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Abstract: A key unmet need in metabolomics continues to be the specific, selective, accurate detection
of traditionally difficult to retain molecules including simple sugars, sugar phosphates, carboxylic
acids, and related amino acids. Designed to retain the metabolites of central carbon metabolism, this
Mixed Mode (MM) chromatography applies varied pH, salt concentration and organic content to a
positively charged quaternary amine polyvinyl alcohol stationary phase. This MM method is capable
of separating glucose from fructose, and four hexose monophosphates a single chromatographic run.
Coupled to a QExactive Orbitrap Mass Spectrometer with negative ESI, linearity, LLOD, %CV, and
mass accuracy were assessed using 33 metabolite standards. The standards were linear on average
>3 orders of magnitude (R2 > 0.98 for 30/33) with LLOD < 1 pmole (26/33), median CV of 12% over
two weeks, and median mass accuracy of 0.49 ppm. To assess the breadth of metabolome coverage
and better define the structural elements dictating elution, we injected 607 unique metabolites
and determined that 398 are well retained. We then split the dataset of 398 documented RTs into
training and test sets and trained a message-passing neural network (MPNN) to predict RT from
a featurized heavy atom connectivity graph. Unlike traditional QSAR methods that utilize hand-
crafted descriptors or pre-defined structural keys, the MPNN aggregates atomic features across the
molecular graph and learns to identify molecular subgraphs that are correlated with variations in
RTs. For sugars, sugar phosphates, carboxylic acids, and isomers, the model achieves a predictive
RT error of <2 min on 91%, 50%, 77%, and 72% of held-out compounds from these subsets, with
overall root mean square errors of 0.11, 0.34, 0.18, and 0.53 min, respectively. The model was then
applied to rank order metabolite IDs for molecular features altered by GLS2 knockout in mouse
primary hepatocytes.

Keywords: metabolomics; LCMS; retention time prediction; machine learning; MPNN

1. Introduction

The study of metabolites, their perturbation in disease, and correction with thera-
peutics is central to our understanding of disease biology and pharmacology. In recent
years, the field of metabolomics has been greatly enabled by technological advances in
high-resolution accurate mass spectrometers. Although Mass Spectrometry provides com-
pelling specificity in assignment of a chemical formula, continuing to advance separation
chemistry is required for accurate metabolite identification and quantitation. Of particular
challenge are the hydrophilic metabolites of central carbon metabolism, including simple
sugars, sugar phosphates, carboxylic acids, and related amino acids, which are inherently
incompatible with traditional Reverse Phase (RP) retention mechanisms.

To date, the LC retention of these hydrophilic and often charged metabolites has
been achieved by normal phase (NP) [1], Ion Exchange (IE) [2], Hydrophilic Interaction
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Chromatography (HILIC) [3,4], and RP-ion pair (RP-IP) LC [5,6], where the latter two
are more commonly coupled to MS detection due to solvent compatibility. A variation
of normal phase chromatography, HILIC applies highly organic solvents with a small
aqueous component to a polar stationary phase [7]. By increasing the aqueous content
of the mobile phase, analytes are eluted in order of increasing polarity. This technique
was extended to an ion-exchange column coupled to a highly organic mobile phase with
Electrostatic Repulsion HILIC (ERLIC) [8]. By superimposing two independent retention
mechanisms—hydrophilic interaction and electrostatic repulsion—ERLIC can be tuned
for the retention of neutral, acidic and basic analytes on a charged stationary phase by
manipulating mobile phase organic content, pH, and salt concentration, and to date has
had success in (phospho)proteomics.

Although multiple HILIC, IEC, and RP-IP metabolomics methods have been described
for the detection of sugar mono- and bis-phosphates of glycolysis and the pentose phos-
phate pathway [4,6,9–11], most fail to detect the essential nutrient input glucose, which
commonly co-elutes with other hexose isomers in the solvent front. Successful retention
of sugars and sugar phosphates has been described with pre-column derivatization [12],
which cannot be universally applied to the rest of the central carbon metabolome. A signifi-
cant advancement was recently published by Mathon et al., applying HILIC mobile phase
with trimethylamine and methylphosphonic acid modifiers to a bridged-ethylene hybrid
amide column to retain both sugars and sugar phosphates under alkaline conditions [13],
albeit without separation of sugar isomers. As exemplified by Mathon et al., continually
pushing the boundaries of traditional chromatographic techniques is required for improved
metabolic coverage and isomer separation.

