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Abstract: For large-scale metabolomics, such as in cohort studies, normalization protocols using 
quality control (QC) samples have been established when using data from gas chromatography and 
liquid chromatography coupled to mass spectrometry. However, normalization protocols have not 
been established for capillary electrophoresis–mass spectrometry metabolomics. In this study, we 
performed metabolome analysis of 314 human plasma samples using capillary electrophoresis–
mass spectrometry. QC samples were analyzed every 10 samples. The results of principal 
component analysis for the metabolome data from only the QC samples showed variations caused 
by capillary replacement in the first principal component score and linear variation with continuous 
measurement in the second principal component score. Correlation analysis between diagnostic 
blood tests and plasma metabolites normalized by the QC samples was performed for samples from 
188 healthy subjects who participated in a Japanese population study. Five highly correlated pairs 
were identified, including two previously unidentified pairs in normal healthy subjects of blood 
urea nitrogen and guanidinosuccinic acid, and gamma-glutamyl transferase and cysteine 
glutathione disulfide. These results confirmed the validity of normalization protocols in capillary 
electrophoresis–mass spectrometry using large-scale metabolomics and comprehensive analysis. 

Keywords: metabolomics; capillary electrophoresis–mass spectrometry; large-scale sampling;  
normalization; quality control; oxidative stress 
 

1. Introduction 
Many large-scale metabolomics studies have been performed for various purposes, 

such as prediction of the risk of developing diabetes [1,2], and evaluation of the 
associations between changes in specific groups of metabolites with antibiotic 
intervention and cardiovascular risk [3]. Recently, the Consortium of Metabolomics 
Studies [4] was established to promote collaboration and summarized 47 metabolomics 
cohort studies. Association of metabolite levels with the genome [5] and basic background 
information such as sex [6], age [7], and body mass index (BMI) [8] have also been 
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reported. These studies provide useful information that could be used as a reference for 
analysis in clinical studies, such as biomarker discovery. 

Recently, quality assurance and quality control (QA/QC) have been required in 
metabolomics. Variation during the performance of the metabolome analysis is generated 
in each step, including the sample handling process, wait time in the sampler before 
analysis, and data analysis. Han et al. [9] summarized the different types of variability in 
each step and pointed out the importance of strict adherence to standard operating 
procedures. Long et al. [10] have also divided the process into five steps and organized 
the pitfalls and practices in each step. It has been reported that there are three major 
problems during continuous sample measurement in large-scale metabolomics using gas 
chromatography (GC) and liquid chromatography (LC) coupled to mass spectrometry 
(MS): variation in the retention time, mass accuracy, and signal intensity [11,12]. For 
capillary electrophoresis–mass spectrometry (CE-MS) metabolomics, Drouin et al. [13] 
reported that high reproducibility could be achieved using the effective electrophoretic 
mobility instead of the relative migration time for identification of metabolites. High mass 
accuracy can be achieved by proper calibration during sample measurement. 

Variation in the signal intensity or peak area in MS is caused by contamination of 
surfaces in continuous sample measurement, which causes drift in the measured 
response. To overcome this in large-scale metabolomics studies using LC-MS and GC-MS, 
it is recommended that quality control samples are analyzed along with each individual 
sample, and that the peak areas are normalized using the QC samples and smoothing 
approaches such as locally estimated scatterplot smoothing (loess) [11,12]. Harada et al. 
[14] reported that the coefficient of variation computed with QC samples using CE-MS 
data in a large-scale metabolomics cohort study was similar to or better than that with LC-
MS and GC-MS data. However, the factors that affect the peak area during continuous 
sample measurement and the effectiveness of normalization using QC samples in CE-MS 
have not been fully investigated. 

In this study, to determine which factors affect peak area variability in large-scale 
CE-MS, principal component analysis (PCA) was performed for metabolome data from 
QC samples. The peak areas for the QC samples were normalized using the smoothing 
trend computed by Whittaker smoothing [15]. Whittaker smoothing has the advantage 
that it can be computed easily, and it can compute smoothing estimates for samples after 
the last QC sample that other smoothing methods, such as loess, cannot compute. As an 
application to normalized metabolome data, partial correlation analysis was performed 
between diagnostic blood tests and plasma metabolites. 

