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Section S1. Portable GC Description and Operation 

S1.1. Materials  
 The DB-1ms Agilent J&W, nonpolar column (length 10 m, i.d. 250 μm, film thickness 0.25 

μm) was purchased form Agilent Technologies (P/N: 122-0162, Agilent Technologies). Copper 
tube (length 10 cm, i.d. 1 mm, o.d. 1.5 mm) was purchased from Swagelok and glass wool was 
purchased from Sigma Aldrich. Teflon tape was purchased from Grainger (Ann Arbor, MI). 
Shrink tube was purchased form Digi-Key Electronics. Disposable helium cartridge (95 mL, 
2500 psi) was purchased from Leland (South Plainfield, NJ). GC guard columns (i.d. 250 µm 
and o.d. 380 µm), universal press-tight glass capillary column connectors, and angled Y-
connectors were purchased from Restek (Belafonte, PA). The 2-port and 3-port solenoid valves 
were purchased from Lee Company (Westbrook, CT). A diaphragm pump was purchased from 
Gast Manufacturing (Benton Harbor, MI). Nickel wire (0.32 mm diameter, 1.24 Ω/m) was 
purchased from Lightning Vapes (Bradenton, FL). A type K thermocouple was purchased from 
Omega Engineering (Stamford, CT). A silicon wafer was purchased from University Wafer 
(Boston, MA). The UV lamps and amplifiers for PIDs were purchased from Baseline-Mocon 
(Lyons, CO). A 24 V ac/ dc converter was purchased from TDK-Lambda Americas, Inc. 
(National City, CA). A 24 V and a 12 V ac/dc converters and axial fans were purchased from 
Delta Electronics (Taipei, Taiwan). Data acquisition cards (DAQ cards), USB-6212 (16 bits) 
was purchased from National Instruments (Austin, TX). Customized printed circuit board (PCB) 
was designed and manufactured by M.A.K.S., Inc. (Troy, MI). All the materials are the same as 
those described in Ref. 1. 

 
S1.2. Design, fabrication, characterization of components and device assembly 

The micro-fabricated preconcentrator (μPI) and micro-photoionization detector (μPID) were 
two microfabricated components used in the present portable GC device. All of these 
components were fabricated and characterized in-house. The details of μPI and μPID can be 
found in Ref. 1.  

The thermal desorption tube was made of a 5 cm long copper tube with an inner diameter of 
1 mm. Both CarbopackTM X and B granules, 10 mg each, were loaded into the hollow cylindrical 
copper tube using a diaphragm pump. Glass wool was used to separate the CarbopackTM X and 
B, as well as to seal the copper tube from both ends. Swagelok fittings were used to connect a 
stainless steel tube of i.d. 250 µm at both the ends of the copper tube. For temperature ramping, 
the nickel wire was wrapped around the entire length of the copper tube. The nickel wire was 
insulated from the copper tube using a Kapton tape. A type K thermocouple was attached to the 
copper tube using a Kapton tape to monitor the temperature in real time. Finally, the thermal 
desorption tube was preconditioned at 300 °C for 12 h under helium flow. 

The 10 m long DB-1MS column for 1D and the nickel wire were placed in parallel, wrapped 
in Teflon tape, inserted into a shrink tube, and then coiled into a helix of 10 cm in diameter and 
1 cm in height. Details can be found in Ref. 1.   

As illustrated in Figure 1, the portable GC consisted of a sampling module and an analyzing 
module. The sampling module consisted of a sampling tube, a thermal desorption tube loaded 
with CarbopackTM X and B, valves, and a pump. The analyzing module consisted of a μPI loaded 
with CarbopackTM X and B, a 10 m long Agilent J&W DB-1ms, and a μPID. The modules and 
components were connected via tubings, universal connectors, and Y-connectors. The entire 
device was housed in a customized plastic case and had a total weight less than 3 kg, including 
the weight of the He gas cartridge (231 g), as shown in Figure 1. LabVIEWTM based codes were 
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developed in-house for the user interface, and device control and automation. 
 
S1.3. Operation of the portable GC 

The operation procedures and parameters of the portable GC are described as follows. 
 