In addition to the challenges of separation chemistry, another major hurdle to
metabolomics data interpretation is improving the confidence in identity assignment for
MS features which match more than one metabolite in a database. While matching based
on exact mass, isotope abundance pattern [14], and MS2 has been enabled by programs
such as XCMS [15], mzMINE [16], SIEVETM, CSI:FingerID [17], and others [18–20], each
fails to apply knowledge of one’s own chromatographic retention mechanism. One creative
solution to informing metabolite ID, bypassing MS2 and isotope abundance patterns, is by
conducting an integrative network-based analysis based on exact mass alone and allowing
resultant networks to inform the assignment of metabolites [21]. Approaches such as
this dramatically reduce the burden on scientists when it comes to metabolite ID. These
metabolite ID inferences could only be made stronger by also integrating knowledge of the
retention and elution principles of the chromatographic method applied.

While the application of machine learning to predict retention times in metabolomics
is not widespread, published models show promise in ranking putative identities of MS
features [22]. These methods aim to establish relationships between calculated molecular
descriptors (MDs) and retention time using data sets ranging from <100 [23] to 904 [24]
metabolites, and generally <20 MDs. The addition of MDs based on 3D Molecular Interac-
tion Fields, or Volsurf+, expanded the descriptor space and have been applied to promote
the correct molecule for improved identification of MS features [25,26]. A quantum leap be-
yond those previously published, fingerprints describing 80,038 analytes with documented
retention times fed a deep learning model, creating the METLIN SMRT database [27],
which has now been extended to nano-LC as well [28].

With the goals of designing and modeling structure-dependent separation to chro-
matographically resolve much of central carbon metabolism and related metabolites, we
designed the Mixed Mode (MM) method coupled to negative mode Orbitrap MS. The
method is demonstrated to retain 398 of the ~600 unique metabolites of the MSMLSTM

library. We then went on to split the retention time (RT) dataset into training and test
sets and trained a message-passing neural network (MPNN) model to predict RT from
featurized heavy atom connectivity graphs. Comparing predicted to measured RTs, the
model showed <2 min RT predictions for a significant proportion of the test set. The model
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was then applied to determine the most probable metabolite IDs for MS features altered
by GLS2 KO.

2. Results
2.1. Mixed Mode Chromatography for Central Carbon Metabolite Detection

Designed to retain the metabolites of central carbon metabolism, which include simple
sugars, sugar phosphates, carboxylic acids, and related amino acids, this Mixed Mode
chromatography applies varied pH, salt concentration, and organic content to a positively
charged quaternary amine polyvinyl alcohol stationary phase (Figure 1).
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Figure 1. Mixed mode chromatographic resolution of central carbon metabolites (A) Extracted
Ion Chromatograms (EICs) of standards from central carbon metabolism. (B) EICs of the same
metabolites from mouse heart. (C) Schematic showing MM chromatographic segments and gradient.
Applied to a positively charged quaternary amine polyvinyl alcohol stationary phase, Buffer A
consists of 90% acetonitrile and 10% water, containing 20 mM Triethylamine: Formic acid at pH
9.18. Buffer B consists of 5% acetonitrile and 95% water containing 54 mM Triethylamine: Formic
acid at pH 3.03. Abbreviations: P phosphate; BP bisphosphate, DHAP dihydroxyacetone phosphate;
αKG α-ketoglutarate or 2-oxoglutarate; 2PG 2-phosphoglycerate; PEP phosphoenolpyruvate, UDP
uridine diphosphate.

In the initial ion layer-ERLIC chromatographic segment, under high pH (9.18) and
high organic (90% acetonitrile), 20 mM triethylammonium-formate (TEA-formate) is intro-
duced to form an ion layer on a positively charged quaternary amine polyvinyl alcohol
stationary phase [8]. During this early segment, neutral and weakly anionic metabolites
such as glucose, pyruvate, and palmitate are eluted. Glucose and fructose are baseline
resolved (Figure 1A, blue).

To induce the mixed mode transition, a gradient is applied, increasing the aqueous
and TEA-formate concentrations while reducing the pH. The combination of increasing
the mobile phase hydrophilicity and the concentration of the IP reagent (TEA-formate),
while also protonating acidic centers enables the stepwise elution of sugar phosphates
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and dicarboxylic acids. It is also noted that increasing the CH2O content leads to stronger
retention as exemplified by C4 to C7 ketoses (Supplementary Figure S1), as would be
expected from HILIC chromatography [29]. Fructose and glucose 1- and 6-monophosphates
are also well resolved (Figure 1A, blue).