2. Results and Discussion 
2.1. Exploration of Factors Causing Variation in Large-Scale Measurements 

In large-scale metabolome analysis using CE-MS, the factors that cause variation in 
peak areas during measurement have not been fully investigated. If we assume that the 
concentration of each metabolite in the QC samples is identical, variations during 
measurement can be considered as the source of most variability in the QC sample results. 
In this study, PCA was performed for the metabolomic data of the QC samples only 
(Figure 1), and the factors causing variation that were associated with the first or second 
principal component (PC1 and PC2, respectively) scores were examined. 
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Figure 1. Results from PCA for QC samples for the PC1 score (a) and PC2 score (b). 

With continuous measurement, the PC1 score showed a decrease and then an 
increase, and the PC2 score showed a constant decrease. We speculated that the variation 
in the PC1 score was because of the effect of capillary replacement. In practice, the 
capillary for the QC samples was replaced between sample numbers 5 and 6, 10 and 11, 
20 and 21, and 23 and 24. The PC1 score for the peak area tended to decrease between the 
10th and 11th QC samples and increase between the 20th and 21st QC samples. This result 
suggests that capillary exchange does not always affect the peak area. However, if the 
effect of capillary exchange appears in the peak area, then the effect is considered to be 
large. The PC2 score represented drift in the peak area [16,17] and showed a constant 
decrease with continuous measurement. 

To select metabolites that were associated with the PC1 and PC2 scores, statistical 
hypothesis testing of PC loading [18] was performed (Table S1). Thirty one metabolites, 
including carnitine (R = −0.8890, p = 1.077 × 10−11, q = 9.266 × 10−10), tryptophan (R = −0.8828, 
p = 2.326 × 10−11, q = 1.977 × 10−9), and proline (R = −0.8676, p = 1.303 × 10−10, q = 1.094 × 10−8), 
were significantly correlated with the PC1 score (q < 0.05). All significant metabolites of 
PC1 loading were negative values. The PC1 scores first decreased and then increased, 
indicating that all significant metabolites in the PC1 loading had the opposite pattern, 
with an increase and then decrease. In PC2, sixteen metabolites, including uridine (R = 
0.8141, p = 1.449 × 10−8, q = 1.246 × 10−6), guanidinoacetic acid (R = 0.7819, p = 1.262 × 10−7, q 
= 1.073 × 10−5), and 6-N-methyllysine (R = 0.7721, p = 2.280 × 10−7, q = 1.915 × 10−5), were 
significantly correlated with the PC2 score (q < 0.05). For these 16 significant metabolites, 
six negatively correlated metabolites, including choline (R = −0.7004, p = 8.071 × 10−6, q = 
6.538 × 10−4), increased, and 10 positively correlated metabolites, including uridine, 
guanidinoacetic acid, and 6-N-methyllysine, decreased constantly with continuous 
measurement. 

We used PCA to confirm that capillary replacement and a constant change with 
continuous measurement were the major variations. To reduce these variations, in 
addition to re-measuring the QC sample and the actual sample just before capillary 
replacement, like with LC-MS and GC-MS, it is useful in CE-MS to normalize the peak 
areas of the actual samples using the smoothing trend computed from the QC samples. 
All of the significantly correlated metabolites with PC1 scores were cationic metabolites. 
With the exception of mucic acid, threonic acid, and 3-phenylpropionic acid, all 
metabolites significantly correlated with the PC2 score were also cationic metabolites. 
These results suggest that variation during measurement is larger for cationic metabolites 
than for anionic metabolites. 

The variation in peak area with replacement of the capillary is thought to occur 
because of slight differences in the position of the tip when the capillary is placed in the 
nebulizer, which introduces the sample from the CE device to the MS. As the capillary can 
break during measurement, capillary replacement is unavoidable. This problem could be 
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solved in the future by development of an automated system to stably install the capillary 
in the nebulizer. 

2.2. Evaluation of Normalization Using the QC Samples with Smoothing 
In Section 2.1, we showed that metabolites such as carnitine, tryptophan, and proline 

had high values in the PC1 loading partially because of capillary replacement. Metabolites 
such as uridine, guanidinoacetic acid, and 6-N-methyllysine with high PC2 loading values 
varied constantly with continuous measurement. We attempted to normalize these 
variations with a smoothing trend computed using the QC samples, and the effect of this 
normalization was evaluated. 