(1)  Sampling: Breath VOCs were drawn by the diaphragm pump through the 2-port valve and 

adsorbed by the thermal desorption tube at a flow rate of 70 mL/min for 5 min from a Tedlar 
bag with a total volume of 350 mL. The optimization of the flow rate resulted from a balance 
between reducing sampling time and preventing VOC breakthrough in the thermal 
desorption tube. The sample volume (350 mL) was optimized to achieve adequate signal-to-
noise ratios for most VOC peaks while not saturating the detector. 

 
(2) Desorption and injection: The 2-port valve was closed and helium gas was flowed through 

the 3-port valve to provide the carrier gas at a flow rate of 2 mL/min. Meanwhile, the thermal 
desorption tube was heated to 300 °C for 5 min to transfer the trapped analytes onto the 
micro-thermal injector. Then the micro-thermal injector was heated to 250 °C in 0.3 s and 
then kept at 250 °C for 5 s for complete thermal desorption and injection of the analytes into 
the column. The micro-thermal injector heating parameter was optimized to desorb all VOCs 
and achieve sharp injection peak width (~0.5 s full-width-at-half-maximum). 

 
(3) Separation: The analytes underwent separation through the 10 m long column and were then 

detected by the μPID. During the separation, the column was kept at 25 °C for 2 min, then 
first ramped at a rate of 10 °C min−1 to 80 °C, next ramped at a rate of 40 °C min−1 to 120 °C, 
and kept at 120 °C for 1 min. The helium flow rate was 2 mL/min for the column. The ramp 
rate, column temperature, and carrier gas flow rate were optimized to achieve the best 
separation of breath VOCs with the shortest possible time. 

 
(4) Cleaning: After analysis, the thermal desorption tube was heated to 300 ºC for 5 min followed 

by heating the micro-thermal injector to 250 °C in 0.3 s and then keeping it at 250 °C for 6 s 
at a helium flow rate of 25 mL/min. This process was repeated twice in order to completely 
remove residual analytes (if any) trapped in the thermal desorption tube and the micro-
thermal injector.  

 
The total assay time was 30 minutes, which included 5 minutes of sample collection, 5 

minutes of desorption/transfer, 10 minutes of separation, and 10 minutes of cleaning. 
 

(5)  The device was calibrated monthly using a C6-C12 mixture prepared in lab that covers the 
most range of the VOCs of interest. Meanwhile, the person who conducted the breath 
analysis has his/her breath samples tested twice on the day before and after the breath 
analyses on patients were performed.  
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Section S2. Chromatogram Preprocessing 
 

Chromatogram preprocessing is critical to VOC analysis, because analyte information is 
often obscured by irrelevant variations from, for example, noise, detector performance, baseline 
drifting, and peak retention time drifting. These issues exacerbate with breath analysis due to the 
presence of a large number of VOCs and the large variations in concentrations of those VOCs 
among different subjects. In this work, the following preprocessing steps are performed with the 
as-obtained chromatogram raw data (PID signal vs. retention time) prior to the statistical analysis 
in Section S3. 

 
(1) Baseline correction and removal 

In order to correct the baseline drifting, which typically arises from column stationary phase 
bleeding and/or detector sensitivity variations, the open-source adaptive iterative reweighted 
Penalized Least Squares (airPLS) algorithm is adopted2, which iteratively alters weights of sum 
squared errors (SSE) between the previously established baseline and the original signals. The 
baseline noise signal is numerically centered around zero after the baseline correction. 

 
(2) Noise reduction 

After the baseline correction, the signal is de-noised via the locally weighted scatterplot 
smoothing (LOWESS) approach3. As a result, the signal-to-noise (S/N) ratio in chromatograms 
is further improved. 

 
(3) Normalization 

The total area under the chromatogram profile is normalized to unity after the baseline 
removal and noise reduction, as described previously4. The sum-normalization approach is 
commonly used in GC-based breath analysis5-10. 

 
(4) Peak detection 

The chromatogram curve is scanned for local maxima and the associated peak apex positions 
(i.e., retention times), peak heights, and endpoints11. Peaks that do not exceed the cutoff height 
(e.g., detector detection limit) and/or the pre-defined full width at half maximum (FWHM) will 
be filtered out.  

