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Abstract: Dolosigranulum pigrum is a quite recently discovered Gram-positive coccus. It has gained
increasing attention due to its negative correlation with Staphylococcus aureus, which is one of the most
successful modern pathogens causing severe infections with tremendous morbidity and mortality
due to its multiple resistances. As the possible mechanisms behind its inhibition of S. aureus remain
unclear, a genome-scale metabolic model (GEM) is of enormous interest and high importance to better
study its role in this fight. This article presents the first GEM of D. pigrum, which was curated using
automated reconstruction tools and extensive manual curation steps to yield a high-quality GEM. It
was evaluated and validated using all currently available experimental data of D. pigrum. With this
model, already predicted auxotrophies and biosynthetic pathways could be verified. The model was
used to define a minimal medium for further laboratory experiments and to predict various carbon
sources’ growth capacities. This model will pave the way to better understand D. pigrum’s role in the
fight against S. aureus.

Keywords: Dolosigranulum pigrum; genome-scale metabolic model; Staphylococcus aureus; interaction;
auxotrophy; nose microbiome

1. Introduction

Dolosigranulum pigrum is a rare and rather newly identified opportunistic pathogen [1].
While other microbes, such as Escherichia coli, were already detected in the late 19th
century [2], D. pigrum was first described in 1993 by Aguirre et al. [3]. D. pigrum is a
Gram-positive, catalase-negative coccus growing in pairs, tetrads, and clusters [3]. In
sporadic cases, D. pigrum is associated with diseases [1,3–7].

In 2000, the antimicrobial susceptibility and the sources of 27 clinical isolates of
D. pigrum were determined [8]. The isolation sources ranged from blood and eye cultures
from nasopharyngeal swab, sputum, sinus, gastric, and urine specimens to a spinal cord
autopsy. The 27 clinical isolates were tested for their susceptibility to 15 antimicrobial
agents. D. pigrum is a potential pathogen for humans with exceptional resistance to
erythromycin but susceptibility to a wide range of other antimicrobial agents [8].

The focus shifted from D. pigrum as an opportunistic pathogen to its potential probiotic
effect in upper respiratory tract infections in the last years. Together with Corynebacterium
pseudodiphteriticum, D. pigrum was identified as the nasopharyngeal species associated
with a healthy upper respiratory tract (URT) and resistance to recurrent ear infections [9].
Multiple studies strengthen this positive association between a healthy URT and D. pigrum,
especially in children [10–19]. Several studies indicate a decrease in the abundance of D. pi-
grum after antibiotic treatment [14,18,20], while otopathogenic genera were not affected by
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antibiotic treatment [21]. Together with the antimicrobial susceptibility study by LaClaire
and Facklam [8] and Lopes et al. [22], this might indicate a high sensitivity of D. pigrum to
antibiotic agents.

D. pigrum is relevant for the URT and further parts of the respiratory tract. The
abundance of D. pigrum is decreased in children with cystic fibrosis (CF) compared to
healthy children [20]. D. pigrum seems to produce significantly less biomass than the
conventional CF pathogen P. aeruginosa but is crucial for increasing tolerance of the mixed
biofilm to most antibiotics [22,23]. However, the role of D. pigrum within the microbial
communities in patients with CF is currently still not fully understood [24].

As the human nose is part of the upper respiratory tract, D. pigrum also plays a
pivotal role in the human nasal microbiota [25]. Additionally to the negative association of
D. pigrum with Streptococcus pneumoniae, it is also negatively associated with Staphylococcus
aureus. Approximately one-third of the human population is permanently colonized by
S. aureus [26]. It can cause severe infections with high morbidity and mortality [27]. Its
methicillin-resistant strains are one of the most successful modern pathogens [28]. Liu et al.
identified D. pigrum as a predictor of the presence or absence of S. aureus [29]. Brugger
et al. strengthened the relevance of D. pigrum as a potential probiotic due to its inhibiting
effects on S. aureus. However, the overall mechanisms behind the inhibition remain unclear.
Possible mechanisms include nutrient competition or the excretion of primary or secondary
metabolites [25].

Such hypotheses could be tested using genome-scale metabolic models (GEMs) of the
organisms of interest, e.g., D. pigrum and S. aureus. Currently, 114 GEMs of S. aureus are
available [30], but no single GEM of D. pigrum exists. Due to its increasing importance in
the community with other microbes, such as S. aureus, S. pneumoniae, or P. aeruginosa, the
need for a comprehensive and meaningful GEM is of high interest and high significance.

With a community model of D. pigrum and other microbes, its interactions and poten-
tial probiotic effect could be elucidated. Such interactions are complex and challenging to
understand but vital for successful interventions [31]. Especially for the microbial commu-
nity in the human gut, several studies already investigated the effect of gene knockouts
or the absence of a community member [32,33]. The increasing interest and relevance in
studying interactions in microbial communities are also highlighted by the increasing num-
ber of available tools for modeling bacterial communities, including OptCom, BacArena,
or MICOM [32,34,35].

In this work, we introduce the first genome-scale metabolic model of D. pigrum strain
83VPs-KB5. This high-quality model comprises multiple annotations and extensive manual
curation steps. It was evaluated and validated using all publicly available experimental
data to this date. With this model, several auxotrophies were confirmed and additional
auxotrophies were identified. To facilitate future laboratory experiments, we developed
a chemically defined minimal medium with all the nutritional requirements to cultivate
D. pigrum. These new findings will pave the way to better understanding D. pigrum’s role
in the fight against S. aureus.

2. Results

The model presented in this article is the first publicly available GEM of D. pigrum
strain 83VPs-KB5. Based on the latest recommended naming conventions of the community
standardization of metabolic models [36], this model is called iDPM21RW. DPM is the
species indicator and simultaneously the organism’s prefix in KEGG [37]. The curators’
names and the year of curation were chosen as iteration identifiers. This GEM of D. pigrum
comprises 1241 metabolites in 1668 reactions and are encoded by 622 genes. It includes
the three compartments cytosol, periplasm, and the extracellular space, which hold 974,
55, and 17 reactions, respectively, excluding transport and exchange reactions. MEMOTE

is a metabolic model testing suite that determines for each tested GEM an independent
and comparable score within a comprehensive overview. Standardized metabolic model
tests and the evaluation of a model’s annotations constitute the score [38]. The final
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MEMOTE score of iDPM21RW amounts to 86%. For comparison, the GEM iML1515 of
Escherichia coli [39], for which the first version was published in [40], became steadily
updated and improved over the last 20 years by the modeling community and has now
reached a MEMOTE score of 91%.