To estimate the smoothing trend for normalization, we applied Whittaker smoothing 
to the peak areas of the QC samples. In doing so, the peak areas of the actual samples were 
treated as missing values. The smoothing parameter was set to a large value of κ = 10,000 
in order to capture long-term rather than short-term trends. Figure 2 shows the results of 
smoothing for carnitine, which was the highest negatively correlated metabolite in the 
PC1 loading, and uridine, which was the highest positively correlated metabolite in the 
PC2 loading. For carnitine (Figure 2a), the smoothing curve was concave. The concavity 
of this curve was minor because the variability in the QC samples was relatively low 
compared with that in the actual samples for each individual. The smoothing curve of 
uridine (Figure 2b) decreased with continuous measurement. For comparison with other 
smoothing methods, the results calculated by loess are shown in Figure S1. The results of 
the Whittaker smoothing and loess were similar, except that the four samples measured 
after the last QC sample could not be calculated. 

 
Figure 2. The smoothing trends for (a) carnitine and (b) uridine. Open circles indicate each 
individual’s actual samples and closed circles indicate QC samples. The dashed lines show 
estimated values of normalization using the QC samples with Whittaker smoothing. 

To confirm the effect of normalization with the smoothing trend on the QC samples, 
PCA was performed for the normalized data (Figure S2). The variations in the PC scores 
before normalization for capillary replacement and the constant change in the peak area 
(Figure 2) were not observed in the PC scores after normalization (Figure S2). To confirm 
the effect of normalization, correlation coefficients between the normalized peak areas 
and quantitative values were calculated by quantitative analysis using stable isotopes 
(Table S2). For lysine, the correlation coefficient improved slightly from 0.709 to 0.825 with 
normalization. For indole-3-acetic acid, the correlation coefficient improved significantly 
from 0.478 to 0.880. However, it should be noted that two samples were missing for 
indole-3-acetic acid and the correlation coefficient was computed using the remaining 
three samples. The metabolites alanine, glutamine, phenylalanine, valine, 2-oxoisovaleric 
acid, citric acid, lactic acid, and malic acid had high correlation coefficients of above 0.85 
both before and after normalization. The relative standard deviations (RSDs) for peak 
areas before and after normalization with QC samples for each metabolite are shown in 
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Table S3. The numbers of metabolites under 5%, between 5% and 10%, and over 10% RSD 
before normalization were 15, 38, and 33, respectively; the numbers of metabolites under 
5%, between 5% and 10%, and over 10% RSD after normalization were 52, 27, and 7, 
respectively. The RSD was smaller after normalization than before normalization for all 
metabolites. These results suggest that normalization with smoothing using QC samples 
is effective. 

2.3. Correlation Analysis between Plasma Metabolites and Diagnostic Blood Tests 
Correlation analysis between the plasma metabolites and diagnostic blood tests was 

performed as an application of normalized metabolome data. First, we performed PCA 
and confirmed sex differences in PC1 (Figure 3). 

 
Figure 3. Scatter plot of PC1 and PC2 for normalized metabolome data from actual samples for 
individuals. Black circles are for samples from males and red circles are for samples from females. 

Sixty-one metabolites, or more than 70% of the total number of analyzed metabolites, 
were significantly correlated with the PC1 scores (q < 0.05, Table S3). This result suggests 
that many metabolites differed by sex, so we calculated partial correlation coefficients 
with sex as a confounding variable. A heatmap of the correlation between diagnostic 
blood tests and plasma metabolites is shown in Figure 4. 
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Figure 4. Heatmap of partial correlation coefficients between diagnostic blood tests and plasma metabolites. The colored 
bars gradually increase from white to blue for negative correlations and from white to red for positive correlations. The 
size of each spot changes according to the size of the correlation coefficient. Abbreviations in the figure are as follows: T-
Bil: total bilirubin; Fe: serum iron; P: inorganic phosphorus; Ca: calcium; Cl: chlorine; K: potassium; Na: sodium; LDL: 
low-density lipoprotein cholesterol; HDL: high-density lipoprotein cholesterol; TC: total cholesterol; TG: triglycerides; 
HbA1c: hemoglobin A1c; GLU: glucose; BUN: blood urea nitrogen; UA: uric acid; CRE: creatinine; γ-GT: gamma-glutamyl 
transpeptidase; LD: lactate dehydrogenase; ALT: alanine transaminase; AST: aspartate aminotransferase; ALB: albumin; 
TP: total protein; PLT: platelet count; BASO: basophil; EOS: eosinophil; MONO: monocyte; LYMP: lymphocyte; SEG: 
segmented cell; STAB: stab cell; NEUT: neutrophil; MCHC: mean corpuscular hemoglobin concentration; MCH: mean 
corpuscular hemoglobin; MCV: mean corpuscular volume; Hct: hematocrit; Hb: hemoglobin; RBC: red blood cell count; 
WBC: white blood cell count. 

