individuals may be classified in the dataset. 

For a given decision tree, a random subset of data was selected to build a tree (“bootstrap 

sample”), and the remaining data, the “out-of-bag” (OOB) variables, were passed through 

the tree to obtain a class prediction for each sample. After the process was repeated 

thousands of times, a forest was produced. The final classification of each sample was 

determined by computing the class prediction frequency for the OOB variables over the 

whole forest; therefore, the OOB error rate is a measure of prediction accuracy. A total of 

21 comparisons were made over time (0, 1, 2, 4, 8, 12, or 16 wk), with two groups being 

compared at a time. To determine which variables (metabolites) made the largest 

contribution to the classification, the MDA was determined by randomly permuting a 

variable, running the observed values through the trees, and then reassessing the 

prediction accuracy. If a variable was important to the classification, the prediction 

accuracy dropped after such a permutation. Thus, the RF analysis provided an importance 

rank ordering of metabolites. The top 30 metabolites were reported for each comparison. 

A one-way analysis of variance (ANOVA) with repeated measures identified 

metabolites that changed with weight loss. An estimate of a false discovery rate (q-value) 

was calculated to take into account multiple comparisons. A combination of p- and q-

value ≤ 0.05 was used to declare statistical significance. Statistical analyses were 

performed using the program “R” (http://cran.r-project.org/, accessed on 5 February 2015) 

and JMP (SAS Inst. Inc., Cary, NC, USA: http://www.jmp.com, accessed on 5 February 

2015). Metabolite–physiologic data correlations were calculated using Pearson correlation 

coefficients. Data were reported as means with p < 0.05 for DEXA scan results and 

metabolite, and p < 0.0001 for fasted blood serum chemistry and metabolites were 

considered significant. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-

1989/11/5/324/s1; Table S1: Serum metabolites related to lipid metabolism that were altered in cats 

undergoing weight loss; Table S2: Serum metabolites related to amino acid and peptide metabolism 

that were altered in cats undergoing weight loss; Table S3: Serum metabolites related to 

carbohydrate and energy metabolism that were altered in cats undergoing weight loss; Table S4: 

Serum metabolites related to nucleotide, xenobiotic, and cofactor and vitamin metabolism that were 
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altered in cats undergoing weight loss; Table S5: Correlation coefficients (r) between fasted serum 

chemistry measures and metabolites; Table S6: Correlation coefficients (r) between DEXA scan 

results and metabolites. 
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Abbreviations 

AA amino acid  

ANOVA analysis of variance 

BCAA branched-chain amino acids 

BCS body condition score 

BHBA 3-hydroxybutyrate 

BUN blood urea nitrogen  

BW body weight 

DiHOME dihydroxyoctadecanoic acid 

DM diabetes mellitus 

EpOME epoxy octadecenoic acid 

FA fatty acids  

G3P glycerol 3-phosphate 

GC gas chromatography  

HETE 12-hydroxyeicosatetraenoic acid 

HFD high-fat diet 

HMGR HMG-CoA reductase 

LC liquid chromatography  

LDL low-density lipoprotein 

LSD least significant difference 

MDA mean decrease accuracy 

ME metabolizable energy 

MER maintenance energy requirement 

MS mass spectral  

NEFA non-esterified fatty acids  

OOB out-of-bag 

PC phosphatidylcholine  

PCA principal component analysis 

PUFA polyunsaturated fatty acids 

QC quality control 

RF random forest 
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RI retention index   

RSD relative standard deviation 

SAH s-adenosylhomocysteine 

SAM s-adenosylmethionine 

SFA saturated fatty acids 

TCA tricarboxylic acid cycle 

TGRL triglyceride-rich lipoprotein 

VLDL very-low-density lipoprotein 

WK week  

References 

1. APPA 2017–2018 APPA National Pet Owners Survey. Available online: http://www.americanpetproducts.org/pubs_survey.asp 

(accessed on 17 April 2018). 

2. German, A.J. The Growing Problem of Obesity in Dogs and Cats. J. Nutr. 2006, 136, 1940S–1946S, doi:10.1093/jn/136.7.1940S. 

3. APOP 2016 Pet Obesity Survey Results. Available online: https://petobesityprevention.org/2016/ (accessed on 17 April 2018). 

4. Colliard, L.; Paragon, B.-M.M.; Lemuet, B.; Bénet, J.-J.J.; Blanchard, G. Prevalence and risk factors of obesity in an urban 

population of healthy cats. J. Feline Med. Surg. 2009, 11, 135–140, doi:10.1016/j.jfms.2008.07.002. 

5. Courcier, E.A.; Mellor, D.J.; Pendlebury, E.; Evans, C.; Yam, P.S. An investigation into the epidemiology of feline obesity in 

Great Britain: Results of a cross-sectional study of 47 companion animal practises. Vet. Rec. 2012, 171, 560. 