2.1. Properties of the Constructed GEM

The basis for the manual extension was the draft reconstruction automatically cu-
rated with CarveMe [41]. It only requires an annotated genome file of the organism of
interest. In a simple command line interface, the model can be “carved”. Other tools for
the automated reconstruction of GEMs exist besides CarveMe, such as ModelSEED [42],
gapseq [43], or KBase [44]. We chose CarveMe as a curation tool as it accesses the BiGG
Models database [45] and uses its identifiers. These identifiers are required for subsequent
successful use of the ModelPolisher [46] for adding extensive annotations. ModelSEED and
gapseq both use ModelSEED identifiers, and thus, applying the ModelPolisher is currently
not feasible.

The initial draft reconstruction from CarveMe included only 1499 reactions, 1095
metabolites, and 632 genes. Despite the first impression of a decrease in the number
of genes, it needs to be stated that 142 genes were included twice in the initial draft
model: once with the prefix G_ and once without this prefix. The duplicated genes were
removed, and the 620 genes in the final reconstruction is the number of unique genes.
This means that 132 additional genes, 169 reactions, and 146 metabolites were added
to the model during the whole manual refinement process. During manual extension
based on the KEGG database, 161 reactions, 143 metabolites, and 129 genes were added
to the model. An overview of these numbers is given in Figure 1. Metabolic models
may contain thermodynamically impossible energy-generating cycles. These models can
charge currency metabolites such as adenosine triphosphate (ATP) or reduced nicotinamide
adenine dinucleotide phosphate (NADPH) without nutrient consumption [47]. The model
iDPM21RW was evaluated for the production of 15 energy metabolites while no nutrients
were available. None of the tested energy metabolites were produced, and thus, the
final model does not contain energy-generating cycles. Of the 1499 reactions, 6.23% are
blocked reactions, which means that they cannot carry any flux during flux variability
analysis (FVA):x. These blocked reactions might be indicators of knowledge gaps.

2.1.1. Mass and Charge Imbalances

The initial draft model had 858 mass and/or charge imbalanced reactions. After
manual refinement of these mass and charge imbalances, more than 82% of the 858 im-
balanced reactions were balanced. This increase in balanced reactions is also confirmed
by MEMOTE when looking at the mass and charge balance score: The mass balance score
increased from 52.7% to 95.6%, and the charge balance score increased from 43.2% to 93.3%.
However, 137 reactions were still mass and/or charge imbalanced, none of which were
blocked reactions. With novel insights into metabolites’ protonation statuses, the actual
participation of metabolites in these reactions and their accurate stoichiometry, and further
manual refinement, this number might be reduced even further.

2.1.2. Annotations

The model comprises annotations to various databases. These annotations were
added using ModelPolisher [46] and extended manually. For the model reactions, cross-
references to the databases MetaNetX [48], Biochemically, Genetically, and Genomically
Structured (BiGG) Models [45], UniProt [49], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [37], RHEA [50], and BioCyc [51] are included, as are the corresponding EC-
numbers, where available. The annotations of the model metabolites contain cross-
references to the databases KEGG [37], BiGG [45], BioCyc [51], the Human Metabolome
Database (HMDB) [52], MetaNetX [48], and lipidmaps [53]. The gene annotations contain
cross-references to KEGG [37] and the NCBI protein database [54].
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Additionally, all genes, metabolites, and reactions were further annotated with a
term from the Systems Biology Ontology (SBO) [55]. All metabolites were assigned the
SBO term SBO:0000247 for “simple chemical”, and all model genes received the SBO
term SBO:0000243 coding for “gene”. In total, 22 different SBO terms were assigned to
the reactions. The most prominent SBO term with a relative abundance of 31.32% is
the SBO:0000176, coding for “biochemical reaction”. All other SBO terms describe more
precisely the biochemical reactions, such as the SBO term SBO:0000216 with a relative
abundance of 6.5%, coding for a “phosphorylation” reaction. The relative occurrence of all
22 SBO terms is depicted in Figure 1.

The model reactions were further annotated using terms from the Evidence and Con-
clusion Ontology (ECO) [56]; 38.7% of the model reactions were inferred from background
scientific knowledge, 10.1% had similarity evidence, 20.5% held a computational inference,
and 30.7% even had sequence similarity evidence. The overall occurrence of the ECO terms
is displayed in Figure 1.

A B

C

Figure 1. Properties of the genome-scale metabolic model (GEM) iDPM21RW. This figure illustrates various model proper-
ties. (A) The number of model instances in the draft and the refined final reconstruction is indicated. In total, 132 genes,
169 reactions, and 146 metabolites were added to the final reconstruction. (B) Evidence and Conclusion Ontology (ECO)
terms indicate the confidence of inclusion for the model’s reactions. Increasing color intensity corresponds to increasing
confidence. (C) Systems Biology Ontology (SBO) terms were used to annotate the models’ reactions further [57]. The axis of
the relative occurrence is given as a log scale.
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2.1.3. Biomass Objective Function

CarveMe creates a general biomass objective function (BOF) during the curation pro-
cess [41]. This initial BOF was updated using BOFdat [58]. BOFdat is a Python package to
generate and improve a BOF based on organism-specific experimental data. In three steps,
the stoichiometric coefficients for major macromolecules, inorganic ions and coenzymes,
and other species-specific metabolic biomass precursors were calculated and incorporated
into the BOF. With the help of the DNA sequence of D. pigrum, five stoichiometric coef-
ficients associated with the macromolecule DNA (deoxyadenosine triphosphate (dATP),
deoxythymidine triphosphate (dTTP), deoxycytidine triphosphate (dCTP), deoxyguano-
sine triphosphate (dGTP), and diphosphate)were updated using the first step of the BOFdat
algorithm. In the second step of the BOF dat algorithm, the coefficients of inorganic ions
and coenzymes were calculated and updated based on macromolecular weight fractions.
Fifteen stoichiometric coefficients associated with coenzymes and inorganic ions were
updated, and nine were additionally integrated into the BOF. The coefficients of other
macromolecules, such as RNA, proteins, or lipids, could not be updated due to a lack of
available experimental data. The same was found for the stoichiometric coefficients of
other species-specific metabolic biomass precursors as no required gene essentiality data
was available. All metabolites included in the BOF, and their stoichiometric coefficients are
listed in the supplementary Table S2.