Among all combinations of partial correlation coefficients between the diagnostic 
blood tests and metabolites, the top five pairs with the highest correlation coefficients 
were as follows: blood urea nitrogen (BUN) and urea (R = 0.9347, p = 4.583 × 10−85; Figure 
5a), uric acid (UA) and uric acid (R = 0.8999, p = 1.347 × 10−68; Figure 5b), creatinine (CRE) 
and creatinine (R = 0.7466, p = 1.410 × 10−34; Figure 5c), BUN and guanidinosuccinic acid 
(GSA) (R = 0.6053, p = 4.433 × 10−20; Figure 5d), and gamma-glutamyl transpeptidase (γ-
GT) and cysteine glutathione disulfide (CSSG) (R = −0.5649, p = 3.716 × 10−17). The partial 
correlation coefficient between γ-GT and the log-transformed data of CSSG was slightly 
better than that before the transformation (R = −0.6176, p = 4.712 × 10−21; Figure 5e). It is 
reasonable that the partial correlation coefficients between BUN and urea, UA and uric 
acid, and CRE and creatinine were close to one because we were measuring the same 
substance although the sample species and the measurement methods were different. 
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Figure 5. Scatter plot of five pairs of diagnostic blood tests and plasma metabolites. Black circles indicate samples from 
males and red circles indicate samples from females. (a) Blood urea nitrogen (BUN) test and urea, (b) uric acid (UA) test 
and uric acid, (c) creatinine (CRE) test and creatinine, (d) BUN test and guanidinosuccinic acid, and (e) gamma-glutamyl 
transpeptidase (γ-GT) test and cysteine glutathione disulfide. 

In the current study, we showed for the first time that GSA was correlated with BUN 
in normal healthy subjects (Figure 5d). In 1977, GSA was detected in blood and urine 
samples from uremic patients and correlated with BUN [19]. This correlation is normally 
explained by formation of GSA through the guanidine cycle from excess urea [20]. 
However, it is apparent that GSA is also produced by aberrant cleavage of 
argininosuccinic acid, an intermediate of the urea cycle, by reactive oxygen species such 
as hydroxy radicals [21,22]. The association of GSA with BUN is reasonable because their 
generation may commonly depend on the flux of the urea cycle and urea inhibition of 
argininosuccinase (Figure 6) [23]. Aoyagi et al. demonstrated that urea strongly increased 
the generation of GSA in rat primary hepatocytes and that norvaline, an inhibitor of the 
urea cycle, markedly decreased urea-induced generation of GSA [24]. However, 
generation of GSA from argininosuccinic acid probably only occurs under oxidative stress 
because it does not appear in rare cases of argininosuccinase deficiency. We speculated 
that two factors, one that leads to the increased flux of urea cycle, such as an increase in 
protein catabolism, and the other being oxidative stress, coordinate to contribute to the 
synthesis of GSA. Thus, GSA could be a marker of oxidative stress when it is affected by 
the flux of the urea cycle. 

 
Figure 6. A metabolic pathway map of the urea cycle and related metabolites as a basis for 
correlation between blood urea nitrogen (BUN) and guanidinosuccinic acid. 
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We also found a correlation between γ-GT and CSSG. Usually, quantification of 
oxidatively labile thiols, such as GSH and cysteines, in cohort plasma samples is difficult 
because in vitro oxidation and thiol exchange reactions occur during sampling and 
analysis. Consequently, GSH and cysteine concentrations are usually under the detection 
limit, which occurred in this study. In a previous report, plasma thiols were detected using 
alkylating reagents to avoid artificial reactions in vitro, and the GSH concentration was 
correlated with CSSG [25]. Jones et al. argued that CSSG was generated in vivo from the 
reaction of GSH with cystine, which is present in relatively high concentrations in human 
plasma. Furthermore, GSH added to human plasma in vitro rapidly undergoes a thiol-
exchange reaction with cystine, leading to artificial generation of CSSG [26]. Thus, the 
CSSG measured in our analysis should be the sum of endogenous CSSG plus that 
artificially generated in vitro, both of which are derived from the thiol-exchange reaction 
of GSH and cystine. γ-GT is an enzyme that plays a key role in the gamma-glutamyl cycle, 
a pathway for the synthesis and degradation of GSH, and catalyzes the transfer of gamma-
glutamyl groups of GSH to an acceptor [27]. Plasma or membrane bound γ-GT may affect 
the GSH metabolism both in vivo and in vitro, and the negative correlation between CSSG 
and γ-GT shown in the present study (Figure 5e) may reflect the negative effect of γ-GT 
on CSSG generation (Figure 7). 

