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Abstract: It has been well established in epidemiological studies and randomized controlled trials
that habitual exercise is beneficial for brain health, such as cognition and mental health. Generally,
it may be reasonable to say that the physiological benefits of acute exercise can prevent brain
disorders in late life if such exercise is habitually/chronically conducted. However, the mechanisms
of improvement in brain function via chronic exercise remain incompletely understood because such
mechanisms are assumed to be multifactorial, such as the adaptation of repeated acute exercise. This
review postulates that cerebral metabolism may be an important physiological factor that determines
brain function. Among metabolites, the provision of lactate to meet elevated neural activity and
regulate the cerebrovascular system and redox states in response to exercise may be responsible for
exercise-enhanced brain health. Here, we summarize the current knowledge regarding the influence
of exercise on brain health, particularly cognitive performance, with the underlying mechanisms
by means of lactate. Regarding the influence of chronic exercise on brain function, the relevance
of exercise intensity and modality, particularly high-intensity interval exercise, is acknowledged to
induce “metabolic myokine” (i.e., lactate) for brain health.

Keywords: executive function; mental health; brain-derived neurotrophic factor; insulin-like growth
factor-1; vascular endothelial growth factor; neurogenesis; angiogenesis; cerebral blood flow;
nicotinamide adenine dinucleotide hydrate

1. Introduction

It has been well established that habitual exercise is beneficial for the cognition and
brain health of most individuals, including older adults [1,2]. This view is not surprising
because it is said that “exercise is the real polypill” based on organ-induced peripheral
factors [3]. In general, it has been considered that the effects of habitual exercise on the
human body are the result of repeated exercise and thus may be associated with cumulative
acute responses to exercise.

Similarly, it may be reasonable to say that acute exercise favorable for improving
brain function, although this is a transient response, is also beneficial for brain health with
continuous repetition via chronic exercise training. However, the mechanisms of chronic
exercise-improved brain function, especially how the effect of acute exercise on brain
function determines that of chronic exercise, remain incompletely unknown. For instance,
chronic exercise effects can be modified using the same acute exercise by changing exercise
strength, duration, and frequency. Hence, the proper exercise prescription for chronic brain
health may be difficult to build from results on the effect of acute exercise on brain function.
Nonetheless, it is important to explore and organize the underlying mechanisms of acute
exercise for brain health to provide insight into proper exercise prescriptions.
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Among the acute responses to exercise, a growing body of evidence is accumulating
to suggest that the myokine (i.e., muscle-induced peripheral factors) cathepsin B and irisin
pass through the blood–brain barrier to enhance brain-derived neurotrophic factor (BDNF)
production and hence improve neurogenesis, memory, and learning [4]. On the other
hand, lactate, as an exercise-induced myokine favorable to the brain, was not investigated
to identify the mechanism of exercise-induced improvement in brain function, although
the production of lactate has been widely used as a biomarker to reflect exercise mode,
strength, and duration [5–8].

In this minireview, we summarized the possibility of lactate as one of the underlying
mechanisms linking brain health outcomes, particularly cognitive performance and mental
health, to exercise regimens.