6. Toll, P.W.; Yamka, R.M.; Schoenherr, W.D.; Hand, M.S. Obesity. In Small Animal Clinical Nutriton; Hand, M.S., Thatcher, C.D., 

Remillard, R.L., Roudebush, P., Novotny, B.J., Eds.; Mark Morris Institute Topeka: Topeka, KS, USA, 2010; pp. 501–542, ISBN 

0945837038. 

7. Laflamme, D.P. Companion animals symposium: Obesity in dogs and cats: What is wrong with being fat? J. Anim. Sci. 2012, 90, 

1653–1662. 

8. Mawby, D.I.; Bartges, J.W.; d’Avignon, A.; Laflamme, D.P.; Moyers, T.D.; Cottrell, T. Comparison of Various Methods for 

Estimating Body Fat in Dogs. J. Am. Anim. Hosp. Assoc. 2004, 40, 109–114, doi:10.5326/0400109. 

9. Cave, N.J.; Allan, F.J.; Schokkenbroek, S.L.; Metekohy, C.A.M.; Pfeiffer, D.U. A cross-sectional study to compare changes in the 

prevalence and risk factors for feline obesity between 1993 and 2007 in New Zealand. Prev. Vet. Med. 2012, 107, 121–133, 

doi:10.1016/j.prevetmed.2012.05.006. 

10. Nguyen, P.; Dumon, H.; Frenai, R.; Siliart, B.; Martin, L.; Bleis, P.; Frigier, T. Energy expenditure and requirement assessed 

using three different methods in adult cats. Compend. Contin. Educ. Pract. Vet. 2001, 23, 86–86. 

11. Backus, R.C.; Cave, N.J.; Keisler, D.H. Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in 

body weight and fat of domestic cats. Br. J. Nutr. 2007, 98, 641–650, doi:10.1017/S0007114507750869. 

12. Farrow, H.A.; Rand, J.S.; Sunvold, G.D. The Effect of High Protein, High Fat or High Carbohydrate Diets on Postprandial 

Glucose and Insulin Concentrations in Normal Cats. In Science Week Proceedings; School of Veterinary Science Publications: 

Surfers Paradise, QLD, Australia, 2004. 

13. Burkholder, W.J.; Bauer, J.E. Foods and techniques for managing obesity in companion animals. J. Am. Vet. Med. Assoc. 1998, 

212, 658–662. 

14. Brooks, D.; Churchill, J.; Fein, K.; Linder, D.; Michel, K.E.; Tudor, K.; Ward, E.; Witzel, A. 2014 AAHA weight management 

guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2014, 50, 1–11, doi:10.5326/JAAHA-MS-6331. 

15. Markwell, P.J.; Butterwick, R.F.; Watson, T.D.G.; Center, S.A. Considerations in safe weight reduction in cats and clinical 

experience with an aggressive weight loss regime. In Proceedings of the North American Veterinary Conference, North 

American Veterinary Conference, Gainesville, FL. USA, 1996. 

16. von Deneen, K.M.; Wei, Q.; Tian, J.; Liu, Y. Obesity in China: What are the causes? Curr. Pharm. Des. 2011, 17, 1132–1139. 

17. Xie, B.; Waters, M.J.; Schirra, H.J. Investigating potential mechanisms of obesity by metabolomics. J. Biomed. Biotechnol. 2012, 

2012, doi:10.1155/2012/805683. 

18. Kussmann, M.; Raymond, F.; Affolter, M. OMICS-driven biomarker discovery in nutrition and health. J. Biotechnol. 2006, 124, 

758–787. 

19. Zhang, A.; Sun, H.; Wang, X. Serum metabolomics as a novel diagnostic approach for disease: A systematic review. Anal. Bioanal. 

Chem. 2012, 404, 1239–1245. 

20. Colyer, A.; Gilham, M.S.; Kamlage, B.; Rein, D.; Allaway, D. Identification of intra- and inter-individual metabolite variation in 

plasma metabolite profiles of cats and dogs. Br. J. Nutr. 2011, 106, S146–S149, doi:10.1017/S000711451100081X. 

21. Allaway, D.; Kamlage, B.; Gilham, M.S.; Hewson-Hughes, A.K.; Wiemer, J.C.; Colyer, A.; Rein, D. Effects of dietary glucose 

supplementation on the fasted plasma metabolome in cats and dogs. Metabolomics 2013, 9, 1096–1108, doi:10.1007/s11306-013-

0527-8. 

22. Deng, P.; Jones, J.C.; Swanson, K.S. Effects of dietary macronutrient composition on the fasted plasma metabolome of healthy 

adult cats. Metabolomics 2014, 10, 638–650, doi:10.1007/s11306-013-0617-7. 