 
Figure 7. Metabolic reactions among glutathione and cysteine glutathione disulfide (CSSG) to 
provide a basis for correlation between gamma-glutamyl transpeptidase (γ-GT) and CSSG. 

3. Materials and Methods 
3.1. Human Participants and Sample Collection 

Plasma samples were collected from subjects recruited in the Iwaki Health Promotion 
Project, which is a health promotion study of Japanese people over 20 years of age that 
aims to prevent lifestyle-related diseases and prolong lifespans. The study protocol was 
approved by the Ethics Committee of the Hirosaki University Graduate School of 
Medicine (Hirosaki, Japan), and written informed consent was obtained from all 
participants. There were 3137 subjects enrolled in the Iwaki project in 2016 and 2017, and 
some of these subjects were excluded from our study in the same manner as in our 
previous study [28]. The criteria for exclusion of the subjects are described in Section 3.2. 
The only difference compared with the previous study is that we used CRE instead of 
creatine kinase because creatine kinase was not measured in this study. After applying 
the exclusion criteria, 314 samples remained and metabolome analysis was performed for 
these samples. Among these samples, some were from the same individual but collected 
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in different years (i.e., 2016 and 2017). In these cases, the samples from 2016 was selected 
for the analysis. In total, 314 samples obtained from 188 healthy subjects were used for the 
statistical analysis. The demographic data of 188 healthy subjects are shown in Table 1. 

Table 1. Demographic data of 188 healthy subjects. 

 Male Female Total 
Sample size 66 122 188 
Age (year)    

Mean 42.9 45.1 44.3 
Median 39.5 43.5 43 
Range 20–74 20–73 20–74 

BMI (kg/m2)    
Mean 23.1 21.2 21.9 

Median 22.85 21.1 21.5 
Range 18.2–29 15.5–28.1 15.5–29 

BMI: body mass index. 

3.2. Exclusion Criteria for Medical Parameters and Diagnostic Blood Tests 
The medical parameters used to exclude samples from certain individuals are 

described below. First, individuals that were taking prescription medications at the time 
of sampling were excluded. Next, individuals with samples that had results within the 
limits shown in Table 2 were excluded. Finally, we excluded individuals that smoked 
more than 20 cigarettes per day, had a BMI of ≤14 kg/m2 or ≥30 kg/m2, or had average 
blood pressure of ≥160 mmHg in the systolic phase and ≥100 mmHg in the diastolic phase. 

Table 2. The exclusion criteria of the blood tests. 

Blood Tests Lower Limit Upper Limit 
ALB (g/L) <41 >51 

TG (mmol/L) <0.47 (M), <0.34 (F) >2.51 (M), >1.4 (F) 
UA (mmol/L) <224 (M), <154 (F) >474 (M), >334 (F) 

GLU (mmol/L) <4.2 >5.9 
γ-GT (U/L) <9 >55 

CRE (mmol/L) <0.64 (M), <0.46 (F) >1.06 (M), >0.78 (F),  
C-reactive protein (mg/L) - >1.4 

Hb (g/L) <135 (M), <110 (F) >169 (M), >148 (F) 
MCV (fl) <82 >98 

ALB: albumin; TG: triglycerides; UA: uric acid; GLU: glucose; γ-GT: gamma-glutamyl 
transpeptidase; CRE: creatinine; Hb: hemoglobin; MCV: mean corpuscular volume; M: male; F: 
female. 