2. Exercise Intensity and Modality for Brain Health Regarding Chronic Exercise
Adaptation (Implication of Lactate)

To promote and maintain health, the American College of Sports Medicine (ACSM)
and American Heart Association (AHA) recommends that healthy adults aged 18–65 years
perform sufficient volumes of exercise, such as moderate-intensity exercise for at least
30 min for 5 days/week or vigorous-intensity exercise for 20 min for 3 days/week [9].
Importantly, compared to habitual lower-intensity exercise, higher-intensity exercise can
effectively improve cardiovascular and metabolic health [10–12]. In particular, long-
term/chronic high-intensity interval exercise (HIIE) training (i.e., HIIT) is more effective
than long-term/chronic moderate-intensity continuous exercise (MCE) because it increases
exercise capacity in addition to cardiovascular and metabolic health in healthy individu-
als [13–15]. The effectiveness of HIIT over MCE training is also relevant for brain health.
Recently, Mekari et al. demonstrated that HIIT was more effective for the improvement of
executive function (EF) than MCE training in young adults [16]. A recent meta-analysis
indicated that HIIT might be more effective for improving severe mental illness (e.g.,
cognition, negative and positive symptoms of schizophrenia, and depressive mood) than
moderate-intensity exercise [17]. Given that HIIE produces more lactate than general
exercise modalities, such as MCE, some beneficial effects of lactate on health, including
brain health, can be implicated. For instance, based on the notion that acute exercise
that is favorable for improving brain function is also beneficial for brain health with con-
tinuous repetition via chronic exercise training, our previous study demonstrated that
HIIE could improve EF rather than MCE and was accompanied by more lactate produc-
tion (Figure 1) [7], which may imply a potential benefit of lactate on increased cognitive
performance by HIIE and subsequent HIIT.
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Figure 1. Impact of exercise intensity, duration, and modality on acute enhancement of executive function. The graph is 
illustrated by the authors based on previous studies [7,8,18]. HIIE could improve EF rather than volume-matched (i.e., 
same workload) MCE with more lactate production during postexercise recovery period [7]. *p < 0.05 vs. MCE. 
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Link to Chronic Exercise-Induced Anatomical and Cerebral Microvasculature Altera-
tions 

The potential mechanisms of habitual exercise/physical activity-induced improve-
ment as well as aging-induced impairments in cognitive performance and mental health 
remain unclear but are assumed to be associated with several physiological factors. For 
instance, the deleterious effects of aging on the brain comprise negative physiological and 
anatomical alterations, e.g., hemodynamic activity, synaptic plasticity, decreased brain 
volume and neurogenesis, while physical activity prevents the deleterious effects on the 
brain and, in contrast, induces brain neural alterations, including the formation of new 
neurons, the proliferation of neural cells, and integrated functional neural networks 
[19,20]. In particular, structural alterations, such as increased neurogenesis, synaptogene-
sis, angiogenesis, and brain volume, seem to be characteristics of the beneficial effects of 
chronic exercise on cognitive performance and mental health [2]. 

Regular aerobic exercise can increase or preserve the regional brain volume in areas 
associated with cognitive decline and portions of mental health [21–23]. It has been re-
ported that aerobic exercise (i.e., 6 to 12 months of a walking program) increases spatial 
memory as well as gray and white matter volumes in both temporal (including the hip-
pocampi) and prefrontal regions in healthy older adults (without dementia) [24]. In addi-
tion, Jonasson et al. demonstrated that following a 6-month exercise training period, the 
change in “cognitive score” determined by episodic memory, updating, processing speed, 
and EF was positively related to the thickness of the dorsolateral prefrontal cortex[25]. 
Regarding mental health, patients with major depressive disorder or schizophrenia show 
decreased hippocampal or gray matter volume [26,27], while an exercise-induced increase 
in hippocampal volume can be related to cognitive performance even in patients with 
schizophrenia [22]. However, whether brain structure is associated with psychiatric and 
neurological disorders is controversial [28], and whether the positive effects of aerobic 
exercise can be extended to psychiatric disorders is still unclear [21]. Further studies are 
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workload) MCE with more lactate production during postexercise recovery period [7]. * p < 0.05 vs. MCE.

3. Chronic Cognitive and Mental Alterations with Regular Exercise and Its Potential Link
to Chronic Exercise-Induced Anatomical and Cerebral Microvasculature Alterations

The potential mechanisms of habitual exercise/physical activity-induced improve-
ment as well as aging-induced impairments in cognitive performance and mental health
remain unclear but are assumed to be associated with several physiological factors. For
instance, the deleterious effects of aging on the brain comprise negative physiological and
anatomical alterations, e.g., hemodynamic activity, synaptic plasticity, decreased brain vol-
ume and neurogenesis, while physical activity prevents the deleterious effects on the brain
and, in contrast, induces brain neural alterations, including the formation of new neurons,
the proliferation of neural cells, and integrated functional neural networks [19,20]. In par-
ticular, structural alterations, such as increased neurogenesis, synaptogenesis, angiogenesis,
and brain volume, seem to be characteristics of the beneficial effects of chronic exercise on
cognitive performance and mental health [2].