 
(5) Peak coelution identification 

Peak coelution is generally unavoidable in the chromatogram of exhaled breath, due 
primarily to the presence of the large number of VOCs. A peak with a coelution issue is identified 
if the height of either of its two endpoints (left and right) is above the 1/10 of the peak apex 
height (Figure S1A); otherwise the coelution is deemed negligible. Coelution occurs with at least 
two adjacent peaks. A group of coeluted peaks is identified (Figure S1B) when the height of the 
left endpoint of the first peak and the right endpoint of the last peak are close to baseline and all 
middle end points are above the cutoff criteria (e.g., >1/10 of the peak height). 

 
(6) Peak area extraction 

For a fully separated peak (i.e., no coelution issue), its area, which is related to the amount 
or concentration of the corresponding compound, is extracted by integrating the area between its 
two endpoints. For the group of multiple coeluted peaks, deconvolution is performed. Briefly, a 
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Gaussian function is used as the fitting function and the extracted parameters in Step 4 are used 
as the initial fitting parameters for each coeluted peak. Then iterative deconvolution of the group 
of the coeluted peaks is performed using Nelder-Mead Modified Simplex until the fitting error 
is below a predefined value. The total peak area and peak profile of the coeluted peaks are 
preserved during the fitting. The integration of each deconvoluted Gaussian curve is extracted 
as the corresponding peak area.  

 
(7) Retention time alignment 

The correlation optimized warping (COW) method is applied to all measured chromatograms 
to correct the peak retention time drift due to fluctuations in experimental conditions (e.g., flow 
rate, column temperature programming profile, and ambient temperature). COW is a widely used 
algorithm for globally optimized local alignment12,13. The aligning is achieved by dividing a 
chromatogram into a number of local segments and each segment is iteratively 
stretched/compressed by interpolation until correlation between the sample and reference 
chromatograms is maximized. Note that in this work only the retention time of each peak is 
altered by the COW aligning, whereas the peak area remains the same. We notice that although 
after the COW aligning, the peak of the same compound among all the chromatograms may fail 
to yield the exactly same value. The aligning errors for all peaks are below 0.75 seconds, which 
are far below a typical distance between two adjacent peaks in the chromatogram (Figure S2). 
Therefore, the peaks whose retention time are within a ±0.75 seconds window (or slot) defined 
by the peak in the reference chromatogram are treated as the same peak. 

 
(8) Consolidation 

After the retention time alignment, there are a total of 103 peaks found across the 
chromatograms of all the study subjects in the current work. Each peak may represent only one 
(no coelution) or multiple VOCs (complete coelution). Note that not all the 103 peaks are present 

Figure S1. Conceptual illustration of peak coelution identification. (A) A peak with a 
coelution issue is identified if its height (hend,left and hend,left, marked in red) of either left or 
right endpoint is above 1/10 of the peak apex height (hapex, marked in green); otherwise 
the coelution is deemed negligible. The positions of the two endpoints and apex is 
extracted in Step 4. (B) A group of coeluted peaks are identified if the height at the left 
endpoint of the first peak (hend,left) and the right endpoint of the last peak (hend,left) are very 
close to the baseline, the height at the rest end points in the middle (hend,mid) are above the 
cutoff criteria. 
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in the chromatogram of one particular study subject and the areas of absent peaks are assigned 
to zero. The normalized peak areas of each chromatogram are sorted based on the aligned 
retention times ascendingly and all the peaks are assigned with the peak IDs as 1, 2, …, and 103. 
The normalized area of all the 103 peaks among all the study subjects can be consolidated as a 
matrix: 

푥 , ⋯ 푥 ,
⋮ ⋱ ⋮

푥 , ⋯ 푥 ,

, (1) 

where each element xi,j represents the normalized peak area of the ith patient and the jth peak. m 
is the total number of the study subjects and all the study subjects are assigned with subject IDs 
as 1, 2, …, and m. and n is the total number of the peaks, which is 103 in the current work. 