The diagnostic blood tests used for correlation analysis were the white blood cell 
count, red blood cell count, hemoglobin (Hb), hematocrit (Hct), mean corpuscular volume 
(MCV), mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, 
neutrophil, stab cells, segmented cells, lymphocytes, monocytes, eosinophil, basophil, 
platelet count, total protein, albumin (ALB), aspartate aminotransferase, alanine 
transaminase, lactate dehydrogenase, gamma-glutamyl transpeptidase (γ-GT), creatinine 
(CRE), uric acid (UA), BUN, glucose (GLU), Hb A1c, triglycerides (TG), total cholesterol, 
high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, sodium (Na), 
potassium (K), chlorine (Cl), calcium (Ca), inorganic phosphorus (P), serum iron (Fe), and 
total bilirubin. 
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3.3. Metabolome Analysis 
Metabolome analysis was conducted at Human Metabolome Technologies (HMT; 

Tsuruoka, Japan). Briefly, 50 µL of plasma was added to 450 µL of methanol containing 
internal standards (solution ID: H3304-1002, HMT) at 0 °C to inactivate enzymes. The 
solution was thoroughly mixed with 500 µL of chloroform and 200 µL of Milli-Q water 
and centrifuged at 2300× g and 4 °C for 5 min. Then, 350 µL of the upper aqueous layer 
was centrifugally filtered through a Millipore 5-kDa cutoff filter to remove proteins. The 
filtrate was centrifugally concentrated and re-suspended in 50 µL of Milli-Q water for 
metabolome analysis at HMT. 

Metabolome analysis was performed by CE coupled with time-of-flight (TOF)-MS 
[29]. Electrolytes, the sheath liquid, authentic materials for migration-time correction, and 
internal standards were all prepared from a HMT metabolomics kit. Standard mixtures 
for metabolite annotation and quantification were prepared using 403 commercially 
available compounds. Methanol was purchased from Kanto Chemical Co., Inc. (Tokyo, 
Japan). Chloroform was purchased from FUJIFILM Wako Pure Chemical Corporation 
(Osaka, Japan). 

CE-TOF-MS was carried out using a 7100 CE System, 6210 TOF-MS, 1100 isocratic 
high-performance liquid chromatography pump, G1603A CE-MS adapter kit, and 
G1607A CE-ESI-MS sprayer kit, all from Agilent Technologies Inc. (Santa Clara, CA, 
USA). The systems were controlled by ChemStation software (version B.04.02 SP1) and 
MassHunter Data Acquisition for TOF/Q-TOF (version B.02.00, Agilent Technologies 
Inc.). The sheath flow rate was set at 10 µL/min. Metabolites were separated using a fused 
silica capillary (50 µm i.d. × 80 cm total length; Polymicro Technologies, Inc., Phoenix, AZ, 
USA) with 50 mM ammonium acetate (pH 8.5) for anion analysis and 1 M formic acid for 
cation analysis. The applied voltage for CE was set at 30 kV. MS spectra were scanned 
from m/z 50 to 1000. The TOF-MS acquisition rate was set at 1.5 spectra/s. MS was 
conducted in negative ionization mode with 3500 V for anion analysis and in positive 
ionization mode with 4000 V for cation analysis 

Data processing for peak picking, peak alignment, metabolite annotation, and peak 
integration was performed using MasterHands™, developed by the Institute for 
Advanced Biosciences, Keio University [30]. For metabolome analysis, the migration time 
of each peak detected by CE-MS was corrected using those of the internal standards and 
authentic materials for migration-time correction. Putative metabolites were identified 
according to the m/z and corrected migration times acquired from a standard mixture that 
was analyzed using the same CE conditions. The tolerance was ±10 ppm for the m/z and 
±0.5 min for the corrected migration time. The results were checked manually, then the 
peak area of each metabolite was normalized to that of the appropriate internal standard. 
After this, 86 metabolites remained and this dataset was used for statistical analysis. 

Quantitative analysis using 13C was also performed for five randomly selected 
samples. Quantitative values for alanine, glutamate, lysine, phenylalanine, valine, 2-
oxoisovaleric acid, citric acid, indole-3-acetic acid, lactic acid, and malic acid were 
computed. 

3.4. QC Samples and Normalization with Whittaker Smoothing 
QC samples were prepared by mixing 100 µL aliquots of 10 samples randomly 

selected from the full sample set (n = 314). The QC samples were analyzed after every 10 
samples (Figure 8). We calculated the smoothing curve using the peak areas of the QC 
samples, and the peak areas of the individual plasma samples were normalized using a 
smoothing trend computed by Whittaker smoothing. 
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Figure 8. Overview of the procedure for preparation of pooled quality control (QC) samples and 
the measurement sequence for all samples, including the actual samples for each individual and 
QC samples. The letter “S” stands for samples and “E” for extracts. 