Regular aerobic exercise can increase or preserve the regional brain volume in ar-
eas associated with cognitive decline and portions of mental health [21–23]. It has been
reported that aerobic exercise (i.e., 6 to 12 months of a walking program) increases spa-
tial memory as well as gray and white matter volumes in both temporal (including the
hippocampi) and prefrontal regions in healthy older adults (without dementia) [24]. In ad-
dition, Jonasson et al. demonstrated that following a 6-month exercise training period, the
change in “cognitive score” determined by episodic memory, updating, processing speed,
and EF was positively related to the thickness of the dorsolateral prefrontal cortex [25].
Regarding mental health, patients with major depressive disorder or schizophrenia show
decreased hippocampal or gray matter volume [26,27], while an exercise-induced increase
in hippocampal volume can be related to cognitive performance even in patients with
schizophrenia [22]. However, whether brain structure is associated with psychiatric and
neurological disorders is controversial [28], and whether the positive effects of aerobic
exercise can be extended to psychiatric disorders is still unclear [21]. Further studies are
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needed to uncover the pathophysiology of mental disorders and improve the effect of
exercise or physical activity.

In addition to brain structural/anatomical alterations, changes in cerebral microvas-
culature function can be a physiological factor that may elicit exercise-enhanced brain
function. Since the energy reserve of the brain is relatively small, a continuous supply
of glucose and oxygen from the cerebral circulation to the brain is required to maintain
its function, e.g., cognitive performance. Thus, especially in the brain, synaptic activity
suddenly increases the demand for energy for maintaining brain function and consequently
might cause a relative lack of oxygen and glucose. However, in the brain, the neural ac-
tivity causes neurovascular coupling with accordingly transient and adequate increases
in regional cerebral blood flow (CBF) and consequently partially maintains brain func-
tion [29]. Indeed, the onset of cognitive impairment often occurs following cerebrovascular
dysfunction, suggesting that dysfunction of CBF regulation is one of the mechanisms of
the onset of dementia [30]. Furthermore, a decrease in the response of regional CBF to a
simple motor task occurs when either intracranial carotid arteries or one vertebral artery
is occluded in asymptomatic patients [31]. In addition, neural coupling to several physio-
logical stimuli and resting CBF are reduced in patients with Alzheimer’s disease [32–36].
These findings indicate that brain function via neurovascular coupling is attenuated by
inadequate global or focal CBF regulation; thus, the regulation of global CBF is important
to maintain adequate neural coupling [29] and thus brain function.

4. Can Acute Alterations in CBF to Exercise Affect Cognitive Performance?

As mentioned above, it is expected that maintaining brain function requires adequate
CBF regulation as an important physiological factor. However, no study has examined
whether alterations in CBF directly modify cognitive performance because CBF cannot be
isolated from the many physiological factors that affect cognitive performance in patients
with cerebral disease, vascular disease, or dementia, as well as in healthy older adults.

Basically, augmented cerebral metabolism or cerebral neural activity [37–39] are ac-
companied by transient increases in CBF [40–42] as well as cognitive performance [43,44]
during and/or following mild- to moderate-intensity aerobic exercise. In contrast, similar
to the decrease in CBF associated with hyperventilation during prolonged or heavy aer-
obic exercise [41], the exercise-induced facilitation of cognitive performance disappears
during such prolonged exercise [45]. From this background, we previously examined for
the first time whether manipulation of CBF alteration affects cognitive performance in
young, healthy participants [46]. In contrast to our hypothesis, however, cognitive per-
formance improved in response to the decrease in CBF during prolonged heavy exercise,
and unexpectedly, an isolated change (i.e., hypercapnia-induced increase) in CBF did not
affect cognitive performance at rest or during exercise [46]. Furthermore, several studies
reported that increases in CBF during exercise were not directly related to changes in
cognitive performance [47,48]. These findings suggest that acute exercise-induced cogni-
tive improvement may not have the same narrative as that of chronic exercise in terms
of the cerebrovascular system; thus, it is not simply due to an increase in global CBF,
implying that another factor modified by exercise, rather than a change in CBF, affects
cognitive performance.