Metabolites 2021, 11, 324 27 of 30 
 

 

23. de Godoy, M.R.C.; Pappan, K.L.; Grant, R.W.; Swanson, K.S. Plasma Metabolite Profiling and Search for Biomarkers of 

Metabolic Dysfunction in Dogs Undergoing Rapid Weight Gain. Curr. Metab. 2015, 3, 102–121, 

doi:10.2174/2213235X03666150121225111. 

24. Söder, J.; Höglund, K.; Dicksved, J.; Hagman, R.; Eriksson Röhnisch, H.; Moazzami, A.A.; Wernersson, S. Plasma metabolomics 

reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet. Scand. 2019, 61, 10, doi:10.1186/s13028-

019-0446-4. 

25. Forster, G.M.; Stockman, J.; Noyes, N.; Heuberger, A.L.; Broeckling, C.D.; Bantle, C.M.; Ryan, E.P. A Comparative Study of 

Serum Biochemistry, Metabolome and Microbiome Parameters of Clinically Healthy, Normal Weight, Overweight, and Obese 

Companion Dogs. Top. Companion Anim. Med. 2018, 33, 126–135, doi:10.1053/j.tcam.2018.08.003. 

26. Tvarijonaviciute, A.; Ceron, J.J.; de Torre, C.; Ljubić, B.B.; Holden, S.L.; Queau, Y.; Morris, P.J.; Pastor, J.; German, A.J. Obese 

dogs with and without obesity-related metabolic dysfunction—A proteomic approach. BMC Vet. Res. 2016, 12, 211, 

doi:10.1186/s12917-016-0839-9. 

27. Soder, J.; Hagman, R.; Dicksved, J.; Lindase, S.; Malmlof, K.; Agback, P.; Moazzami, A.; Hoglund, K.; Wernersson, S. The urine 

metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge. PLoS ONE 2017, 12, 

e0180086, doi:10.1371/journal.pone.0180086. 

28. Pallotto, M.R.; de Godoy, M.R.C.; Holscher, H.D.; Buff, P.R.; Swanson, K.S. Effects of weight loss with a moderate-protein, high-

fiber diet on body composition, voluntary physical activity, and fecal microbiota of obese cats. Am. J. Vet. Res. 2018, 79, 181–190, 

doi:10.2460/ajvr.79.2.181. 

29. Croze, M.L.; Soulage, C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013, 95, 

1811–1827, doi:10.1016/j.biochi.2013.05.011. 

30. Coustan, D.R. Can a Dietary Supplement Prevent Gestational Diabetes Mellitus? Diabetes Care 2013, 36, 777–779, 

doi:10.2337/dc12-2505. 

31. Foster, S.R.; Omoruyi, F.O.; Bustamante, J.; Lindo, R.L.A.; Dilworth, L.L. The effect of combined inositol hexakisphosphate and 

inositol supplement in streptozotocin-induced type 2 diabetic rats. Int. J. Exp. Pathol. 2016, 97, 397–407, doi:10.1111/iep.12210. 

32. D’Anna, R.; Scilipoti, A.; Giordano, D.; Caruso, C.; Cannata, M.L.; Interdonato, M.L.; Corrado, F.; Di Benedetto, A. myo-inositol 

supplementation and onset of gestational diabetes mellitus in pregnant women with a family history of type 2 diabetes: A 

prospective, randomized, placebo-controlled study. Diabetes Care 2013, 36, 854–857, doi:10.2337/dc12-1371. 

33. Corrado, F.; D’Anna, R.; Di Vieste, G.; Giordano, D.; Pintaudi, B.; Santamaria, A.; Di Benedetto, A. The effect of myoinositol 

supplementation on insulin resistance in patients with gestational diabetes. Diabet. Med. 2011, 28, 972–975, doi:10.1111/j.1464-

5491.2011.03284.x. 

34. Asimakopoulos, G.; Pergialiotis, V.; Anastasiou, E.; Antsaklis, P.; Theodora, M.; Vogiatzi, E.; Kallergi, A.; Sindos, M.; Loutradis, 

D.; Daskalakis, G. Effect of dietary myo-inositol supplementation on the insulin resistance and the prevention of gestational 

diabetes mellitus: Study protocol for a randomized controlled trial. Trials 2020, 21, 633, doi:10.1186/s13063-020-04561-2. 

35. Meikle, P.J.; Summers, S.A. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat. Rev. 

Endocrinol. 2017, 13, 79–91, doi:10.1038/nrendo.2016.169. 

36. Weir, J.M.; Wong, G.; Barlow, C.K.; Greeve, M.A.; Kowalczyk, A.; Almasy, L.; Comuzzie, A.G.; Mahaney, M.C.; Jowett, J.B.M.; 

Shaw, J.; et al. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 2013, 54, 2898–2908, doi:10.1194/jlr.P035808. 