Similarly, a classifier matrix can be formed based on the medical adjudication of the study 
subjects, i.e., 1 for the positive group and 0 for the control (or negative) group: 

푐
⋮

푐
. (2) 

 
  

Figure S2. Conceptual illustration of retention time grouping after the COW aligning, 
where the blue chromatogram represents the reference chromatogram and the red one 
represents the chromatogram from the sample under test, which has been aligned to the 
blue reference chromatogram with COW. The aligning errors for the peaks of the same 
compound across different chromatograms (labelled as “Error” in the figure) are noticed 
to be below 0.75 seconds, which are much smaller than a typical distance between two 
adjacent peaks in the same chromatogram (labelled as “ΔtR” for the 3rd and 4th peaks in 
the blue reference chromatogram). Any peak in the sample chromatogram whose retention 
time is within a ±0.75 seconds window (or slot) defined by retention time of one peak (tR,i, 
where i represents one particular peak) in the reference chromatogram is treated as the 
same peak. 
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Section S3 Statistical Analysis for Biomarker Discovery 

 
The statistical analysis method is adapted from our previously published approach4 based on 

principal component analysis (PCA) and linear discriminant analysis (LDA) with significant 
improvement in computation efficiency. 

  
S3.1. Enumerating all possible peak subsets 

Assuming that there are a total of N out of the total 103 detected peaks that are relevant to 
the classification between the positive group and the control group, a total of C(103,N) peak  
combinations can be generated, each of which is a subset of the 103 peaks. C(103,N) is a 
combinatorial number that becomes extremely large when N is above 5. The normalized peak 
areas of one particular N-peak subset can be expressed as an m by N matrix:  

푥 , ⋯ 푥 ,
⋮ ⋱ ⋮

푥 , ⋯ 푥 ,

 , (3) 

where m is the number of study subjects. Each element xi,j represents the normalized peak area 
of the ith patient and jth peak, which serves as the feature of linear discriminant analysis (LDA) 
and principal component analysis (PCA) in subsequent Sections S3.3-3.5. (k1, k2, …, kN) are the 
peak IDs in one particular N-peak subset. 

 
S3.2. Training set and testing set 

The subjects for asthma study are randomly divided into the training set (total 45 study 
subjects) and the testing set (total 25 study subjects). The training set is used to select the best 
peak combination (i.e., the set of biomarkers) and determine the associated linear boundary for 
the best classification result (see Section S3.3 later), whereas the testing set is used for validation 
(see Section S3.4 later).  

For the group of asthma confounding factors (atopic control, obesity, upper respiratory 
illness, and eosinophils level), all the study subjects are involved into the training set for 
biomarker discovery due to the limited number of study subjects. For the asthma confounding 
factor of ICS treatments, all the 13 samples from subjects who receive ICS treatment plus 15 
non-ICS samples are involved into the training sets. The rest 6 ICS samples are used for 
validation. 

 
 
S3.3. Peak subset selection – biomarker discovery 

When N=1, only one peak is used as the biomarker to distinguish the positive group and the 
control group. The highest binary classification accuracy that can be achieved with only one 
peak (i.e., optimal classification accuracy with one peak) is expected to be low. When N increases 
(e.g., N=2, 3, …, and 9, etc.), the optimal classification accuracy that can be achieved with N 
peaks increases, as more peaks are added to the biomarker subset (Figure S3). With further 
increased N, the optimal classification accuracy levels off, as additional peaks do not contribute 
to the distinction between the positive group and the control group. However, when N continues 
to increase, the optimal classification accuracy that can be achieved with N peaks starts to 
deteriorate, as additional peaks impair the classification ability. Eventually, when N=n (n is the 
total number of the peaks and n=103 in the current work), that is, when all peaks are used as the 
biomarkers, there is no distinction between the positive and the control groups. Therefore, we 
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expect that the number of peaks that best distinguish between the positive and the control groups 
should lie between 1 and n, i.e., 1<N<n. Note that the same optimal classification accuracy can 
possibly be achieved with different number of peaks, for example, N0, N0+1, and N0+2 peaks 
(see Figure S3 for illustration). If this is the case, we choose the subset that has the minimal 
number of peaks (i.e., N0) as the biomarker set. N0 is the minimum number of required 
biomarkers to achieve the highest classification accuracy.  

There are two different yet equivalent approaches to select the biomarker set. 