5. Cerebral Lactate Metabolism and Cognitive Performance

A decrease in cerebral oxygenation is induced by prolonged exercise [46,49] or exercise
under mild or severe hypoxia [50,51], while impaired cognitive performance is not evident
in healthy young participants, suggesting a dissociation between an alteration in CBF and
subsequent change in oxygen delivery to the brain and cerebral metabolism or cognitive
performance. Indeed, albeit with a reduction in CBF during heavy exercise, the elevation
of brain neural activity and metabolism might be accompanied by compensatory increases
in the uptake of lactate, glucose, and oxygen support for the brain (arterial-jugular venous
difference) [37]. Given that augmented brain neural activity and metabolism are indepen-
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dent of increases in CBF [52], extensive activation of motor and sensory systems due to the
higher-order function of the prefrontal cortex may affect cognitive performance rather than
cerebral perfusion in response to exercise.

Regarding metabolism, although the brain relies mainly on glucose at rest, during
high-intensity exercise, the brain becomes dependent on lactate delivery [53,54] and re-
peated HIIE, which attenuates the increase in systemic blood lactate, resulting in impaired
maintenance of HIIE-enhanced cognitive performance (i.e., EF) [18]. In particular, HIIE
may facilitate neuronal activation and excitation levels to the extent that summation is
facilitated to improve cognitive performance [7,55,56]. Neuronal activation is associated
with an increase in energy requirements due to the transport of neurotransmitters and
ions [57], and neurons preferentially utilize lactate as a fuel in vivo [58]. Sustained ele-
vation of arterial/systemic lactate in response to intense exercise promotes the supply
of lactate as an energy substrate to meet acute neuronal energy requirements [59–61]. In
addition, intravenous infusion of 100 mM L-lactate into rats promoted cognitive recovery
by preserving cerebral ATP generation following traumatic brain injury [62]. Furthermore,
Skriver et al. found a correlation between systemic lactate concentration and the acquisi-
tion and retention of motor skills [63]. In addition, lactate supports synaptic activity [64],
long-term potentiation and memory formation [65], and neuronal plasticity [66]. These
findings suggest that brain function as expressed by cognitive performance depends on
the provision of lactate. Indeed, we manipulated blood lactate during exercise at a given
intensity by repeated HIIE and evaluated whether such manipulation of peripheral lactate
metabolism affects brain lactate uptake (i.e., the arterial–jugular venous difference in lactate
(a-v difflactate)) and EF [67]. We found that brain lactate uptake is associated with the arterial
lactate concentration, and inadequate lactate provision to the brain might attenuate exercise
(i.e., HIIE)-enhanced EF [67], irrespective of increased BDNF and catecholamine, both of
which are supposed to relate to cognitive performance [56,68,69] (Figure 2). Given the
reliance on lactate as a fuel for the brain, variations in blood lactate could affect cognitive
performance during and after exercise and account for the significance of exercise (i.e.,
muscle contraction) for brain function.
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concentration is observed. This result suggests that brain lactate uptake is associated with better executive function. Values
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On the other hand, a recent study demonstrated that chronic lactate administration to
mice promotes hippocampal neurogenesis but does not affect cognitive performance [70].
In addition, Sudo et al. found that recovery of prefrontal oxygenation affected cognitive
performance after exhaustive exercise, irrespective of the blood lactate concentration [71].
Further studies are warranted to understand the role of lactate in brain function in acute
and chronic exercise.

6. Exercise-Induced Improvement in Brain Health Based on Chronic Anatomical and
Cerebral Microvasculature Alterations and Its Potential Link to Exercise-Produced
Lactate in Active Muscle

As described above, brain structure may determine CBF regulation and volume that
affects brain function. Of note, physical activity is useful to upregulate neurotrophins
and growth factors, such as BDNF, insulin-like growth factor-1 (IGF-1), and vascular
endothelial growth factor (VEGF), which are necessary to maintain existing neurons and
neurogenesis for continued brain development [20]. The increases in BDNF, VEGF, and
IGF-1 levels are positively related to augmented hippocampal volume, neurogenesis, and
angiogenesis, thereby increasing cognitive performance, such as spatial memory, in older
adults [20,21,24,72].