37. Selathurai, A.; Kowalski, G.M.; Burch, M.L.; Sepulveda, P.; Risis, S.; Lee-Young, R.S.; Lamon, S.; Meikle, P.J.; Genders, A.J.; 

McGee, S.L.; et al. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial 

Biogenesis without Altering Insulin Sensitivity. Cell Metab. 2015, 21, 718–730, doi:10.1016/j.cmet.2015.04.001. 

38. Gibellini, F.; Smith, T.K. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. 

IUBMB Life 2010, 62, 414–428. 

39. Kim, H.J.; Kim, J.H.; Noh, S.; Hur, H.J.; Sung, M.J.; Hwang, J.T.; Park, J.H.; Yang, H.J.; Kim, M.S.; Kwon, D.Y.; et al. Metabolomic 

analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 2011, 10, 722–731, doi:10.1021/pr100892r. 

40. Wang, L.; Folsom, A.R.; Zheng, Z.-J.; Pankow, J.S.; Eckfeldt, J.H. Plasma fatty acid composition and incidence of diabetes in 

middle-aged adults: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2003, 78, 91–98, 

doi:10.1016/S0939-4753(03)80029-7. 

41. Kim, J.Y.; Park, J.Y.; Kim, O.Y.; Ham, B.M.; Kim, H.-J.; Kwon, D.Y.; Jang, Y.; Lee, J.H. Metabolic profiling of plasma in 

overweight/obese and lean men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC− Q-

TOF MS). J. Proteome Res. 2010, 9, 4368–4375. 

42. Perez-Cornago, A.; Brennan, L.; Ibero-Baraibar, I.; Hermsdorff, H.H.M.; O’Gorman, A.; Zulet, M.A.; Martínez, J.A. 

Metabolomics identifies changes in fatty acid and amino acid profiles in serum of overweight older adults following a weight 

loss intervention. J. Physiol. Biochem. 2014, 70, 593–602, doi:10.1007/s13105-013-0311-2. 

43. Chávez-Talavera, O.; Tailleux, A.; Lefebvre, P.; Staels, B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 

Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017, 152, 1679–1694, 

doi:10.1053/j.gastro.2017.01.055. 

44. Prinz, P.; Hofmann, T.; Ahnis, A.; Elbelt, U.; Goebel-Stengel, M.; Klapp, B.F.; Rose, M.; Stengel, A. Plasma bile acids show a 

positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. 

Front. Neurosci. 2015, 9, doi:10.3389/fnins.2015.00199. 



Metabolites 2021, 11, 324 28 of 30 
 

 

45. Haeusler, R.A.; Astiarraga, B.; Camastra, S.; Accili, D.; Ferrannini, E. Human Insulin Resistance Is Associated With Increased 

Plasma Levels of 12-Hydroxylated Bile Acids. Diabetes 2013, 62, 4184–4191, doi:10.2337/db13-0639. 

46. Cariou, B.; Chetiveaux, M.; Zaïr, Y.; Pouteau, E.; Disse, E.; Guyomarc’h-Delasalle, B.; Laville, M.; Krempf, M. Fasting plasma 

chenodeoxycholic acid and cholic acid concentrations are inversely correlated with insulin sensitivity in adults. Nutr. Metab. 

2011, 8, 48, doi:10.1186/1743-7075-8-48. 

47. Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; 

et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes 

to Insulin Resistance. Cell Metab. 2009, 9, 311–326, doi:10.1016/j.cmet.2009.02.002. 

48. Yoo, H.H.; Yoon, H.J.; Shin, H.J.; Lee, S.H.; Yoon, H.R. Characterization of plasma carnitine level in obese adolescent Korean 

women. Biomol. Ther. 2009, 17, 181–187, doi:10.4062/biomolther.2009.17.2.181. 

49. Schmedes, M.S.; Yde, C.C.; Svensson, U.; Håkansson, J.; Baby, S.; Bertram, H.C. Impact of a 6-week very low-calorie diet and 

weight reduction on the serum and fecal metabolome of overweight subjects. Eur. Food Res. Technol. 2014, 240, 583–594, 

doi:10.1007/s00217-014-2359-9. 

50. Volek, J.S.; Phinney, S.D.; Forsythe, C.E.; Quann, E.E.; Wood, R.J.; Puglisi, M.J.; Kraemer, W.J.; Bibus, D.M.; Fernandez, M.L.; 

Feinman, R.D. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009, 

44, 297–309, doi:10.1007/s11745-008-3274-2. 

51. Di Pino, A.; Currenti, W.; Urbano, F.; Mantegna, C.; Purrazzo, G.; Piro, S.; Purrello, F.; Rabuazzo, A.M. Low advanced glycation 

end product diet improves the lipid and inflammatory profiles of prediabetic subjects. J. Clin. Lipidol. 2016, 10, 1098–1108, 

doi:10.1016/j.jacl.2016.07.001. 