The final segment employs a predominantly aqueous mobile phase with 54 mM
TEA-formate, with the pH 3.03, to achieve more classical protonation-dependent anion
exchange-based separation. With a pH below the pKa of formate, the ion layer is removed,
enabling analytes to directly interact with the cationic stationary phase. During this last
segment, strong acids such as isocitrate, fructose 1,6-bisphosphate and PEP are eluted.

As shown in Figure 1A,B, similar chromatographic peak shapes are observed from
standards as compared to the biological matrix, which in this case is mouse heart extract.

2.2. Method Validation Using Purified Metabolites

Coupling MM chromatography to the Orbitrap QExactive-Plus, linearity, sensitivity,
reproducibility, and mass accuracy were tested using a mixture of 33 metabolite standards
(Table 1). Replicates of a standard curve ranging from 5.08 nM to 600 µM in 3-fold incre-
ments were injected (5 µL) across four different days. Data from all 13 concentrations and
blanks were investigated.

Table 1. Method sensitivity and reproducibility.

Metabolite LOD (pmole) CV (n = 4) Linear Range
(pmole)

Linear Coefficient
(R2) Mass Error (ppm)

2-phosphoglycerate 0.0254 10.8 0.229–1000 0.98729 0.54
6-phosphogluconate 0.076 10.7 0.229–500 0.9993 0

a-ketoglutarate 0.685 15.8 2.06–1500 0.99622 0.69
L-alanine 6.15 20.9 6.15–1500 0.99199 2.27

L-aspartate 0.076 9.15 0.229–1500 0.99862 0
cis-aconitate 0.0254 39.3 0.0760–166.5 0.99015 0.58

DHAP 18.5 33.2 18.5–1500 0.99815 0.59
sedoheptulose 7P 0.076 12.8 0.229–500 0.9981 0.69

fructose-13C6 0.0254 12 0.0254–166.5 0.99749 0.54
fructose-1,6-BP 0.0254 17.6 0.0254–1500 0.99259 0.59

fructose-1P 0.0254 9.62 0.0760–1500 0.99408 0
fructose-6P 0.0254 12.8 0.0760–1500 0.99078 0
fumarate 0.685 11.3 2.06–1500 0.98993 0
glucose 0.685 13.8 2.06–1500 0.98751 0.56

glucose-1P 0.0254 12.3 0.0760–500 0.9955 0
glucose-6P 0.0254 11.4 0.0760–500 0.99585 0
glutamate 0.0254 8.95 0.229–3000 0.99572 −0.68
glutamine 0.076 6.85 0.229–1500 0.99001 −0.69

glyceraldehyde-3P 55.5 5.45 55.5–1500 0.98939 0.59
glycine 18.5 4.71 18.5–1500 0.99478 0

glyecrol-3P 0.076 7.95 0.229–500 0.99723 0.58
isocitrate 6.15 31.6 6.15–500 0.96498 0.52

lactate 0.229 z12.4 0.229–55.5 0.98791 0
malate 0.076 39.2 0.229–166.5 0.99544 0.75

myo-inositol-d6 6.15 15.1 6.15–1500 0.9838 0.54
phosphoenolpyruvate 0.076 14.3 0.229–1500 0.99564 0.6

pyruvate 2.06 18.9 2.06–1000 0.96721 0
ribulose-5P 0.685 9.84 0.685–1000 0.98069 −0.44

serine 0.229 9.88 0.229–1500 0.99155 0.96
sorbitol 0.076 11.2 0.229–500 0.99293 0

succinate 0.229 12.2 2.06–1000 0.96498 0
UDP-glucose 0.229 12.1 0.229–1500 0.99135 1.77
xylitol-13C5 0.229 9.35 2.06–1000 0.98754 0.64



Metabolites 2021, 11, 772 5 of 14

Linearity was demonstrated with R2 > 0.98 for 30/33, and R2 > 0.96 for all 33 standards
across on average 3 orders of magnitude (Table 1). Some metabolites displayed two distinct
linear ranges, with low and high concentrations best fit separately. For certain metabolites
commonly encountered at high concentrations such as lactate or glucose, concentration-
dependent alterations in response must be considered with this as with any LCMS method.

Sensitivity was assessed for each metabolite by determining the lower limit of de-
tection (LLOD), or concentration of analyte reproducibly detected above noise (3:1 S:N).
Twenty-six of the standards tested demonstrate LOD <1 pmole.

In addition to the performance in various biological sample matrices, the reproducibil-
ity of MM chromatography was evaluated by calculating coefficient of variance (CV) of
analytes at 18.5 pmole, with the exception of glyceraldehyde 3-phosphate, which was
evaluated at 55.5 pmole. With injections spanning across two weeks, standards show
a median CV of 12%. Mass accuracy using external calibration was evaluated, and all
metabolites tested demonstrate mass error < 3 ppm with a median of 0.49 ppm.