2.1.4. Subsystems and Groups

The group plugin is available from SBML Level 3 [59]. In total, 82 subsystems were
added to the plugin as groups. Reactions associated with these subsystems or pathways
were added as members to the respective groups. It needs to be highlighted that the
subsystems and pathways were extracted from the KEGG database [37]. Thus, only
reactions with annotated KEGG identifiers could be mapped to the respective groups.
Among the three groups with the most members and, thus, reactions is the subsystem of
metabolic pathways with 411 members, the group of biosynthesis of secondary metabolites
with 95 members, and the subsystem of microbial metabolism in diverse environments
with 79 associated reactions.

2.2. Evaluating Auxotrophies and Predicted Biosynthesis

After creating and refining a draft reconstruction and its conversion into a mathe-
matical model, the model needs to be verified, evaluated, and validated. In this step,
the model-predicted phenotypes are compared with the experimental data [60]. Brugger
et al. predicted the biosynthesis, uptake, and degradation of amino acids, carbohydrates,
polyamines, and enzyme cofactors in eleven D. pigrum strains by evaluating their genetic
content [25]. COBRApy [61] was used for all evaluation steps.

2.2.1. Auxotrophies and Biosynthesis

Brugger et al. identified a methionine auxotrophy in all evaluated D. pigrum strains. In
our model, growth without methionine supplementation was initially possible, indicating
the potential for model adaption and refinement. Nineteen reactions were associated
with methionine, which were all carefully checked. We identified and removed four
reactions without evidence in KEGG [37], BioCyc [51], or a significant hit in a BLAST
search [62]. With these alterations, the model is now incapable of producing methionine,
as Brugger et al. observed in their study [25]. An ATP-binding cassette (ABC) transporter
for the uptake of methionine is present in the model.

D. pigrum has a likely auxotrophy for arginine [25]. We could confirm this observation
with our in silico predictions.

Further auxotrophies for the polyamines putrescine and spermidine were predicted [25].
We could also confirm these observations based on our in silico simulations. Addition-
ally, the identified putative ABC-type spermidine transporter and the putative putrescine
transporter were already included in the model.
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The predicted biotin auxotrophy was initially not observed in the model. For that
reason, two biosynthesis reactions were removed from the model, both of which did
not have gene–protein reaction (GPR) associations. Instead, the biotin energy-coupling
factor (ECF) transporter was added. Brugger et al. identified a biotin-protein ligase in two
of the eleven investigated strains. We found the gene for the biotin-protein ligase in the
genome of D. pigrum strain 83VPs-KB5. Thus, the respective reaction was added to the
model.

The last predicted auxotrophy pertained to nicotinic acid (niacin) [25]. This auxotrophy
was also observed in the in silico simulations. The identified transporter [25] was already
present in the model. The same was found for additional reactions in the conversion
of niacin or nicotinamide to NAD+ and NADP+ with their respective genes. Only one
reaction was adapted, as the described enzyme was reclassified into another Enzyme
Commission (EC) number with slightly different reactants. The reaction now additionally
requires ATP and water instead of a proton and produces adenosine diphosphate (ADP)
and a phosphate.

D. pigrum is capable of synthesizing L-glutamine from L-glutamate [25]. All required
reactions are included in the model, and in silico simulations verify the production of
L-glutamine. All predicted auxotrophies and biosynthesis are summarized in Table 1.

Table 1. Overview of reported auxotrophies and biosynthetic pathways. Brugger et al. investigated auxotrophies and
biosynthetic pathways based on functional genomic predictions [25]. Reported auxotrophies and biosynthesis were verified
using iDPM21RW and in silico predictions. Additionally, reported reactions and transporters were checked for their
presence. A black check-mark (4) indicates a correct prediction or occurrence of the model’s instance; a check-mark in gray
(4) indicates a correct prediction or occurrence after model modifications; and a black cross (8) indicates a discrepancy
between the functional genomic predictions and the model. However, we could not find any discrepancy for auxotrophies
and biosynthetic pathways.

Methionine Arginine Glutamine Putrescine Spermidine Biotin Niacin
Auxotrophy 4 4 4 4 4 4

Biosynthesis 4

Reported
reactions 4 4 4

Transporter 4 4 4 4 4

Several auxotrophies in D. pigrum are already reported in the literature [25]. Thus, we
investigated further amino acid auxotrophies or de novo biosynthesis capabilities in silico.
As seen in Figure 2, only the seven amino acids L-alanine, L-aspartate, L-glutamine, glycine,
L-serine, L-asparagine, and L-tyrosine could be synthesized de novo in our simulation. For
all other amino acids, D. pigrum seems to be dependent on external sources.

2.2.2. Carbohydrate Metabolism

Besides auxotrophies, Brugger et al. also investigated the carbohydrate metabolism of
eleven D. pigrum strains using functional genomic predictions [25]. They found that there
is no tricarboxylic acid (TCA) cycle in D. pigrum. Our in silico investigations confirmed this
finding: only the two reported reactions catalyzed by fumarate-hydratase (FUM) and the
TCA-associated dihydrolipoyl dehydrogenase (AKGDH) are present in the model. Those
two reactions are illustrated in Figure 3.
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Figure 2. Amino acid production in D. pigrum. The exchange reaction of the amino acid of interest
was closed to investigate the amino acid production capacity of D. pigrum in silico. A sink reaction
of the respective amino acid was optimized while maintaining the growth rate at a fixed value
of 0.2 mmol/(gDW · h) and maximum growth rate 0.278 mmol/(gDW · h). Only the seven shown
amino acids could be synthesized de novo. For every amino acid, the ATP requirement and the
CO2 production were calculated. The color indicates the amino acid production rate concerning the
carbon source (glucose). Amino acids are shown with their respective three-letter code.

Brugger et al. identified V-type ATPases in all investigated strains, which can hy-
drolyze but not synthesize ATP [25]. The model iDPM21RW does not currently include
any V-type ATPase as there is no corresponding reaction in the BiGG Models database [45].