Among the growth factors, BDNF might be a key factor involved in cognitive perfor-
mance improvement, at least regarding memory function and mental health, by means of
promoting neurogenesis, synaptic plasticity, and cell survival, particularly in the cerebral
cortex and hippocampus [21,73]. Indeed, poor cognitive function and mental health are as-
sociated with low circulating BDNF levels in both young and elderly persons and patients
with a major depressive disorder [69,74,75]. On the other hand, Griffin et al. (2011) sug-
gested that postexercise improvement in short-term memory performance was related to an
acute increase in BDNF [69]. Additionally, to maintain a higher level of short-term memory
for brain health, it is important that the acute increase in systemic BDNF is repeated [69]. In
this connection, the effect of chronic exercise on cognitive function may be determined by
repeated single exercise bout-induced physiological effects, as seen in muscle hypertrophy
by resistance exercise training, and changes in some physiological and biological factors
(e.g., BDNF) during single bouts of exercise may partially link such determination.

In line with this, the indirect effects of lactate should be a focus. Again, general struc-
tural alterations of the brain via chronic (i.e., repeated/habitual) exercise training/physical
activity may be responsible for brain health, at least partly by growth factors. Interest-
ingly, lactate infusion at rest induced an increase in blood BDNF in young male sports
students [76]. Additionally, an increase in blood lactate concentration in response to acute
graded exercise was correlated with an increase in serum BDNF in young, healthy sub-
jects [77]. In this regard, it is not surprising that HIIE, which produces more lactate than
MCE, increased serum BDNF more than MCE in young obese subjects [78]. Furthermore,
acute sprint interval exercise-induced elevation in blood lactate concentration was associ-
ated with increased blood BDNF, IGF-1, and VEGF and improved cognitive performance
in young subjects [79]. In addition, Hayek et al. suggested that exercise-produced lactate is
transported through the circulation to the brain, whereby it induces BDNF expression via a
signaling cascade between silent information regulator 1 (SIRT1), peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α), and fibronectin type III domain
containing 5 (FNDC5) in the mouse hippocampus [80]. Importantly, the study also showed
that such peripheral delivery of exercise-produced lactate promotes cognitive performance,
such as learning and memory. These results suggest that either exercise-induced or ex-
ogenously administered lactate can be a trigger to augment BDNF expression (see [81])
and subsequent structural adaptations and hence may contribute to the improvement of
cognitive performance.

Regarding VEGF, Morland et al. demonstrated that HIIE training and/or sodium
lactate injections for 7 weeks promoted cerebral VEGF and angiogenesis via the lactate re-
ceptor hydroxycarboxylic acid receptor 1 (HCAR1) in an animal model [82]. These findings
suggest that exercise-induced elevation of blood lactate can be an activator of neurogene-
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sis and angiogenesis, which are favorable for brain health and should be considered an
underlying molecular mechanism of HIIT benefits for the brain [83].

Interestingly, previous studies demonstrated that peripheral administration of lactate
reduced behavioral despair and anhedonia-like behavior and reversed social avoidance [84,85].
It was suggested that the lactate-induced expression of genes/proteins related to neuronal
plasticity, memory, neurogenesis, and neuroprotection, such as BDNF, VEGF, early growth
response 1 (Egr1), CCAAT/enhancer-binding protein (C/EBP), Hes5, p11, and proto-
oncogene c-Fos (c-Fos), as well as activity-regulated cytoskeletal-associated protein (Arc),
might be associated with the antidepressant actions of lactate [66,84,86,87]. Recently,
Carrard et al. suggested that hippocampal neurogenesis is important in the antidepressant
actions of lactate [84]. In this study, chronic administration of corticosterone induced
depression-like states with decreased hippocampal neurogenesis, while coadministration
of lactate maintained hippocampal neurogenesis to the control level with suppression of
oxidative stress. Importantly, this action was not induced by the administration of pyruvate
but was elicited by β-hydroxybutyrate, which can be oxidized to acetoacetate with the
production of nicotinamide adenine dinucleotide hydrate (NADH), suggesting that the
antidepressant effect of lactate is associated with lactate oxidation-induced NADH rather
than an energy substrate [84]. Indeed, NADH suppressed corticosterone-induced oxidative
stress and a subsequent reduction in adult hippocampal stem/progenitor cell proliferation
in an in vitro study [84]. Although physical activity/exercise-induced physiological strain
that elicits brain functional adaptation may be multifactorial [83], we should recognize that
muscle contraction-produced lactate might be a pivotal mediator of brain adaptation as a
myokine for brain structure (Figure 3).
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7. Can Cerebral Blood Flow Regulation That Determines Brain Function Be Modified
by Lactate?