2.3. Structural Diversity Assessment

To test the structural diversity potentially captured by the MM method, and to cre-
ate a database on which a structure predictor model may be built, the MSMLS ™ li-
brary (IROA Technologies) was injected at 2.08 µg/mL (5 µL injection volume). This
commercially available metabolite library contains >600 unique metabolites classified in
5 major structural and biological categories: (1) carboxylic acids/amino acids, (2) biogenic
amines/polyamines, (3) nucleotides/coenzymes and vitamins, (4) mono- and disaccha-
rides, (5) fatty acids/lipids/steroids and hormones.

Among the 607 unique metabolites tested, 398 are chromatographically well retained,
providing 65.6% coverage of the total library. A complete list of retention times is included
as Supplemental Table S1. Of those metabolites not detected, 8 fall outside of the m/z scan
range (65–975 m/z), and the remaining 209 are either not well retained chromatographically
or not observed. Metabolites not amenable to this MM method include those which are
chemically unstable across the pH gradient (i.e., ATP, GTP, etc.), and those not amenable to
ESI negative mode detection (i.e., squalene, choline, most monoamines, sterols, etc.).

2.4. Mathematical Model for Structure Digitization and Prediction

We next strove to develop a mathematical model capable of expanding to all
398 diverse metabolites detected from the MSMLS library. Such a model may then be
applied to predict structures corresponding to mass spectral features of unknown identity,
generating a powerful tool for untargeted/shotgun metabolomics.

We trained a message passing neural network (MPNN) [30] to predict the MM reten-
tion time given graph representations of molecular structures (Figure 2). RDKit v2017.09
was used to generate heavy atom connectivity graphs from SMILES strings. This con-
nectivity graph was used to construct bond features (bond type, conjugation, presence
in ring) and atom features (atomic number, degree, valence, formal charge, number of
radical electrons, hybridization, and aromaticity) for every heavy atom and bond between
heavy atoms in the molecule. A MPNN was constructed using the DeepChem v2.0.0
library, then trained to infer the MM retention time from this featurized connectivity graph
using four rounds of message passing. During each stage of message passing, information
from each node (atom or bond) is transmitted to and aggregated at all the neighboring
nodes that are one hop away. This process is responsible for the MPNN’s ability to ‘learn’
localized chemical environments throughout a molecule. The message-passing phase was
followed by a 4-stage set2set readout during which the information aggregated at each
bond and atom is consolidated in a permutation-invariant fashion and used to predict
a retention time [31]. This final phase is critical to the MPNN’s ability to accommodate
graph isomorphism.
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Figure 2. Model for predicting elution times from molecular structures: (A) The 2D representation of
the molecule is used as input and converted into a connectivity graph. (B) Atom and bond properties
are extracted from the connectivity graph. (C) Properties from neighboring atoms and bonds are
transmitted and mixed via four rounds of message passing. (D) The final properties at each atom
and node are collated and passed through a four-stage set2set neural network to predict the MM
retention time (TE).

2.4.1. Model Training

We split the dataset of 398 points into training and test datasets in the ratio 318:80
(≈80%:20%). The model was trained on the training dataset for 100 epochs with a batch size
of 64. The trained model was then evaluated on predictive accuracy both on the training
set and the held-out test set. To estimate the robustness of the model’s predictive accuracy
to the choice of training set, we carried out a five-fold cross validation study using five
different randomly generated training and test sets. The total training time for a single
MPNN model on an NVIDIA K80 GPU was approximately 30 min.

2.4.2. Model Performance Predicting RT

Figure 3 shows the results of fitting an MPNN model to the training set and its
predictions on a held-out test set. The model root mean square errors (RMSEs) on the
training and test datasets are 1.33 min and 4.04 min, respectively. Five-fold cross-validation
tests (Supplemental Table S2) indicate that the estimated RMSE on held-out test datasets
for the MPNN model (4.62 ± 0.7 min) is superior to the linear regression and random forest
models with hand-picked features. Additionally, on average, MPNN models achieve errors
of <2 min on a significantly higher fraction (91.2%) of the complete dataset as compared to
conventional linear regression and random forests.

Table 2 presents the performance of the MPNN model on selected subsets of the
metabolites detected from the MSMLS library (sugars, sugar phosphates, carboxylic acids,
and isomers). The model achieves an error of <2 min on 91%, 50%, 77%, and 72% of
held-out compounds from these subsets, respectively, with overall RMSEs of 0.11, 0.34,
0.18, and 0.53 min respectively.