The authors investigated anaerobic respiratory reductases and did not identify butyryl-
CoA-reductases [25]. iDPM21RW does not contain the corresponding reaction BTCOARx,
confirming the findings by Brugger et al.

Further investigations concerned ten reactions from glycolysis, including glucokinase,
phosphoglycerate kinase, and pyruvate kinase. All ten reactions were confirmed with
iDPM21RW. Additionally, Brugger et al. predicted the presence and absence of various
enzymes relevant for homofermentation to lactate. Each enzyme and its corresponding
reaction were checked in our model.
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Figure 3. Missing TCA cycle in D. pigrum. As predicted by Brugger et al., D. pigrum does not have a
tricarboxylic acid (TCA) cycle but only two associated reactions. The two reactions are the fumarate-
hydratase (FUM) and the TCA-associated dihydrolipoyl dehydrogenase (AKGDH). The map was
drawn using Escher [63]. See the Supplementary Materials for a complete map.

In the last step, Brugger et al. predicted that putative sialidases utilize sialic acids.
Sialic acids comprise a family of monosaccharides with a nine-carbon backbone and
significant structural diversity [64]. Currently, no sialidase or sialic acidis is present in our
model. As more knowledge about D. pigrum and its potential utilization of sialic acids
becomes available, the corresponding metabolites and reactions can be included in the
model.

2.3. Evaluating Growth Capabilities

D. pigrum was isolated from the sputum, sinuses, the nasopharyngeal tract, blood,
and the gastric tract [8]. Thus, it can be assumed that D. pigrum can grow in these habitats.
The growth of iDPM21RW was simulated in chemically defined media, including synthetic
nasal medium (SNM) [65], synthetic cystic fibrosis medium (SCFM) [66], an adapted blood
medium [67,68], and a gut medium [69,70]. Within these media, the growth rate should
not exceed the growth rate of the fastest growing organism, namely Vibrio natriegens,
with a doubling time of 14.8 min [71], resulting in a flux through the biomass reaction
of 2.81 mmol/(gDW · h). Thus, a growth rate below this threshold is considered to be
realistic [38].

2.3.1. Growth in SNM

D. pigrum is known to grow in the human nose [25]. With the help of the chemically
defined synthetic nasal medium (SNM), which mimics the nasal habitat [72], the in silico
growth of D. pigrum was tested in this niche. However, without additional metabolites,
D. pigrum did not show any growth in a single culture. We first added the already identified
amino acids to the medium, for which D. pigrum has auxotrophies: L-isoleucine and L-
methionine. Additionally, we identified auxotrophy for meso-2,6-diaminoheptanedioate.
This metabolite is required for peptidoglycan metabolism. Despite extensive literature
research, including database searches on the KEGG database [37] and BioCyc [51], we
could not identify any biosynthetic pathway, suggesting either a knowledge gap or a, so
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far, unknown auxotrophy. After those three additions to the medium, the model predicted
a realistic growth rate of 0.2824 mmol/(gDW · h) in the SNM.

2.3.2. Growth in SCFM

D. pigrum is also reported to play a role in CF patients, although its role within
the microbial community is currently not fully understood [24]. A chemically defined
medium is available, mimicking the lungs of patients with CF. The in silico growth
capabilities of D. pigrum in this synthetic cystic fibrosis medium (SCFM) were evaluated.
Similar to the in silico growth of D. pigrum in the SNM, the bacterium did not grow in the
SCFM without supplementing additional metabolites. Since we expect the trace elements
manganese, zinc, copper, cobalt, and nickel to be contained in the medium even without
explicit addition, they are not further examined here. The trace elements were simply
added to the medium definition. The other required metabolites were riboflavin, thiamine,
nicotinate, 4-aminobenzoate, and, as in the SNM, meso-2,6-diaminoheptanedioate. In
their preprint from 2019, Brugger et al. stated that all eleven investigated strains of
D. pigrum lacked genes for the biosynthesis of thiamine and the de novo synthesis of
niacin/nicotinate/nicotinamide [73]. For riboflavin, ten of the eleven strains lacked the
synthesis cluster of riboflavin. Our model strain D. pigrum 83VPs KB was, however,
not among the investigated strains. A literature search in several databases, including
KEGG [37] and BioCyc [51], and BLAST searches for relevant biosynthetic enzymes did
not reveal any hits for the synthesis of thiamine, riboflavin, and nicotinate, confirming the
findings of Brugger et al. For the metabolite 4-aminobenzoate, no information was found
in the literature. In KEGG [37] and BioCyc [51], the metabolite was reported in D. pigrum,
but no synthesis pathways were available. No significant BLAST hits were detected for the
enzyme aminodeoxychorismate lyase, which catalyzes the synthesis of 4-aminobenzoate.
After adding the required metabolites to the medium, the growth rate of D. pigrum in
SCFM was 0.2824 mmol/(gDW · h).

2.3.3. Growth in the Blood Medium

D. pigrum was isolated from blood samples and even cultivated in aerobic and anaer-
obic blood culture bottles [1,8]. A chemically defined medium simulating the human
blood is available and was used for the in silico simulations [67]. This medium defini-
tion was slightly modified and adapted [68]. For the SCFM medium, the trace elements
manganese, zinc, copper, cobalt, and nickel are required for growth but are not further
investigated here and are only added to the medium definition. Analogously, the com-
pounds 4-aminobenzoate and meso-2,6-diaminoheptanedioate are required for growth,
as D. pigrum seems to be auxotrophic for those compounds. The in silico simulations
predicted a realistic growth rate of 1.908 mmol/(gDW · h) with these metabolites.

As stated above, D. pigrum can grow anaerobically in blood cultures. Despite diverse
approaches, we could not yet simulate these conditions in our in silico model. There is
still much to discover about D. pigrum, and with additional information and laboratory
experiments, the model could be extended to simulate anaerobic growth in blood cultures.

2.3.4. Growth in the Gastrointestinal Tract

The growth of D. pigrum was simulated in the gastrointestinal tract. A defined medium
of the European diet from the Virtual Metabolic Human (VMH) database was used for this
purpose [69,70]. As in the previously tested media, trace minerals, such as manganese,
cobalt, zinc, nickel, and sulfate, were missing in the defined gut medium. The compounds 4-
aminobenzoate and meso-2,6-diaminoheptanedioate were again required to enable growth
aerobically with a growth rate of 1.088 mmol/(gDW · h).