52. Volek, J.S.; Sharman, M.J.; Forsythe, C.E. Modification of Lipoproteins by Very Low-Carbohydrate Diets. J. Nutr. 2005, 135, 

1339–1342, doi:10.1093/jn/135.6.1339 [doi]. 

53. Laffel, L. Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes. Metab. 

Res. Rev. 1999, 15, 412–426, doi:10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-DMRR72>3.0.CO;2-8. 

54. Haeggström, J.Z.; Rinaldo-Matthis, A.; Wheelock, C.E.; Wetterholm, A. Advances in eicosanoid research, novel therapeutic 

implications. Biochem. Biophys. Res. Commun. 2010, 396, 135–139, doi:10.1016/j.bbrc.2010.03.140. 

55. Wang, L.; Gill, R.; Pedersen, T.L.; Higgins, L.J.; Newman, J.W.; Rutledge, J.C. Triglyceride-rich lipoprotein lipolysis releases 

neutral and oxidized FFAs that induce endothelial cell inflammation. J. Lipid Res. 2009, 50, 204–213, doi:10.1194/jlr.M700505-

JLR200. 

56. Lenz, M.L.; Hughes, H.; Mitchell, J.R.; Via, D.P.; Guyton, J.R.; Taylor, A.A.; Gotto, A.M., Jr.; Smith, C. Lipid hydroperoxy and 

hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. J. Lipid Res. 1990, 31, 1043–1050. 

57. Newman, J.W.; Kaysen, G.A.; Hammock, B.D.; Shearer, G.C. Proteinuria increases oxylipid concentrations in VLDL and HDL 

but not LDL particles in the rat. J. Lipid Res. 2007, 48, 1792–1800, doi:10.1194/jlr.M700146-JLR200. 

58. Wahl, S.; Yu, Z.; Kleber, M.; Singmann, P.; Holzapfel, C.; He, Y.; Mittelstrass, K.; Polonikov, A.; Prehn, C.; Römisch-Margl, W.; 

et al. Childhood Obesity Is Associated with Changes in the Serum Metabolite Profile. Obes. Facts 2012, 5, 660–670, 

doi:10.1159/000343204. 

59. Obici, S.; Wang, J.; Chowdury, R.; Feng, Z.; Siddhanta, U.; Morgan, K.; Rossetti, L. Identification of a biochemical link between 

energy intake and energy expenditure. J. Clin. Investig. 2002, 109, 1599–1605, doi:10.1172/JCI15258. 

60. Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of Dietary Proteins and Amino Acids in the Pathogenesis of Insulin 

Resistance. Annu. Rev. Nutr. 2007, 27, 293–310, doi:10.1146/annurev.nutr.25.050304.092545. 

61. Daniels, M.C.; Ciaraldi, T.P.; Nikoulina, S.; Henry, R.R.; McClain, D.A. Glutamine:fructose-6-phosphate amidotransferase 

activity in cultured human skeletal muscle cells: Relationship to glucose disposal rate in control and non-insulin-dependent 

diabetes mellitus subjects and regulation by glucose and insulin. J. Clin. Investig. 1996, 97, 1235–1241, doi:10.1172/JCI118538. 

62. Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et 

al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453, doi:10.1038/nm.2307. 

63. Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; 

Newgard, C.B.; et al. Relationships Between Circulating Metabolic Intermediates and Insulin Action in Overweight to Obese, 

Inactive Men and Women. Diabetes Care 2009, 32, 1678–1683, doi:10.2337/dc08-2075. 

64. Tai, E.S.; Tan, M.L.S.; Stevens, R.D.; Low, Y.L.; Muehlbauer, M.J.; Goh, D.L.M.; Ilkayeva, O.R.; Wenner, B.R.; Bain, J.R.; Lee, 

J.J.M.; et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian 

men. Diabetologia 2010, 53, 757–767, doi:10.1007/s00125-009-1637-8. 

65. Wurtz, P.; Makinen, V.-P.; Soininen, P.; Kangas, A.J.; Tukiainen, T.; Kettunen, J.; Savolainen, M.J.; Tammelin, T.; Viikari, J.S.; 

Ronnemaa, T.; et al. Metabolic Signatures of Insulin Resistance in 7098 Young Adults. Diabetes 2012, 61, 1372–1380, 

doi:10.2337/db11-1355. 

66. Felig, P.; Wahren, J.; Hendler, R.; Brundin, T. Splanchnic glucose and amino acid metabolism in obesity. J. Clin. Investig. 1974, 

53, 582–590, doi:10.1172/JCI107593. 