Table 2. Model performance on selected subsets of metabolites detected from the MSMLS library.

Training Test

Subset Dataset Size # Points with
Error <2 min Dataset Size # Points with

Error <2 min

Sugars 55 55 11 10
Sugar-P 39 39 6 3

Carboxylic acids 148 145 35 27
Isomers 37 34 11 8
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Figure 3. Model performance: (A) The performance of the trained MPNN on the training dataset
(with 318 data points). Blue points represent data for which the model error is <2 min and orange
points represent data where the model error ≥2 min. The dashed black line represents line of zero
error. The model RMSE on the training dataset is 1.33 min. (B) The performance of the trained MPNN
on the held-out test dataset (with 80 data points). The RMSE on this test dataset is 4.04 min. (C) The
model performance on four different sets of compounds: sugars, sugar phosphates, carboxylic acids,
and isomers. Circles represent points that the MPNN model was trained on. Triangles represent
points from the held-out test dataset.

2.4.3. Identification of Important Functional Groups

It is possible to interrogate the MPNN model to determine what it has ‘learnt’ with
respect to the relationship between molecular structure and retention time. To obtain the
model’s estimate of the effect єi of a given atom i on the retention time ET of a molecule, we
set the feature vector corresponding to that atom to a vector of zeros during the featurization
stage (Figure 2B) of the inference process. In effect, this replaces the chosen atom in that
molecule with a ‘ghost’ atom that has no properties of its own. We then run this molecule
with the ghost atom through our model and compute a new retention time Ei

T . The change
in the model’s predicted retention time is then attributed entirely to the effect of ‘removing’
the chosen atom, and the difference iei = ET − Ei

T is determined to be the effect of atom i
on the retention time of that molecule.

We then examined the functional groups that the MPNN identified as the most
significant determinants of retention time. From the connectivity graph of each molecule,
we computed all unique subgraphs (ignoring ring fragments) with up to five heavy atoms.
We then assigned ∑ iei (where the sum is over all constituents of the subgraph) as the total
effect of each subgraph. We then identified the functional groups (identified as chemically
unique and sensible subgraphs) with the most positive and most negative total effect on
retention time. Supplemental Table S3 in the Supporting Information reports the total
effects on retention time for all subgraphs that appear at least 30 times over our entire
dataset of 398 molecules and functional groups have been highlighted in bold.

According to the MPNN model, the functional groups that contribute the most to
reducing the retention time are amides and amines, with amides reducing the retention time
by approximately 7 min. On the other hand, the MPNN identifies phosphate groups and
carboxylic acids as having the greatest effect on increasing the retention time with effects of
approximately 15 min and 4 min, respectively. Figure 4A–D depicts the effects of various
atoms on the retention time in four representative molecules that contain multiple of these
functional groups. Experimental data showing enhanced retention upon phosphorylation
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of fructose (Figure 4E), and reduced retention by replacing a ketone with an amine and a
carboxylic acid with an amide (Figures 4F and S2) further exemplify these points.
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Figure 4. The effects of different functional groups on retention time: In each subfigure, atoms are
colored by their effect є on the MM retention time, with atoms colored red increasing the retention
time and atoms colored blue decreasing the retention time. The color bar indicates the range of
є in minutes. Phosphate groups are readily identified in (A,C,D) as strongly increasing retention
time. Carboxylic acids contribute to a lesser degree as seen in (B–D) while amine and amide groups
are observed to strongly contribute to decreasing elution time in (B,C). Empirically, (E) phosphate
increases retention of fructose to F6P and FBP, whereas (F) replacing a ketone or carboxylic acid with
an amine or amide, respectively, reduces retention from aKG to Glu to Gln.

2.5. Application to GLS2 KO Mouse Primary Hepatocytes

To assess model performance with biological data, we isolated hepatocytes from GLS2
knockout and wild-type mice, and briefly applied media lacking L-glutamine. Sixty minutes
after resupplying Gln, metabolites were extracted and analyzed with the MM method.
Data were processed through XCMS, and features were filtered for p < 0.01, fold change
>2, and a minimum intensity of 1 × 106. Sorting by smallest p value, the first extracted ion
chromatogram (EIC) with good chromatographic peak shape corresponded to 188.0567
m/z at 24.41 min. Six putative IDs were within 3 ppm of the experimentally observed
m/z, representing two chemical formulas (Figure 5A), none of which had documented
retention times in training or test sets. Amongst these potential IDs, the model correctly
predicted N-acetyl-L-glutamic acid as the most likely candidate, as verified by injection of
purchased standards.