2.3.5. Definition of a Minimal Medium for D. pigrum

The previous analysis of D. pigrum’s growth behavior and the investigated auxotro-
phies indicate specific requirements for its environment and successful colonization. To
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obtain a detailed picture of all environmental requirements for successful growth, we
defined a minimal medium for the growth of D. pigrum with the help of iDPM21RW (Sup-
plementary Table S3). This minimal medium contains 33 metabolites, which are all listed
in Table 2. It includes the 13 amino acids that cannot be synthesized de novo (also see
Figure 2) and 13 trace minerals. As a carbon source, D-glucose was chosen. However, in
the following section, the growth on different carbon sources is investigated. The three
vitamins thiamine (vitamin B1), riboflavin (vitamin B2), and niacin (vitamin B3) are also
required to enable growth. 4-aminobenzoate was already mentioned several times to be
crucial for D. pigrum’s growth. For this reason, it was also included in the minimal medium.
The same was found for meso-2,6-diaminoheptanedioate, which was also added to the
minimal medium definition. Finally, oxygen is also required for the growth simulations, as
anaerobic growth is not yet enabled. Within this minimal medium, the simulated growth
rate amounts to 0.2784 mmol/(gDW · h).

Table 2. Definition of a minimal medium for D. pigrum. Since D. pigrum holds many auxotrophies
and several requirements for its environment to grow, we defined a minimal medium containing all
relevant metabolites. The minimal medium comprises in total 33 compounds, including the 13 amino
acids that cannot be produced, 13 trace minerals, D-glucose as a carbon source, and additional
vitamins and required compounds.

Amino Acids Trace Minerals Other Molecules
L-leucine Cl– (chloride) D-glucose
L-threonine K+ (potassium) 4-aminobenzoate
L-arginine Ca2+ (calcium) riboflavin
L-lysine Mg2+ (magnesium) thiamine
L-proline Mn2+ (manganese) niacin
L-glutamate Co2+ (cobalt) meso-2,6-diaminoheptanedioate
L-histidine Zn2+ (zinc) O2 (oxygen)
L-isoleucine Cu2+ (copper)
L-methionine Fe2+ (iron II)
L-tryptophane Na+ (sodium)
L-valine Ni2+ (nickel)
L-cysteine SO4

2 – (sulfate)
L-phenylalanine HPO4

2 – (phosphate)

2.3.6. Growth on Different Carbon Sources

Little is known about D. pigrum. The previous analysis confirmed several auxotrophies
and biosynthetic capacities. To further evaluate the metabolic capabilities, the growth on
different carbon sources within the previously defined minimal medium was evaluated.
The uptake rate of each tested carbon source was set to 10 mmol/(gDW · h). The available
mono-, di-, and trisaccharides were tested as sole carbon sources, as seen in Figure 4. As
expected, the growth rate increases with increasing amounts of carbon available. Glucose,
fructose, and mannose allow the best growth rates for simulations on monosaccharides as
sole carbon sources.
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Figure 4. Growth on different carbon sources. D. pigrum’s ability to utilize different carbon sources
was investigated using the previously defined minimal medium. The available mono-, di-, and
trisaccharides were examined concerning the resulting growth rate. As expected, trisaccharides result
in a higher growth rate compared to di- and monosaccharides.

2.4. Visualization

A comprehensive map of D. pigrum’s metabolism was drawn using Escher [63]. Since a
figure would not appropriately capture its large size, the map is included as Supplementary
Figure S1 of this publication.

3. Discussion

In this work, we generated iDPM21RW: the first genome-scale metabolic model of
Dolosigranulum pigrum. The basis for the manual extension was the draft reconstruction
automatically curated with CarveMe [41].

Models curated by ModelSEED and gapseq could be used to extend the already
existing model iDPM21RW further. This procedure, however, can be challenging because
identifier mapping still holds several difficulties. For this purpose, correct and extensive
annotations are indispensable. During curation, we put particular focus on the annotations
of reactions, metabolites, and genes. Extensive annotations can hold cross-references to
other databases, which facilitates the comparability and interoperability of iDPM21RW
with models from other databases.

ModelPolisher annotates model instances, such as reactions, metabolites, or compart-
ments but not the genes because they are organism- or even strain-specific. Therefore, the
manual addition of gene annotations was required. This was a challenging step because the
gene annotations should be strain-specific KEGG identifiers. A direct mapping between
the NCBI protein identifiers and the KEGG identifiers was not possible since the NCBI
protein identifiers often corresponded to so-called “MULTISPECIES” entries that are not
uniquely associated with D. pigrum. Reaction or metabolite identifiers are often from
different databases, and as already mentioned, mapping is challenging. Strain-specific
gene identifiers are, however, sometimes more comfortable to map with the corresponding
gene and protein annotation files, and the locus-tag information included. This simplifies
model comparisons on gene level.

We added cross-references to several other databases and Systems Biology Ontol-
ogy (SBO) and Evidence and Conclusion Ontology (ECO) terms. ECO terms [56] provide
information about the curator’s confidence about a reaction’s inclusion into the model. Con-
fidence scores were previously defined by Thiele and Palsson [60] and the Constraint-Based
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Reconstruction and Analysis (COBRA) Toolbox. Thiele and Palsson’s confidence score 0
indicates the lowest confidence and 4 indicates the highest confidence with biochemical
data evidence. To avoid confusion using only numbers, we decided to use ECO terms.
These terms are uniquely defined and can directly be accessed via the Minimal Information
Requested in the Annotation of Models (MIRIAM) registry initiative at identifiers.org (ac-
cessed on 7 April 2021) [74]. Each reaction was assigned one unique ECO term. However,
multiple genes can occur within a GPR. We decided to use a conservative approach and to
assign the lowest ECO term of all genes to the reaction. One could also think of assigning
the highest identified ECO term, but this might require additional manual verification to
avoid inducing false confidence.

The biomass objective function (BOF) was improved using the only available omics
data, namely genomics. No transcriptomics, proteomics, or lipidomics data are available,
which could be used to further improve the BOF and the model itself by adding detected
metabolites, reactions, and genes.