S3.3.1. Independent peak subset selection (first approach) 
The first approach is straightforward, but becomes time consuming with increased N. In this 

approach, the LDA-AUC model is performed with all possible N-peak subsets. Briefly, for each 
subset of peaks, the corresponding normalized peak area matrix in Eq. (3) and the classifier 
matrix in Eq. (2) are coupled to train an LDA model and its area under the corresponding receiver 
operating characteristic curve (AUC, ROC) is calculated. The subset with the highest AUC value 
gives the optimal classification result. As illustrated in Figure S3, when N increases, the optimal 
classification accuracy increases and then becomes leveled off. For example, if the optimal N0-
peak subset provides the same accuracy as the optimal (N0+1)-peak subset, the peak search can 
stop and the optimal N0-peak subset is fixed as the biomarker set that contains the selected N0 
peaks. Next, PCA analysis is performed with the normalized peak area of the selected biomarkers 
as the features, and the principal component (PC) coefficients and the linear classification 
boundary line are extracted, which will be validated in the testing set in Section S3.4. 

The number of subsets that contain N peaks is given by C(103,N), which is a combinatorial 
number and can be extremely large when 5<N<98. Therefore, when N is above 5, the LDA-AUC 
calculation for all C(103,N) subsets becomes prohibitively time consuming. In this work, the 
independent peak subset selection approach is applied to N=1, 2, …, 5, the top fifteen peak 
subsets of which are listed in Table S1. The PC scores of the training set for asthma analysis are 
plotted in Figure S4 using the optimal peak subsets listed in Table S1. 

S3.3.2. Iterative peak subset selection (second approach) 
When N is above 5, the second approach is used that significantly reduces the computational 

burden. First, the independent peak subset selection approach (i.e., the first approach) is applied 
to all the peak subsets that contain 2-5 peaks. Since the total number of the subsets for N<6 is 
relatively small, the computation time is affordable. If the classification accuracy levels off or 
starts to deteriorate, for example, at the 5-peak subsets, i.e., the classification accuracy generated 

 
Figure S3. Conceptual illustration of the trend of optimal classification accuracy with 
the increased number of peaks used in the biomarker set.  
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by the optimal 4-peak subset is the same as or better that of any 5-peak subset, then this optimal 
4-peak subset is selected as the biomarker set for classification. If the optimal 5-peak subset has 
a higher classification accuracy than any 4-peak subset, then we proceed to 6-peak subsets. 
Instead of enumerating all C(103,6) (~1.43E9) 6-peak subsets and conducting independent peak 
search (i.e., the first approach described in Section S3.3.1), we form 6-peak subsets by 
respectively pairing a selected number of the top 5-peak subsets with one additional peak, the 
total number of which is much lower than C(103,6). For example, we can select the top 2000 5-
peak subsets that have the highest AUC values, each of which is respectively paired with one 
additional peak from the remaining 103-5=98 peaks. A total number of 2000 × (103-5) = 196,000 
(about 7,300 times smaller than C(103,6)) 6-peak subsets can be formed to train the LDA-AUC 
model. Note that there are multiple duplicated subsets (i.e., all peak IDs are same) among the 
above 196,000 paired 6-peak subsets, which need to be removed prior to the training the LDA-

Table S1. 2-, 3-, 4-, and 5-peak subsets with the top fifteen AUC values for the 
classification of asthma and non-asthma subjects (obtained from the first approach). The 
optimal peak subset is shown in red. 
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AUC models. Therefore, the total number of the final 6-peak subsets for the model training is 
much smaller than that generated by the independent peak selection in the first approach, which 
significantly saves computation time. Similarly, if the optimal 6-peak subset has a higher 
classification accuracy than any 5-peak subset, then we proceed to 7-peak subsets. The above 
process continues until the classification accuracy levels off or starts to deteriorate. The top 15 
6-peak combinations with the highest AUC values for asthma study is given in Table S2 with 
the AUC of the optimal subset reaching one.  

To be more general, once we have completed the N-peak subset selection, instead of 
conducting independent (N+N’)-peak search described in the first approach, we can employ an 
iterative way (Figure S5) based on the top p sets of N-peak combinations that are obtained from 
the independent N-peak selection approach (i.e., the first approach). Each of the best p sets of N-
peak combinations is paired with all possible N’-peak subsets formed from the remaining (n-N) 
peaks. Therefore, a total of p × C(n-N, N’) (N+N’)-peak subsets can be formed. One such subset 
is exemplified as follows. 