The next most significant difference between GLS2KO vs. WT was 117.0196 m/z
observed at 20.07 min. The model had been trained on 2/6 of the putative IDs. Despite the
four additional isomers suggested, the model correctly selected succinate as reduced by
GLS2 KO (Figure 5B).

The third most significant hit corresponds to 171.0068 m/z at 23.11 min. Although
glycerol 1-p and 2-p are both potential hits, almost indistinguishable by the model, the large
gap in retention times between these top hits and the Cl- adducts of threonate (and iso-
mers) is apparent, further supporting the correct identification as glycerol monophosphate
(Figure 5C). Expansion of the list to include p < 0.05 leads to the identification of Glutamine,
Glutamate, and other downstream metabolites known to be altered by GLS2 KO. The
complete results table generated from XCMS is included as Supplemental Table S4.
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primary mouse hepatocytes, p < 0.01, fold change >2, signal intensity >1E6. (A–C) represent the most
significantly altered features’ extracted ion chromatograms (EICs), box plots, and putative identities
as deduced using XCMS.

3. Discussion

Given how dramatically advancements in mass spectrometry have enabled enhanced
selectivity and specificity in the field of metabolomics, we believe that continual chromato-
graphic improvement coupled to MPNN modeling offers the opportunity for a parallel ad-
vancement in our ability to differentiate and predict the identities of MS features. Although
not able to capture the totality of the defined metabolome, as no current method can, the
breadth of coverage and ability to separate isomers makes the MM method reported herein
an important contribution towards the evolution of comprehensive metabolomics methods.

One advantage of this MM method is the ability to differentiate isomers, which is
truly critical to understand regulation and dysregulation of central carbon metabolism.
For instance, while glucose is converted to glucose 6-phosphate and proceeds through
glycolysis in a tightly controlled fashion, its isomer fructose is converted to fructose 1-
phosphate by ketohexokinase (KHK), which lacks any negative feedback control. This
occurs rapidly even with low amounts of fructose, resulting in the depletion of ATP,
fructose-induced nucleotide turnover, and uric acid production, contributing uniquely
to the pathogenesis of diabetes and obesity [32]. Additionally, excess sugar intake in the
form of sugar sweetened beverages has been linked to a multitude of diseases including
T2D [33,34], CVD [35], and all-cause mortality [36,37]. Contrast each of these catabolic
routes with the branching of glucose via glucose 1P into glycogen, a major energy storage
polymer in muscle and liver. While studying concentrations and fluxes through these
central metabolic pathways, failure to separate hexoses and hexose monophosphates from
one another leads to dilution signal from coeluting isomers, where the highest concentration
hexose (monophosphate) dominates and obscures changes in others.

Although the MM retention times of >400 metabolites are reported here, one notable
metabolite of importance that is not captured by the method is ATP. The model predicts a
RT of 41.2 min, indicating that it should elute earlier than the six other metabolites in the
training set. It is likely that the pH gradient applied leads to degradation of ATP, which may
also artificially inflate ADP and AMP measurements. Additionally, for chemically labile
metabolites, a 60 min gradient is less than ideal. For these reasons we recommend running
a separate method for determination of energy charge ([ATP] + 0.5 * [ADP]/[AMP]).
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Having trained and tested the MPNN model on 398 metabolite retention times, it is
noted that not all structural features of the metabolome are represented in the training
and test sets. One example of an analyte not included in the MSMLS library but serving a
central role in the urea cycle is L-arginosuccinate. While both arginine and succinate are
represented in the training set, the N-linkage of the guanidino group to a dicarboxylic acid
is not. Two features at 20.1 and 28.7 min were observed in the mouse hepatocyte extracts
reported herein, both of which match the exact mass of arginosuccinate. The model predicts
a retention time of 21.9 min, more closely matching the former, however upon injection of
a pure standard the RT it was found to be ~28 min, indicating that the latter is more likely
to represent endogenous L-arginosuccinate. This example demonstrates that additional
training of expanded chemical space would further enhance the model’s predictive ability.

We believe that coupling documented RTs to modeling will provide predictive power
and enhanced confidence in metabolite ID. Graph-based neural network models have
recently been shown to not only achieve state-of-the-art accuracies on predictive chemin-
formatics benchmarks, but to also be capable of inferring structure-property relationships
without needing to be provided with conventional, hand-crafted MDs [30,38]. By operating
directly on the chemical graph of molecules, these methods also surpass fingerprint-based
models that are hampered by the sparsity and noise inherent to conventional chemical
fingerprints [39]. The availability of user-friendly, well-documented implementations of
these networks as open-source software libraries (e.g., https://deepchem.io, accessed on 10
November 2021) makes the application of these methods to structure-property relationship
modeling as easy as the application of conventional QSAR tools and packages.