Multiple auxotrophies are reported in D. pigrum. Brugger et al. predicted that no
tricarboxylic acid (TCA) cycle is present [25]. The TCA cycle belongs to the most impor-
tant central metabolic pathways for energy conservation and biosynthesis of key cellular
intermediates, including the amino acid biosynthesis [75]. Thus, it seems not surprising
that D. pigrum has several auxotrophies, especially for amino acids, resulting from the
lacking TCA cycle. D. pigrum is not the only microbe missing parts of the TCA cycle. A
large number of bacteria are reported to have incomplete or unusual TCA cycles [76,77].
This incompleteness or even absence of the TCA cycle might go back to adaptions to the
organism’s metabolic lifestyle [76]. However, it might also be the case that apparently
“missing” genes are only missing in genome analysis but are revealed in actual biochemical
experiments [77]. The observations of Brugger et al. are based on functional genomic
prediction, and model curation is based on the genome sequence of D. pigrum. Biochemical
experiments are required to either confirm the missing TCA cycle or refine the model by
adding newly identified reactions.

Further auxotrophies concerned polyamines and vitamins. The polyamines spermidine
and putrescine are synthesized from L-arginine and L-methionine in Escherichia coli [78], for
which D. pigrum already harbors auxotrophies. Additionally, D. pigrum seems to be aux-
otrophic for the vitamins thiamine (vitamin B1), riboflavin (vitamin B2), and niacin (vitamin
B3). Vitamin B1 has importance for primary carbohydrate and amino acid metabolism [79].
Our analysis further revealed a 4-aminobenzoate, also called p-Aminobenzoate (PABA),
auxotrophy. PABA is a component of folate (vitamin B9) [80] and, thus, is also associated
with the B-vitamins. Rodionov et al. identified transporter proteins for vitamins in various
human pathogens, which strictly depend on vitamin uptake [81]. As these transporters
are also reported in D. pigrum, one could assume that it is also dependent on uptake of
the reported B-vitamins. Biochemical experiments are required to confirm all reported
auxotrophies.

Having discussed the multiple auxotrophies, it seems apparent that D. pigrum has
difficulties growing on certain media. The synthetic nasal medium (SNM) and synthetic
cystic fibrosis medium (SCFM) mimic two niches, where D. pigrum is observed. These
habitats, however, are relatively low in nutrient supply. For that reason, metabolites need to
be added to the medium definition to enable growth in silico. However, one needs to keep
in mind that only single-culture in silico experiments were conducted, combined with in
vivo observations. Additional single-culture in vitro growth experiments and coculture in
silico experiments might clarify the role of the added metabolites. Sokolovskaya et al. have
shown that microbial communities share vitamins. They showed that various mutualisms
have evolved between organisms to import and deliver variants of cobamides, including
vitamin B12 [82]. It needs to be investigated whether the in silico required nutrients are due
to the single culture experiments and are obsolete in multi-culture settings. The same was
found for the analysis in the nutrient-rich media simulating the blood and gastrointestinal
tract.

https://identifiers.org
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Comparing the growth rates between the in silico simulations in the SNM and SCFM to
the blood and the gastrointestinal medium, one can observe an increased growth rate for the
latter two media. This observation seems reasonable, as the blood and the gastrointestinal
medium are rich in nutrients that can be taken up and metabolized compared to the media
SNM and SCFM.

With our high-quality model, iDPM21RW, we were able to confirm predicted auxotro-
phies and growth behaviors. Laboratory and biochemical experiments as well as additional
omics data can be used to further refine this first-time genome-scale metabolic model of
Dolosigranulum pigrum. This model will pave the way to better understand its metabolism
and its interaction and extrusion of the human pathogen Staphylococcus aureus.

4. Materials and Methods

The first draft reconstruction of Dolosigranulum pigrum was initially curated using an
automated reconstruction tool. Subsequent automated and manual refinement lead to the
first genome-scale metabolic model (GEM) of D. pigrum.

4.1. Building the Draft Reconstruction

Several tools were used for the draft reconstruction and validation, as explained
subsequently.

4.1.1. CarveMe

CarveMe is a fast and automated reconstruction tool for curating genome-scale
metabolic models of microbial species and communities [41]. It was used to curate the first
draft reconstruction of D. pigrum strain 83VPs-KB5. This strain was chosen, as its NCBI
assembly level is the only complete genome assembly of D. pigrum. Additionally, this strain
is the only D. pigrum strain in the KEGG database [37]. The coding domain sequence (CDS)
of this strain was downloaded from the NCBI assembly database [83], using the accession
code ASM19771v1 (RefSeq assembly accession: GCF_007197715.1). With this annotated
genome sequence and the default settings of CarveMe version 1.2.2, the initial draft of
D. pigrum in SBML Level 3 Version 1 format [84] was curated.

4.1.2. ModelPolisher

Subsequently, the ModelPolisher version 2.0.1 was used to annotate the initial draft re-
construction extensively [46]. ModelPolisher matches the identifiers of the model’s entities
against the BiGG Models database [45]. For each corresponding entry in BiGG, all available
information and data about the matched instance are incorporated as annotations into the
initial draft reconstruction. ModelPolisher was run within a docker environment using the
additional settings –annotate-with-bigg=true, –add-adb-annotations=true, and –output-
combine=true. After this annotation step, all gene–protein reaction (GPR) associations,
reaction boundaries, and objective coefficients were unreadable by COBRApy [61] due to
inter-conversion difficulties with the SBML flux balance constraints (fbc) package [85]. All
unreadable instances were converted to the respective fbc package instances.

4.1.3. MEMOTE

The metabolic model testing suite, MEMOTE determines for each tested GEM an
independent and comparable score within a comprehensive overview. Standardized
metabolic model tests and the evaluation of a model’s annotations constitute the score.
Well-annotated and consistent models have a high MEMOTE score [38]. Each improvement
step of the D. pigrum model was closely monitored by determining the MEMOTE score in
each iteration. MEMOTE was used in its command line version.

4.2. Refining the Reconstruction Using Literature Evidence

After the initial draft was curated and annotated, manual refinement steps followed.
All manual steps were conducted using COBRApy [61] and libSBML [86].
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4.2.1. Mass and Charge Imbalances

The chemical formula and charge were missing for 65 of the metabolites. They were
retrieved from the BiGG Models database [45], added to the respective instance, and used
to balance reactions in which they participate.