Biochemical regulation of the cerebrovascular system by lactate is also evident in
an acute setting. Gordon et al. demonstrated in rat brain slices that low oxygen levels
facilitated lactate; hence, prostaglandin E2 (PGE2) elicited vasodilation [88]. In humans,
the CBF response to physiological activation induced by visual stimulation was increased
with lactate injection and plasma lactate/pyruvate ratio and subsequently augmented the
NADH/NAD+ ratio [89]. This increase in lactate/pyruvate and NADH/NAD+ ratios may
be related to the increase in CBF, probably through nitric oxide (NO) production [90]. In a
clinical setting, hypertonic lactate injection increased cerebral perfusion and brain glucose
availability and decreased the pulsatility index after acute brain injury [91]. In addition, the
brain-injured person is hypermetabolic, and lactate has a pivotal role in supplying energy to
bypass the restriction in glycolytic flux and spare limited glucose reserves for other cerebral
metabolisms (e.g., pentose phosphate pathway for neuroprotection) (see [92]). Indeed,
acute lactate infusion into mild traumatic brain injury patients improved their cognitive
function as evaluated by the Mini Mental State Examination (MMSE), with several possible
mechanisms, such as the energy substrate effect, the prevention of hyperchloremia, and
the reduction in brain cell edema, by restoring impaired brain homeostasis and synapse
function after brain injury [93].

8. Therapeutic Example of Exercise Modification to Consider the Interaction of Lactate

Given that resistance exercise is associated with several health benefits, such as a
reduced risk for sarcopenia, osteoporosis, and metabolic dysfunction [94], this type of
exercise is also attractive for improving quality of life. We found that an acute bout
of localized resistance exercise could enhance cognitive performance immediately after
exercise in a dose-dependent manner [95], whereby generally, high-intensity resistance
exercise produces more lactate. Recently, we also found that resistance exercise with slow
movement and tonic force generation improved EF more effectively than normal velocity
movement exercise, accompanied by a considerable amount of lactate production even
though the exercise intensity was low [96]. Interestingly, despite the application of a lower
exercise load, resistance exercise with slow movement and tonic force generation improved
postexercise EF similarly to high-intensity resistance exercise, which may be due to the
equivalent blood lactate response between the two protocols in healthy young adults [97].
Therefore, it may be relevant to focus on exercise-induced lactate to predict the proper
chronic exercise prescription for brain health.

9. Summary and Future Perspective

The potential mechanisms underlying the favorable effects of habitual exercise/physical
activity on brain function are assumed to be multidimensional. In particular, structural
alterations of the brain, such as increased neurogenesis, synaptogenesis, angiogenesis, and
brain volume, might be characteristics of chronic exercise benefits because they cannot
be achieved with only a single bout of acute exercise, although the cumulative effects
of acute exercise-induced physiological stress are needed. It may be reasonable to say
that acute exercise, if it is favorable for improvement of brain function, although it is a
transient response, is also beneficial for brain health, including cognitive performance, with
its continuous repetition via chronic exercise training. In this regard, it may be useful to
understand the impact and mechanisms behind the favorable effects of acute exercise on
brain function to develop a proper exercise prescription for brain health. Although such
mechanisms are assumed to be multifactorial, cerebral metabolism may be an important
physiological factor that determines brain function. Among metabolites, the provision of
lactate to meet elevated neural activity and to regulate the cerebrovascular system and
redox states in response to exercise may be responsible for exercise-enhanced brain health
(Figure 3).
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For this connection, the regulation of peripheral and cerebral lactate metabolism
through exercise may be important for brain function. Furthermore, exercise intensity,
duration, and modality also affect brain function possibly through the “metabolic myokine”
(i.e., lactate). Particularly, HIIE might be practically relevant for brain health. Nonetheless,
population (i.e., young and old) and gender (i.e., male and female) differences must be
considered in future studies.
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