The low RMSE values on the complete dataset and good performance on the test
datasets indicate that the MPNN can accurately deduce structure-property correlations for
almost all of the training dataset and most of the test dataset. Furthermore, the MPNN
demonstrably performs better than conventional QSAR methods on this dataset. However,
higher errors for some compounds on the test dataset indicate that the MPNN has been
unable to learn all of the interactions between functional groups on certain molecules.
Indeed, most of the compounds for which the MPNN produces predictions with errors >2
min are characterized by the presence of intra-molecular hydrogen bonds such as maleic
acid. Although the MPNN does not perceive the conformational geometry and resultant 3D
intramolecular interactions between various moieties (a limitation shared by conventional
QSAR methods), we hypothesize that it will become possible to increase the number of
message passing steps and potentially learn long-range interactions such as intramolecular
hydrogen bonding.

While some of the model’s conclusions, such as increased acidity enhancing retention,
will come as no surprise to the experienced analytical chemist, it is important to note that
our model was provided with no a priori knowledge of chemistry whatsoever. These
estimates of effects on retention time were obtained from a model that was provided
with no human-specified chemical features or fingerprints, operating purely on a graph
representation of molecular structures. This ability to assign effects on retention time
to functional groups in a manner that is consistent with experimental chromatography
demonstrates that the MPNN model is not only accurate but interpretable, enabling its
potential use in structure determination in untargeted/shotgun metabolomics studies.

4. Materials and Methods
4.1. Chemicals

Acetonitrile, methanol, and water, all OptimaTM LC-MS grade, were purchased from
Fischer Scientific (Pittsburgh, PA, USA). LC-MS mobile phase additives, such as 2 M Formic
acid: Triethylamine (1:1) solution, formic acid, trimethylamine and standard compounds
(Supplemental Methods) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Mass
Spectrometry Metabolite Library of Standards (MSMLSTM) was purchased from IROA
Technology (Sea Cirt, NJ, USA).

https://deepchem.io
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4.2. Standard Solutions and Sample Preparations

Standard stock solutions were initially prepared in water, then diluted into 35:40:25
acetonitrile:methanol:water for injection. The MSMLSTM standards were prepared follow-
ing IROA instructions with slight modifications. Ten µL methanol was dispensed into each
well of MSMLS 96 well plates (1 to 7). Methanol was allowed to incubate in plates 6 and
7 for 2 h. Then, acetonitrile, methanol and water were added to a final ratio of 35:40:25
acetonitrile:methanol:water (plates 1–5) and 9:8:3 acetonitrile:methanol:water (plates 6–7).
Wells were pooled to create 56 injections, avoiding the pooling of isomers.

4.3. LCMS

The LC-MS platform consists of a Q Exactive Plus Orbitrap Mass Spectrometer with
enhanced MS resolution up to 280,000, coupled with a Dionex UltiMate 3000 RSLC system,
including binary pump, column compartment and autosampler (Thermo Fisher Scientific,
San Jose, CA, USA). Liquid chromatography separation was achieved on a HILICpak VT50
2D column (150 mm × 2.0 mm, 5 µm particle size, Shodex, Japan). Buffer A consists of 90%
acetonitrile, 10% water, containing 20 mM Triethylamine: Formic acid at pH 9.18; Buffer B
consists of 5% acetonitrile, 95% water containing 54 mM Triethylamine: Formic acid at pH
3.03. Flow rate is 0.2 mL/min from 0 to 5 min, then 0.3 mL/min from 5.1 to 58 min, and
reduced again to 0.2 mL/min from 58.1 to 60 min. The gradient starts with 0%B from 0 to
10 min, then increases linearly from 0 to 16%B from 10 to 27 min, up to 65%B at 32 min,
87%B at 34 min, 100%B hold from 34.1 to 47 min, then 0%B from 47.1 to 60 min.

The Mass Spectrometry parameters are set as Source Fragmentation: None; Sheath
gas flow rate: 45; Aux gas flow rate: 15; Sweep gas flow rate: 3; Spray voltage: 3.00 kV;
Capillary temp: 310 ◦C; S-lens RF level: 50; Aux gas heater temp: 350 ◦C; For Full MS:
Scan range: 65.0 to 975.0 m/z; Resolution: 140,000; Polarity: Negative; AGC target: 3e6;
Maximum IT: 500 ms.