4.2.2. Add Gene Annotations

The ModelPolisher added annotations for all model instances except for the genes. To
this point, only the NCBI protein accession numbers from the CDS file were included in
the model. A BLAST [62] search was conducted for every NCBI protein accession number
to retrieve the respective GenBank [87] identifiers and to increase the gene annotations’
scope. With the help of these GenBank identifiers, the locus tags of the D. pigrum genes
were identified. These locus tags are also used in the KEGG database [37]. All additionally
identified gene annotations were added to the model using libSBML.

4.2.3. Extend Model Manually Using the KEGG Database

Information about D. pigrum strain 83VPs KB5 can be found in the KEGG database [37].
The previously retrieved gene annotations were used to compare the already included
model genes with the genes listed in the KEGG database to increase the initial reconstruc-
tion’s scope. Therefore, the identified metabolic reactions, including GPRs, and probable
new metabolites, were added to the model. In the next step, dead-end metabolites were
identified. Despite an ortholog and homolog search of related nasal microbes available in
the BiGG database, the number of dead-end metabolites could not be decreased. Further
genes and reactions were added to the model based on these identified metabolites.

4.2.4. Test for Energy-Generating Cycles

GEMs can contain so-called energy-generating cycles. These cycles are thermodynam-
ically impossible since models with such cycles can charge energy metabolites without
nutrient consumption [47]. Fritzemeier et al. suggested a pipeline to identify 14 different
energy metabolites, including adenosine triphosphate (ATP), cytidine triphosphate (CTP),
guanosine triphosphate (GTP), uridine triphosphate (UTP), inosine triphosphate (ITP),
reduced nicotinamide adenine dinucleotide (NADH), NADPH flavine adenine mononu-
cleotide and dinucleotide, ubiquinol-8, menaquinol-8, 2-demethylmenaquinol 8, acetyl-coA,
and L-glutamate as well as the proton exchange between cytosol and periplasm. For each
metabolite, a dissipation reaction was defined based on Fritzemeier et al. After constraining
all uptake reactions to zero, the 15 dissipation reactions were maximized.

4.2.5. Add More Precise SBO Terms

MEMOTE assesses the annotation of model instances with Systems Biology Ontology
(SBO) terms [55]. SBO terms provide semantic information about the model instances and
allows for explicit and unambiguous understanding of its meaning: the more detailed SBO
a term chosen, the more explicit the description given. Metabolites and genes received
the general SBO terms for “simple chemical” (SBO:0000247) and “gene” (SBO:0000243),
respectively. The reactions’ SBO terms were chosen as precisely as possible using an
in-house pipeline [57].

4.2.6. Improve Biomass Objective Function

CarveMe adds a universal biomass equation to the carved model. However, this
equation was adapted from the biomass composition of Escherichia coli [88] to a universal
biomass composition [41,89]. To further improve the biomass objective function (BOF)
of the D. pigrum reconstruction, BOFdat was used [58]. BOFdat is a Python package to
generate and improve a BOF based on organism-specific experimental data. In three steps,
the stoichiometric coefficients for (i) the major macromolecules, (ii) inorganic ions and coen-
zymes, and (iii) the remaining species-specific metabolic biomass precursors are generated
and incorporated into the BOF. For refinement of the BOF of D. pigrum, its genomic DNA
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sequence was used as input in the first step. Furthermore, parameters for the dry weight
composition are required. Since, at the time of writing, no information about the dry weight
composition of D. pigrum was available, these parameters were chosen as suggested in
the BOFdat documentation. With the DNA sequence and the dry weight composition, the
stoichiometric coefficients of the DNA nucleotides deoxyadenosine triphosphate (dATP),
deoxythymidine triphosphate (dTTP), deoxyguanosine triphosphate (dGTP), and deoxycy-
tidine triphosphate (dCTP) as well as for diphosphate (ppi) were determined and updated
in the BOF. At the time of writing, no transcriptomic, proteomic, or lipidomic data are
publicly available. Therefore, the RNA, protein, and lipid macromolecules’ coefficients
could not be refined within this work.

After determining the stoichiometric coefficients of the macromolecules, the stoichio-
metric coefficients of the inorganic ions and coenzymes followed. For this step, the BOFdat
script was adapted to run in the latest Python version. All inorganic ions or coenzymes
were either added to the BOF, or their stoichiometric coefficients were updated.

Experimental gene essentiality data are required for the inclusion and update of
additional species-specific metabolic biomass precursors in step (iii). This step aims to
identify condition- and species-specific metabolic end goals. As gene essentiality data are
also not publicly available at the time of writing, this step was skipped.

4.2.7. Add ECO Terms

The Evidence and Conclusion Ontology (ECO) comprises classes and terms describing
different evidence and assertion methods. These terms capture, e.g., the type of evidence
that a gene product or a reaction has. ECO terms are helpful for quality control of a model.
For every reaction in the model, the GPR association was extracted. All reactions without a
GPR were assigned the ECO term ECO:0000001. This term is defined as an inference from
background scientific knowledge. For all remaining genes from the GPRs, the UniProt
database [49] was consulted. Protein existences were defined as (i) inferred from homology,
(ii) predicted, or (iii) evidence at the transcript level. These existences were assigned to
their corresponding ECO terms. All assignments are listed in Table 3. If a GPR consists
of only one gene, the corresponding ECO term was added to the reaction. If a reaction
had a GPR with multiple genes, the gene with the lowest evidence score was added. The
ECO terms in Table 3 are sorted from the lowest to the highest evidence scores. Genes
that were not found in the UniProt database were assigned the ECO term ECO:0000251 for
the similarity evidence used in the automatic assertion. Hence, if one gene in a GPR with
multiple genes was not found in UniProt, the reaction was assigned the lowest evidence
score, which is the one for genes not found in UniProt.

Table 3. ECO terms and their names and assignments. For every Evidence and Conclusion Ontology
(ECO) term, the corresponding name is given together with the assignment. ECO terms are ordered
in ascending evidence order.