Figure S4. PCA plots of the asthma training set using the optimal 2-, 3-, 4-, and 5-peak 
subsets listed in Table S1, which show progressively improved classification accuracy 
(75.6%, 77.8%, 80.0%, and 84.4% from A to D) with increased peak number. The red and 
black symbols denote respectively the asthma and non-asthma subjects. The yellow line 
marks the position of the boundary. Note that the atopic subjects are excluded from both 
asthma and non-asthma groups. 
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푥 , ⋯ 푥 ,
⋮ ⋱ ⋮

푥 , ⋯ 푥 ,

    푥 , ⋯     푥 ,
⋮ ⋱ ⋮

    푥 , ⋯     푥 ,

 , (4) 

where m is the total number of the study subjects, (k1, k2, …, kN) refers to one of the best p sets 
of N-peak combinations. (푘 , 푘 , …, 푘 ) is one of the N’-peak combinations selected from the 
remaining (n-N) peaks. N’ is usually 1 or 2, meaning that each time we add only 1 or 2 new peaks 
to the N-peak subsets.  

Next, the LDA-AUC model is trained for all the above (N+N’)-peak subsets with duplicates 
removed, and all the combinations are sorted descendingly based on the AUC values. However, 
some peaks in the independent (N+N’)-peak selection may not appear in the top p sets of the N-
peak combinations. To circumvent this issue, we add additional top q sets of N-peak (for a total 
of top (p+q) N-peak combinations), and iteratively conduct another round of the (N+N’)-peak 
selection until the top l (N+N’)-peak subsets reach convergence (i.e., the peak IDs in each of the 
top l (N+N’)-peak subsets are exactly the same between the adjacent two rounds of peak subset 
selection). In this work, the second approach is adopted when N is above 5 (N=6, 7, 8, and 9, 
etc.) and typical values of p, q, and l used in this work are 2000, 1000, and 20000, respectively.  

Below we explain in detail why we need to choose multiple top N-peak subsets rather than 
only the optimal N-peak subset (only the top 1) during the creation of (N+N’)-peak subsets and 
validate the equivalence of the above two peak subset selection approaches by showing that they 
produce the same optimal peak subset. 

Let us first take a look at the 3-, 4-, and 5-peak selection results in Table S1 using the data 
from the asthma breath analysis study. There are no identical peaks between the optimal 3-peak 
subset and the optimal 4-peak subset (Note that the optimal peak subset has the highest AUC 
value among all peak subsets that have the same number of peaks in the subset). In fact, three of 
the peaks (peak ID = 14, 46, and 73) in the optimal 4-peak subset first appear in the 2nd best 3-
peak subset and the last one (peak ID = 64) does not emerge until the 44th best 3-peak subset. 

Table S2. 6-peak subsets with the top fifteen AUC values for the classification of asthma 
and non-asthma subjects (obtained from the second approach). The optimal peak subset is 
shown in red. 
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The physical interpretation is that  although any 3-peak subsets formed by three of the four peaks 
in the optimal 4-peak subset (peak ID = 14, 46, 64, and 73) is inferior to the optimal 3-peak 
subset (peak ID = 45, 47, and 50), the four peaks (peak ID = 14, 46, 64, and 73) collectively 
yield an AUC higher than that for the optimal 3-peak subset. Similarly, the optimal 4-peak subset 
(peak ID = 14, 46, 64, and 73) with AUC = 0.973 and the optimal 5-peak subset (peak ID = 32, 
50, 51, 80, and 93) with AUC = 0.987 have no peaks in common. Therefore, in the iterative peak 
subset selection approach, we cannot choose only the optimal N-peak subset (i.e., top 1 N-peak 
subset) in order to create (N+1)-peak subsets (by adding an additional peak to the optimal N-
peak subset) or (N+N’)-peak subsets (by additional N’ peaks to the optimal N-peak subset). For 
example, we would never find the optimal 5-peak subset (peak ID = 32, 50, 51, 80, and 93), if 
we start with only the optimal 4-peak subset (peak ID = 14, 46, 64, and 73). Interestingly, peak 
32, 50, 51, 80, and 93 appear in the 22nd, 2nd, 51st, 35th, and 50th best 4-peak subset. Therefore, 
when we create the 5-peak subsets, we should not only use the best (top 1) 4-peak subset with 
the highest AUC value, but also include multiple top 4-peak subsets with top AUC values (e.g., 
2nd, 3rd, …., 1000th). After we train the LDA-AUC model on those newly created 5-peak subsets, 
we can reproduce all of the top (e.g., top 20000) 5-peak subsets that are identical to those 
obtained from the independent 5-peak subset selection approach (i.e., the first approach). Note 
that here we use 3-, 4-, and 5-peak subsets for illustration purposes. The same phenomenon holds 
for the subsets with higher number of peaks. In practice, we enumerate all 2-, 3-, 4-, and 5-peak 
subsets since the total number of these subsets is relatively low and the computation time is short 
to calculate the AUC values for all of them. The iterative peak subset selection approach (i.e., 