Peak identification was conducted by applying Thermo XcaliburTM Qual browser
and MAVEN (version x64_774) [40,41]. For differential analysis of GLS2KO vs. WT,
mzxml files were uploaded to XCMS for pairwise analysis. Parameters assigned to the
method include feature detection with centWave, applying 2.5 ppm maximum tolerated
m/z deviation in consecutive scans, peak with between 10 and 60 s, and prefilter intensity
≥5000 with orbiwarp RT correction, step size 1 m/z. An alignment mzwidth of 0.015 and
5 s allowable RT deviations were applied. Annotation and identification were limited to
isotopes and adducts within 5 ppm tolerance for the database search. GLS2 WT vs. KO
data is also available at the NIH Common Fund’s National Metabolomics Data Repository
(NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.
org (accessed on 10 November 2021) where it has been assigned Project ID PR001239.
The data can be accessed directly via its Project DOI: http://dx.doi.org/10.21228/M8JT51
(accessed on 10 November 2021). This work is supported by NIH grant U2C-DK119886.

4.4. Hepatocyte and Tissue Isolation and Treatment

Primary hepatocytes were isolated from male mice between 12 and 18 weeks of age by
the two-step collagenase perfusion method. Mice were fasted 16 h before the experiments.
After isolation, cells were plated in M199 media with 10% FBS for 4 h in 6-well plates
pre-coated with collagen I. After cells were attached to the plates, they were washed
with glucose output media (GOM) (118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM
KH2PO4, 1.2 mM CaCl2, 20 mM NaCO3, 25 mM HEPES pH 7.4, and 0.025% BSA), and
incubated in fresh GOM for 2 h. GOM media was replaced with fresh, pre-warmed GOM
media and cellular treatments initiated. Hepatocytes were treated with 5 mM unlabeled
glutamine for 60 min. Hepatocytes were washed with ice cold PBS twice and immediately
frozen in liquid nitrogen. Mouse heart was flash frozen upon resection.

https://www.metabolomicsworkbench.org
https://www.metabolomicsworkbench.org
http://dx.doi.org/10.21228/M8JT51
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4.5. Cell and Tissue Extraction

Flash frozen mouse heart tissue or hepatocytes were extracted on dry ice with 80:20
methanol:water, vortexed, centrifuged at 14,000× g at 4 ◦C for 15 min, dried under nitrogen
gas, and reconstitution in 35:40:25 acetonitrile:methanol:water for injection.

4.6. Message Passing Neural Network (MPNN)

MPNNs are defined on a graph (containing nodes and edges) by (i) an aggregation
function that aggregates features from neighboring nodes and edges, (ii) an update function
that updates the features of a node using the aggregated features of neighboring nodes
and edges, and (iii) a readout function that combines the features of all nodes on the
graph to generate a final feature vector that represents the entire graph. MPNNs have
demonstrated state-of-the-art accuracies on regression tasks on datasets of even just a few
hundred compounds [42]. The DeepChem Python library contains an easy-to-use imple-
mentation of MPNNs (among other neural network architectures) modified to operate
on molecular graphs. The MPNN in this work used Edge Networks as the aggregation
function, a Gated Recurrent Unit for the updates, and concatenation followed by input
through a single perceptron with ReLu activation as the readout function (i.e., DeepChem
defaults). Additional details may be found on the DeepChem MPNNModel documen-
tation [43]. Scripts for training and evaluating the MPNNs and generating the figures
in this manuscript may be found at https://github.com/PfizerRD/mixed-mode-mpnn
(accessed on 10 November 2021).

5. Conclusions

Despite decades of significant methodological progress in the field of metabolomics,
continued evolution to improve the selectivity and specificity, while also capturing an even
broader chemical space, is paramount. Combining new methods with the ability to make
informed predictions in the identification of ‘unknowns’ holds great promise for expanding
and automating metabolite ID in the future. Although limited to negative mode, this
MM method enables the unambiguous identification of >400 metabolites. Combined with
graph-based neural network models using featurized connectivity graphs, this method
provides the foundation for improved LC predictive power. Expansion of the MPNN-
enabled, structure-based modeling will be a topic of future publication as we strive to
expand the training set and apply to additional analytical methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11110772/s1, Figure S1: Elution order of C4 to C7 monophosphorylated ketoses,
Figure S2: Replacing -COOH with an amide leads to earlier elution of Asn relative to Asp, Table S1:
Retention times of MSMLS library, Table S2: Performance of assorted ML methods on the elution data
set. Table S3: The effect ∑єi of various subgraphs. Table S4: XCMS results table output. Methods S1:
Mobile phase preparation.
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