ECO Term Term Name Assignment

ECO:0000001 inference from background
scientific knowledge no GPR

ECO:0000251 similarity evidence used in
automatic assertion GPR but no hit in UniProt

ECO:0000363 computational inference used
in automatic assertion UniProt: ‘Predicted’

ECO:0000044 sequence similarity evidence UniProt: ‘Inferred from
homology’

ECO:0000009 transcript expression evidence UniProt: ‘Evidence at
transcript level’

All ECO terms were added as annotations with the biological qualifier type BQB_IS_-
DESCRIBED_BY.
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4.2.8. Remove Redundant Information

CarveMe stores information about annotations and other databases in the SBML notes
field. However, this information is better stored in the annotations field. Since CarveMe and
ModelPolisher use the BiGG Models database, the same annotation information is stored
twice: once in the notes by CarveMe and once in the annotations field by the ModelPolisher.
To avoid this redundancy and to decrease the file size, the annotation information was
removed from the notes field.

4.2.9. Add Subsystems and Groups

With the added annotations, the pathways in which a reaction occurs are included
in the model. For every reaction that has an annotated KEGG [37] ID, the KEGG repre-
sentational state transfer (REST) application programming interface (API) was used to
retrieve the associated pathways. These pathways were added as further annotations to the
reaction with the biological qualifier type BQB_OCCURS_IN. Furthermore, the “groups”
plugin [90], available from SBML Level 3 [59,91], was enabled. Every pathway was defined
as a group instance, and every reaction occurring in this pathway was added as a member.

4.3. Evaluation and Validation of the Reconstruction

Available knowledge about D. pigrum was used and simulated in silico to evaluate
and validate iDPM21RW as detailed below.

4.3.1. Evaluating Auxotrophies, Biosynthesis Capabilities, and Carbohydrate Metabolism

We mainly used the results from the functional genomic predictions by Brugger et al. [25]
to evaluate the auxotrophies and biosynthetic capabilities. All stated auxotrophies were
carefully verified by limiting the respective metabolite’s availability and subsequently
optimizing the model. If the in silico simulations revealed no growth after limiting the
metabolite’s availability, the auxotrophy was considered confirmed. If growth was possible
despite the limitation of its availability, the complete biosynthetic pathway of the respective
metabolite was evaluated and carefully checked for every individual reaction. Reactions
with limited or insufficient genetic proof were removed from the model. For this evaluation
step, we mainly relied on literature research, the two databases KEGG [37] and BioCyc [51],
and BLAST searches [62]. For predicted reactions and transporters, the model was checked
for the presence of the reported reaction and transporters. Missing reactions or transporters
were added to the model with its corresponding genes.

4.3.2. Identification of Additional Auxotrophies

A sink reaction for every amino acid was added to identify additional auxotrophies.
This sink reaction was maximized after closing the respective exchange reaction to limit
its availability. The growth rate was fixed to 0.2 mmol/(gDW · h). As a medium, the self-
defined minimal medium was used (see also Section 4.3.4). If no amino acid production or
growth was possible after closing the amino acid’s exchange reaction, D. pigrum was con-
sidered auxotrophic. If the amino acid could be produced, the amino acid production was
set in relation to the sole carbon source (D-glucose). The ATP requirement was calculated
by summing up all fluxes of ATP-consuming reactions and by putting them in relation to
the amino acid production rate. The CO2 production rate was computed by setting the
CO2 transport reaction rate in relation to the amino acid production rate.

4.3.3. Evaluating Growth Capabilities in Different Media

The model iDPM21RW was further validated by simulating its growth capabilities in
four different environments. The first evaluated habitat was the human nose. For this niche,
a chemically defined synthetic nasal medium (SNM) is available [65,72]. As no growth
could be simulated with the defined metabolites in the SNM, the identified amino acids
for which D. pigrum is auxotrophic were added as well. As still no growth was possible,



Metabolites 2021, 11, 232 17 of 22

we further evaluated and identified missing components until a growth in the defined
medium could be simulated.

This procedure was repeated for the other three media. The synthetic cystic fibrosis
medium (SCFM) mimics the lung of patients with CF and was defined by Palmer et al. [66].
For the blood simulations, an adapted medium initially created for the human recon-
struction Recon 2.2 [67] was used. The definition for the European diet was extracted
from the Virtual Metabolic Human (VMH) database [69,70]. Each metabolite’s exchange
reaction and, thus, availability in the analyzed medium was set to 10 mmol/(gDW · h) for
determination of the growth rate.

4.3.4. Defining a Minimal Medium for D. pigrum

D. pigrum holds many requirements for its environment regarding nutrients due to
its multiple auxotrophies. We defined a minimal medium specifically for D. pigrum to
better cultivate this organism in laboratory settings. For this purpose, we used the SNM
medium definition and investigated which metabolites could be removed from the medium
while maintaining a realistic growth rate. The uptake rate of each metabolites was set to
10 mmol/(gDW · h). The complete list of minimal medium components is given in Table 2.

4.3.5. Evaluating Growth Capabilities on Different Carbon Sources

With the previously defined minimal medium, the in silico growth capabilities of
D. pigrum on different carbon sources were examined. All available sugar exchange fluxes
were extracted from the model and sorted into mono-, di-, and trisaccharides. Each carbon
source was tested individually by only enabling the tested carbon source’s exchange
reaction and by optimizing the model for growth. Growth was also possible for the
available polysaccharides, but these were not further investigated.

4.4. Visualization

Escher is a web application for building pathway maps. Reactions, metabolites, and
genes can be contextualized within the metabolism of an organism [63]. Besides the
web application, an Escher Python package can be run and customized within Jupyter
Notebooks [92]. The package can process models using COBRApy [61]. This Python
version of Escher was used to draw parts of D. pigrum’s metabolism.

Supplementary Materials: The following are available at https://www.mdpi.com/2218-1989/11/4
/232/s1, Figure S1: Metabolic map of D. pigrum, Table S2: Stoichiometric coefficients of the biomass
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ECF energy-coupling factor
ECO Evidence and Conclusion Ontology
FBA flux balance analysis
fbc flux balance constraints
FVA flux variability analysis
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KEGG Kyoto Encyclopedia of Genes and Genomes
MIRIAM Minimal Information Requested in the Annotation of Models
NADH reduced nicotinamide adenine dinucleotide
NADPH reduced nicotinamide adenine dinucleotide phosphat
NCBI National Center for Biotechnology Information
REST representational state transfer
SBO Systems Biology Ontology
SCFM synthetic cystic fibrosis medium
SNM synthetic nasal medium
URT upper respiratory tract
UTP uridine triphosphate
TCA tricarboxylic acid
VMH Virtual Metabolic Human
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