67. She, P.; Van Horn, C.; Reid, T.; Hutson, S.M.; Cooney, R.N.; Lynch, C.J. Obesity-related elevations in plasma leucine are 

associated with alterations in enzymes involved in branched-chain amino acid metabolism. AJP Endocrinol. Metab. 2007, 293, 

E1552–E1563, doi:10.1152/ajpendo.00134.2007. 

68. Shearer, J.; Duggan, G.; Weljie, A.; Hittel, D.S.; Wasserman, D.H.; Vogel, H.J. Metabolomic profiling of dietary-induced insulin 

resistance in the high fat–fed C57BL/6J mouse. Diabetes Obes. Metab. 2008, 10, 950–958. 



Metabolites 2021, 11, 324 29 of 30 
 

 

69. Duggan, G.E.; Hittel, D.S.; Hughey, C.C.; Weljie, A.; Vogel, H.J.; Shearer, J. Differentiating short- and long-term effects of diet 

in the obese mouse using (1) H-nuclear magnetic resonance metabolomics. Diabetes Obes. Metab. 2011, 13, 859–862, 

doi:10.1111/j.1463-1326.2011.01410.x. 

70. Hu, W.; Sun, L.; Gong, Y.; Zhou, Y.; Yang, P.; Ye, Z.; Fu, J.; Huang, A.; Fu, Z.; Yu, W.; et al. Relationship between Branched-

Chain Amino Acids, Metabolic Syndrome, and Cardiovascular Risk Profile in a Chinese Population: A Cross-Sectional Study. 

Int. J. Endocrinol. 2016, 2016, 8173905, doi:10.1155/2016/8173905. 

71. Batch, B.C.; Shah, S.H.; Newgard, C.B.; Turer, C.B.; Haynes, C.; Bain, J.R.; Muehlbauer, M.; Patel, M.J.; Stevens, R.D.; Appel, L.J.; 

et al. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 2013, 62, 961–969, 

doi:10.1016/j.metabol.2013.01.007. 

72. Weng, L.; Quinlivan, E.; Gong, Y.; Beitelshees, A.L.; Shahin, M.H.; Turner, S.T.; Chapman, A.B.; Gums, J.G.; Johnson, J.A.; Frye, 

R.F.; et al. Association of Branched and Aromatic Amino Acids Levels with Metabolic Syndrome and Impaired Fasting Glucose 

in Hypertensive Patients. Metab. Syndr. Relat. Disord. 2015, 13, 195–202, doi:10.1089/met.2014.0132. 

73. Wang, Q.; Holmes, M.V.; Davey Smith, G.; Ala-Korpela, M. Genetic Support for a Causal Role of Insulin Resistance on 

Circulating Branched-Chain Amino Acids and Inflammation. Diabetes Care 2017, 40, 1779–1786, doi:10.2337/dc17-1642. 

74. Richie, J.P.; Komninou, D.; Leutzinger, Y.; Kleinman, W.; Orentreich, N.; Malloy, V.; Zimmerman, J.A. Tissue glutathione and 

cysteine levels in methionine-restricted rats. Nutrition 2004, 20, 800–805, doi:10.1016/j.nut.2004.05.009. 

75. Richie, J.P.; Leutzinger, Y.; Parthasarathy, S.; Maixoy, V.; Orentreich, N.; Zimmerman, J.A. Methionine restriction increases 

blood glutathione and longevity in F344 rats. FASEB J. 1994, 8, 1302–1307, doi:10.1096/fasebj.8.15.8001743. 

76. Orentreich, N.; Matias, J.R.; DeFelice, A.; Zimmerman, J.A. Low methionine ingestion by rats extends life span. J. Nutr. 1993, 

123, 269–274, doi:10.1093/jn/123.2.269. 

77. Sun, L.; Sadighi Akha, A.A.; Miller, R.A.; Harper, J.M. Life-Span Extension in Mice by Preweaning Food Restriction and by 

Methionine Restriction in Middle Age. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 711–722, doi:10.1093/gerona/glp051. 

78. Malloy, V.L.; Krajcik, R.A.; Bailey, S.J.; Hristopoulos, G.; Plummer, J.D.; Orentreich, N. Methionine restriction decreases visceral 

fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 2006, 5, 305–

314, doi:10.1111/j.1474-9726.2006.00220.x. 

79. Hasek, B.E.; Stewart, L.K.; Henagan, T.M.; Boudreau, A.; Lenard, N.R.; Black, C.; Shin, J.; Huypens, P.; Malloy, V.L.; Plaisance, 

E.P.; et al. Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and 

fasted states. Am. J. Physiol. Integr. Comp. Physiol. 2010, 299, R728–R739, doi:10.1152/ajpregu.00837.2009. 