We used the version of Whittaker smoothing introduced by Eilers [15]. We set the 
peak area of the QC sample as y and the estimated smoothed value as z. Whittaker 
smoothing is defined as minimizing E in the following equation: 

𝐸𝐸 = ∑ 𝑤𝑤𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑧𝑧𝑖𝑖)2 + 𝜆𝜆∑ 𝐃𝐃𝑧𝑧𝑖𝑖2𝑖𝑖𝑖𝑖 = (𝐲𝐲 − 𝐳𝐳)′𝐖𝐖(𝐲𝐲 − 𝐳𝐳) + 𝜆𝜆𝐳𝐳′𝐃𝐃′𝐃𝐃𝐃𝐃, (1) 

where i is the i-th sample; λ is a parameter that represents the degree of smoothing; D is 
the differential matrix; and W is a diagonal matrix with a diagonal component, in which 
the QC sample corresponds to one and each individual’s actual samples to zero. To 
perform smoothing using the QC samples and estimate each individual’s actual sample 
for normalization, the matrix W is necessary to treat non-QC samples (i.e., each 
individual’s samples) as missing values. 

The first term in Equation (1) is the weighted squared error of the data and the 
estimate from smoothing, and the second term represents the degree of smoothing. We 
performed partial differentiation of z and set it to 0, which can be written as follows: 

(𝐖𝐖 + 𝜆𝜆𝐃𝐃𝐝𝐝
′ 𝐃𝐃𝐝𝐝)𝐳𝐳 = 𝐖𝐖𝐖𝐖. (2) 

The value of z can be estimated by multiplying the inverse matrix of 𝐖𝐖 + 𝜆𝜆𝐃𝐃𝐝𝐝
′ 𝐃𝐃𝐝𝐝 

from Equation (2) as follows: 

𝐳𝐳 =  (𝐖𝐖 + 𝜆𝜆𝐃𝐃𝐝𝐝
′ 𝐃𝐃𝐝𝐝)−𝟏𝟏𝐖𝐖𝐖𝐖. (3) 

A normalized value can be calculated by dividing the peak area for an individual’s 
actual sample by the estimated value z. We used the second differential matrix D2 as the 
differential matrix, which can be written as follows: 

𝐃𝐃𝟐𝟐 = �

−1 2 1 0 ⋯ 0 0 0
0 −1 2 1 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1 −2 1

�. (4) 

3.5. Statistical Analysis 
All statistical analysis was performed using R software ver. 3.6.0. Whittaker 

smoothing was computed using an in-house R program. Partial correlation coefficients 
were calculated using the ppcor package ver. 1.1, and the correlation matrix was drawn 
using the ggcorrplot package ver. 0.1.3. 
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4. Conclusions 
We analyzed the factors causing variations in large-scale CE-MS metabolomics and 

found that capillary replacement and a linear trend with continuous measurement were 
major factors. To reduce these variations, the peak areas of the actual samples were 
normalized using those of QC samples. Analysis of QC samples before and after 
normalization and comparison with quantitative values using stable isotopes confirmed 
that metabolome data quality was improved by normalization. As an application of the 
normalized metabolome data, we performed correlation analysis between diagnostic 
blood tests and plasma metabolites for samples from healthy Japanese subjects. We found 
two pairs, BUN and GSA, and γ-GT and CSSG, that have previously not been identified 
in normal healthy subjects. These results confirmed the validity of normalization 
protocols in CE-MS using large-scale metabolomics and comprehensive analysis. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-
1989/11/5/314/s1: Table S1: Statistical significantly metabolites correlated with PC1 and PC2 scores 
in the metabolome data for the QC samples, Table S2: Correlation coefficients between before and 
after normalization and quantitative values from quantitative analysis using stable isotopes, Table 
S3: The relative standard deviation (RSD) of the peak area before and after normalization with QC 
samples for each metabolite, Table S4: Statistically significantly metabolites correlated with the PC1 
score in normalized metabolome data, Figure S1: The smoothing trends for (a) carnitine and (b) 
uridine. Open circles indicate each individual’s actual samples and closed circles indicate QC 
samples. The dashed lines show estimated values of normalization using the QC samples with 
locally estimated scatterplot smoothing (loess), Figure S2: Results of PCA for normalized 
metabolome data from QC samples. The vertical axes show the PC1 score (a) and PC2 score (b). 
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