 
 

Figure S5. Flow chart of the iterative peak subset selection (second approach). 
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the second approach) starts from 6-peak subsets by adding one new peak to the top (top 2000 in 
this work) 5-peak subsets.  

To validate the equivalency between the first and the second approach, both the two 
approaches are used in 3-peak, 4-peak and 5-peak subset selection for the asthma study. First, 
independent peak search (i.e., first approach) is applied respectively to 2-peak, 3-peak, 4-peak 
and 5-peak selections. Next, we start from the top 1000 2-peak subsets and top 2000 3-peak 
subsets, and add one or two peaks to perform the iterative peak selections (i.e., (2+1)-, (2+2), 
(3+1)-, (3+1+1)- and (3+2)-peak selections). All of the top 20000 3-peak, 4-peak, and 5-peak 
subsets match between the two approaches. 

 
S.3.3.3. Additional selection criterion 

We notice that when N increases, the AUC values approaches 1. For example, when N=6 in 
our asthma study, the AUC value for the optimal 6-peak subset (see Table S2) becomes 1, and 
when N=7 multiple 7-peak subsets have the AUC of 1 (so do many 8- and 9-peak subsets), 
meaning that all of them are the optimal peak subset based on the AUC value. In order to further 
select the optimal peak subset for best classification, we add an additional selection criterion. 
PCA analysis of each peak subset with AUC=1 is conducted with the training set, which yields 
the PC coefficients and a linear boundary line between the positive group and the control (or 
negative) group. All the peak subsets with AUC=1 are further sorted descendingly based on the 
Fisher criterion function 

퐽 = , (5) 

where d is the distance between the mean values of the positive group and the control groups. 
spositive and sctrl are the scatter of the data points of each group. The physical interpretation of Eq. 
(5) is that the distance between the means should be as large as possible and the data variation 
around the mean within each category needs to be minimized. The biomarker set is the one that 
has the largest J. 
 
S.3.3.4. Biomarkers to distinguish asthma and non-asthma 

Figure S4 shows the PCA plots for 2-, 3-, 4-, and 5-peak subsets for the training set (45 
subjects). As discussed previously, the classification accuracy is improved progressively from 
75.6% to 84.4%. The classification accuracy is further improved when more peaks are added 
(see Figure S6) until 9 peaks (97.8%). The optimal 10-peak subset yields the same classification 
performance as the optimal 9-peak subset. Therefore, we stop at the 9-peak subsets. Then we 
apply the additional selection criterion (Eq. (5)) to those 9-peak subsets that have the same 
highest classification accuracy and obtain the biomarker set shown in Table 3. The corresponding 
statistics is summarized in Table 4. 
 
S3.4. Testing set validation 

With the PC coefficients acquired from the training set in Section S3.3., the PC scores can 
be calculated for the testing set (25 subjects) and shown in Figure 2. The corresponding statistics 
is given in Table 2. 
  



14 
 

Figure S6. PCA plots of the asthma training set using the optimal 6-, 7-, 8-, and 9-peak 
subsets, which show progressively improved classification accuracy (84.4%, 88.9%, 
93.3%, and 97.8% from A to D) with the increased number of biomarkers. The optimal 
peak subsets for A-D are (14, 32, 50, 51, 80, 93), (18, 32, 50, 51, 52, 80, 93), (16, 32, 50, 
51, 52, 75, 80, 93), and (7, 32, 50, 51, 69, 73, 80, 85, 93), respectively. The red and black 
symbols denote respectively the asthma and non-asthma subjects. The yellow line marks 
the position of the boundary. Note that the atopic subjects are excluded from both the 
asthma and non-asthma groups. 
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Figure S7. Classification among asthma (red circles), and non-asthma/non-atopic (black 
crosses), and non-asthma atopic (blue asterisks) subjects using the PC scores for the atopic 
subjects obtained using the 9 biomarkers listed in Table 2. The distribution of the atopic subjects 
is found to be biased on the asthma side. 
 