80. Plaisance, E.P.; Henagan, T.M.; Echlin, H.; Boudreau, A.; Hill, K.L.; Lenard, N.R.; Hasek, B.E.; Orentreich, N.; Gettys, T.W. Role 

of β-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction. Am. J. Physiol. 

Integr. Comp. Physiol. 2010, 299, R740–R750, doi:10.1152/ajpregu.00838.2009. 

81. Elshorbagy, A.K.; Refsum, H.; Smith, A.D.; Graham, I.M. The Association of Plasma Cysteine and γ-Glutamyltransferase With 

BMI and Obesity. Obesity 2009, 17, 1435–1440, doi:10.1038/oby.2008.671. 

82. van den Brandhof, W.E.; Haks, K.; Schouten, E.G.; Verhoef, P. The relation between plasma cysteine, plasma homocysteine and 

coronary atherosclerosis. Atherosclerosis 2001, 157, 403–409, doi:10.1016/S0021-9150(00)00724-3. 

83. Baines, M.; Kredan, M.-B.; Davison, A.; Higgins, G.; West, C.; Fraser, W.D.; Ranganath, L.R. The Association Between Cysteine, 

Bone Turnover, and Low Bone Mass. Calcif. Tissue Int. 2007, 81, 450–454, doi:10.1007/s00223-007-9089-y. 

84. Giral, P.; Jacob, N.; Dourmap, C.; Hansel, B.; Carrié, A.; Bruckert, E.; Girerd, X.; Chapman, M.J. Elevated Gamma-

Glutamyltransferase Activity and Perturbed Thiol Profile Are Associated with Features of Metabolic Syndrome. Arterioscler. 

Thromb. Vasc. Biol. 2008, 28, 587–593, doi:10.1161/ATVBAHA.107.157891. 

85. Lin, J.; Lee, I.-M.; Song, Y.; Cook, N.R.; Selhub, J.; Manson, J.E.; Buring, J.E.; Zhang, S.M. Plasma Homocysteine and Cysteine 

and Risk of Breast Cancer in Women. Cancer Res. 2010, 70, 2397–2405, doi:10.1158/0008-5472.CAN-09-3648. 

86. Parimi, P.S.; Devapatla, S.; Gruca, L.L.; Amini, S.B.; Hanson, R.W.; Kalhan, S.C. Effect of enteral glutamine or glycine on whole-

body nitrogen kinetics in very-low-birth-weight infants. Am. J. Clin. Nutr. 2004, 79, 402–409. 

87. Backman, L.; Hallberg, D.; Kallner, A. Amino acid pattern in plasma before and after jejuno-ileal shunt operation for obesity. 

Scand. J. Gastroenterol. 1975, 10, 811–816. 

88. Oberbach, A.; Blüher, M.; Wirth, H.; Till, H.; Kovacs, P.; Kullnick, Y.; Schlichting, N.; Tomm, J.M.; Rolle-Kampczyk, U.; 

Murugaiyan, J.; et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system 

with obesity and identifies novel markers of body fat mass changes. J. Proteome Res. 2011, 10, 4769–4788, doi:10.1021/pr2005555. 

89. Kalhan, S.C.; Uppal, S.O.; Moorman, J.L.; Bennett, C.; Gruca, L.L.; Parimi, P.S.; Dasarathy, S.; Serre, D.; Hanson, R.W. Metabolic 

and Genomic Response to Dietary Isocaloric Protein Restriction in the Rat. J. Biol. Chem. 2011, 286, 5266–5277, 

doi:10.1074/jbc.M110.185991. 

90. Abidi, W.; Nestoridi, E.; Feldman, H.; Stefater, M.; Clish, C.; Thompson, C.C.; Stylopoulos, N. Differential Metabolomic 

Signatures in Patients with Weight Regain and Sustained Weight Loss After Gastric Bypass Surgery: A Pilot Study. Dig. Dis. 

Sci. 2020, 65, 1144–1154, doi:10.1007/s10620-019-05714-3. 

91. Walker, J.B. Metabolic control of creatine biosynthesis II. Restoration of transamidinase activity following creatine repression. 

J. Biol. Chem. 1961, 236, 493–498. 

92. Konishi, F. The relationship of urinary 17-hydroxycorticosteroids to creatinine in obesity. Metabolism 1964, 13, 847–851, 

doi:10.1016/0026-0495(64)90053-8. 



Metabolites 2021, 11, 324 30 of 30 
 

 

93. Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large 

effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703, 

doi:10.1073/pnas.0812874106. 

94. Botsford, J.L.; Demoss, R.D. Escherichia coli Tryptophanase in the Enteric Environment. J. Bacteriol. 1972, 109, 74–80, 

doi:10.1128/JB.109.1.74-80.1972. 

95. Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 

2018, 23, 716–724, doi:10.1016/j.chom.2018.05.003. 

96. Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.-C.; Patel, B.; Yan, R.; Blain, M.; 

et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system 

inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016, 22, 586–597, doi:10.1038/nm.4106. 

97. Jansson, P.A.; Larsson, A.; Smith, U.; Lönnroth, P. Lactate release from the subcutaneous tissue in lean and obese men. J. Clin. 

Invest. 1994, 93, 240–246, doi:10.1172/JCI116951. 

98. Rull, A.; Vinaixa, M.; Ángel Rodríguez, M.; Beltrán, R.; Brezmes, J.; Cañellas, N.; Correig, X.; Joven, J. Metabolic phenotyping of 

genetically modified mice: An NMR metabonomic approach. Biochimie 2009, 91, 1053–1057, doi:10.1016/j.biochi.2009.04.019. 

99. Serkova, N.J.; Jackman, M.; Brown, J.L.; Liu, T.; Hirose, R.; Roberts, J.P.; Maher, J.J.; Niemann, C.U. Metabolic profiling of livers 

and blood from obese Zucker rats. J. Hepatol. 2006, 44, 956–962, doi:10.1016/j.jhep.2005.07.009. 

100. Waldram, A.; Holmes, E.; Wang, Y.; Rantalainen, M.; Wilson, I.D.; Tuohy, K.M.; McCartney, A.L.; Gibson, G.R.; Nicholson, J.K. 

Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J. Proteome Res. 2009, 8, 

2361–2375, doi:10.1021/pr8009885. 

101. Kim, S.H.; Yang, S.O.; Kim, H.S.; Kim, Y.; Park, T.; Choi, H.K. 1H-nuclear magnetic resonance spectroscopy-based metabolic 

assessment in a rat model of obesity induced by a high-fat diet. Anal. Bioanal. Chem. 2009, 395, 1117–1124, doi:10.1007/s00216-

009-3054-8. 

102. Basciano, H.; Federico, L.; Adeli, K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr. Metab. 2005, 2, 1–4. 

103. Rodríguez-Gallego, E.; Guirro, M.; Riera-Borrull, M.; Hernández-Aguilera, A.; Mariné-Casadó, R.; Fernández-Arroyo, S.; 

Beltrán-Debón, R.; Sabench, F.; Hernández, M.; Del Castillo, D.; et al. Mapping of the circulating metabolome reveals α-

ketoglutarate as a predictor of morbid obesity-associated non-alcoholic fatty liver disease. Int. J. Obes. 2015, 39, 279–287, 

doi:10.1038/ijo.2014.53. 

104. DeVilliers, D.C.; Dixit, P.K.; Lazarow, A. Citrate metabolism in diabetes: I. Plasma citrate in alloxan-diabetic rats and in clinical 

diabetes. Metabolism 1966, 15, 458–465, doi:10.1016/0026-0495(66)90088-6. 

105. Natelson, S.; Pincus, J.B.; Rannazzisi, G. Dynamic Control of Calcium, Phosphate, Citrate, and Glucose Levels in Blood Serum: 

Effect of ACTH, Adrenaline, Noradrenaline, Hydrocortisone, Parathormone, Insulin, and Glucagon. Clin. Chem. 1963, 9, 31–62. 

106. Zhang, X.; Wang, Y.; Hao, F.; Zhou, X.; Han, X.; Tang, H.; Ji, L. Human serum metabonomic analysis reveals progression axes 

for glucose intolerance and insulin resistance statuses. J. Proteome Res. 2009, 8, 5188–5195, doi:10.1021/pr900524z. 

107. Buse, M.G. Hexosamines, insulin resistance, and the complications of diabetes: Current status. AJP Endocrinol. Metab. 2005, 290, 

E1–E8, doi:10.1152/ajpendo.00329.2005. 

108. Hamada, T.; Mizuta, E.; Yanagihara, K.; Kaetsu, Y.; Sugihara, S.; Sonoyama, K.; Yamamoto, Y.; Kato, M.; Igawa, O.; Shigemasa, 

C.; et al. Plasma levels of uridine correlate with blood pressure and indicators of myogenic purine degradation and insulin 

resistance in hypertensive patients. Circ. J. 2007, 71, 354–356, doi:10.1253/circj.71.354. 

109. Reichard, P.; Skold, O. Formation of Uridine Phosphates from Uracil in Extracts. Acta Chem. Scand. 1957, 11, 17–23. 

110. Laflamme, D. Development and validation of a body condition score system for cats: A clinical tool. Feline Pract. 1997, 25, 13–

18. 

111. National Research Council. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, WA, USA, 2006; 

ISBN 0309086280. 

112. SAS Institute. Base SAS 9.3 Procedures Guide: Statistical Procedures; SAS Institute Inc.: Cary, NC, USA, 2013; ISBN 978-1-61290-

369-9. 