 
Figure S8. PCA plot of both training sets and testing sets (additional 6 ICS samples) using the 
optimal biomarkers in Table 2. 
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Section S3 Statistics Summary 

 

Training set 
 Asthma Non-asthma Row total 

Positive 22  0 22 
Negative 1 22 23 

Column total 23 22 45 
Specificity 100% 
Sensitivity 95.7% 

Positive predictive value 100% 
Negative predictive value 95.6% 

Total accuracy 97.8% 
  

Testing set 
Positive 10 2 12 
Negative 1 13 13 

Column total 11 15 26 
Specificity 86.7% 
Sensitivity 90.9% 

Positive predictive value 83.3% 
Negative predictive value 92.9% 

Total accuracy 88.5% 
Training + Testing set 

Positive 32 2 34 
Negative 2 35  37 

Column total 34 37 71 
Specificity 94.6% 
Sensitivity 94.1% 

Positive predictive value 94.1% 
Negative predictive value 94.6% 

Total accuracy 94.4% 
 

Table S3. Statistics summary for asthma vs. non-asthma/non-atopic. 
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Training set 
 Asthma Non-asthma/atopic  Total 

Positive 8 0 8 
Negative 0 8 8 

Column total 8 8 16 
Specificity 100% 
Sensitivity 100% 

Positive predictive value 100% 
Negative predictive value 100% 

Total accuracy 100% 
Training set + Testing set 

 Asthma Non-asthma/atopic  Total 
Positive 30 0 30 
Negative 4 8 12 

Column total 34 13 42 
Specificity 100% 
Sensitivity 88.2% 

Positive predictive value 100% 
Negative predictive value 66.7% 

Total accuracy 90.5%  
A
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Testing set 

 Non-asthma/atopic  Non-asthma/non-
atopic Total 

Positive 8 0 8 
Negative 0 8 8 

Column total 8 8 16 
Specificity 100% 
Sensitivity 100% 

Positive predictive value 100% 
Negative predictive value 100% 

Total accuracy 100% 
Training set + Testing set 

 Non-asthma/atopic  Non-asthma/non-
atopic Total 

Positive 8 3 11 
Negative 0 33 33 

Column total 8 36 44 
Specificity 91.7% 
Sensitivity 100% 

Positive predictive value 72.7% 
Negative predictive value 100% 

Total accuracy 93.2% 
 

Table S4. Statistics summary for asthma, atopic control, and non-asthma/non-atopic. 
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ICS treatment 

T
ra

in
in

g 
se

t 

 ICS Non-ICS Total 
Positive 15 1 16 
Negative 0 12 12 

Column total 15 13 28 
Specificity 92.3% 
Sensitivity 100% 

Positive predictive 
value 93.8% 

Negative predictive 
value 100% 

Total accuracy 96.4% 

T
ra

in
in

g 
se

t +
 te

st
in

g 
se

t  Positive 20 1 21 
Negative 1 12 13 

Column total 21 13 34 
Specificity 92.3% 
Sensitivity 95.2% 

Positive predictive 
value 95.2% 

Negative predictive 
value 92.3% 

Total accuracy 94.1% 
Obesity 

 BMI ≥ 30 BMI < 30 Total 
Positive 14 3 17 
Negative 3 14 17 

Column total 17 17 34 
Specificity 82.4% 
Sensitivity 82.4% 

Positive predictive value 82.4% 
Negative predictive value 82.4% 

Total accuracy 82.4% 
EOS level 

 EOS ≥ 0.3 EOS < 0.3 Total 
Positive 15 2  17 
Negative 2  15 17 

Column total 17 17 34 
Specificity 88.2% 
Sensitivity 88.2% 

Positive predictive value 88.2% 
Negative predictive value 88.2% 

Total accuracy 88.2% 
Upper respiratory illness 
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Table S5. Statistics summary for the other clinical variables. 

 
  

 Positive Negative Total 
Positive 3 0 3 
Negative 0 3 3 

Column total 3 3 6 
Specificity 100% 
Sensitivity 100% 

Positive predictive value 100% 
Negative predictive value 100% 

Total accuracy 100% 
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