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Abstract: Knowing the precise location of analytes in the tissue has the potential to provide infor-
mation about the organs’ function and predict its behavior. It is especially powerful when used in
diagnosis and prognosis prediction of pathologies, such as cancer. Spatial proteomics, in particular
mass spectrometry imaging, together with machine learning approaches, has been proven to be a
very helpful tool in answering some histopathology conundrums. To gain accurate information about
the tissue, there is a need to build robust classification models. We have investigated the impact
of histological annotation on the classification accuracy of different tumor tissues. Intrinsic tissue
heterogeneity directly impacts the efficacy of the annotations, having a more pronounced effect on
more heterogeneous tissues, as pancreatic ductal adenocarcinoma, where the impact is over 20% in
accuracy. On the other hand, in more homogeneous samples, such as kidney tumors, histological
annotations have a slenderer impact on the classification accuracy.

Keywords: mass spectrometry imaging; proteomics; histological annotations; supervised classifica-
tion; on-tissue analysis

1. Introduction

The field of spatial proteomics has the potential to provide further understanding to
fields such as biology, pharmacology, and medicine. Mass spectrometry imaging (MSI) is
a technology that in the last couple of decades has been enabling mapping of molecules
directly in tissue sections [1]. One of the major advantages of MSI is its compatibility
with histologic annotations [1]. Because of that, and its ease of integration with the
current diagnostic sample preparation processes, MSI has been moving in the direction
of clinical applications [2,3]. Since its development, this technology has been addressing
some unanswered questions from a clinical point of view. However, aiming to translate
years of pathology investigation and experience into a more automated approach—based
on mass spectrometry data collection, and data interpretation using machine learning
algorithms—is a daring feat.

The different tissues in the human body have distinct histology. Despite working
together, they present defined cellular and molecular compositions. The unique array
of proteins, the specificity of the cell type and its location, accurately define the tissue
and the organ behavior. Regarding tumor environment, its composition can also be very
heterogeneous, depending on the tumor location and development, there are innumerous
variables to be taken into consideration when evaluating the tissue. On top of that, in the
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regions neighboring tumors, other structures or other tissues can often be found, that can
challenge the tissue classification. Namely, different inflammatory cells, necrotic tissue,
connective tissue, blood vessels, and adipose tissue are commonly found in the vicinity
of the tumors and have very different molecular profiles than the tumor [4]. That is why
tumor diagnosis is a scrupulous process, which entails the identification of tumor entity and
subentity, recognition of the tumor origin, analysis of predictive biomarkers, and druggable
targets. This process is a responsibility usually undertaken by pathologists, where the tissue
is thoroughly analyzed, through a series of staining procedures, followed by exhaustive
microscopic analysis [5]. Cell type, cell density, cellular morphology, tissue origin, tissue
integrity, functional state, reactive changes, and neoplastic alterations are some of the
information pathologists use for the assessment of the tissue. While conveying all that
information to a machine learning approach has been proven for particular diagnostic
applications (e.g., detection of prostate cancer in needle core biopsies by Paige Prostate, an
FDA-approved artificial intelligence-based software solution (www.paige.ai, accessed on
28 October 2021)) [6], it might still be some years away for most applications, or might not
even be feasible.

To build reliable predictors for all given tumors and reactive conditions, the input
information has to be premeditated. For instance, to distinguish tumor tissue from healthy
tissue, we need to teach the model instructing what is tumor and what is healthy tissue by
providing accurate information on those tissue regions. However, at this point that is the
only information the model has. Thus, it cannot determine the tumor origin or prognosis
because it simply does not possess that information to make the decision. On the other
hand, if we teach the machine to distinguish between tumor types, we cannot expect the
outcome to tell us about the normal tissue. Different models need to be built according
to the information we would like to obtain. This applies to all fields of machine learning
including image analysis. For instance, Campanella et al. used the same convolutional
neural network (Resnet34) for the task of detecting prostate cancer infiltrates in needle
core biopsies of the prostate, basal cell carcinoma in skin resection specimens and breast
cancer infiltrates in axillary lymph nodes based on histopathological slide images [6].
Nevertheless, the neural network had to be trained separately for the specific cancer type
to generate unique models for the detection of prostate cancer, basal cell carcinoma and
breast cancer, respectively. However, even the restriction to the tumor entity might be too
imprecise considering tumor subtypes, grading, and also the tumor environment (primary
vs. metastasis). This illustrates that an algorithm must be tailored specifically to the task at
hand.

Similar to image analysis, MSI, measuring hundreds of spectra per single tumor core,
originates large datasets, with information that amounts to the whole proteome, which
possibly cannot be fully interpreted. For that reason, the more specific and well thought
our hypothesis is, the more likely we are to find answers. To that extent, histopathological
annotation, meaning the process of evaluation of detailed images of stained tissue sections
by a trained pathologist and marking the regions of interest, is crucial. This reflects the
assessment of morphological and architectural features that characterize the tissue and its
pathological changes and entails a complex mixture of visual motifs and cellular properties
that allow the pathologist to infer about the disease. The accuracy of this process is
essential for diagnostic as well as research purposes. That is why histological annotations
can help narrow down the obtained answers to more meaningful results. The importance
of histological annotations has been previously acknowledged, but its relevance for tissue
classification using machine learning algorithms has never been quantified [7–9].

To quantitatively compare the classification accuracy with and without histological
annotations, we have measured the peptide/protein content of trypsin digested samples
of five different patient cohorts using matrix-assisted laser desorption/ ionization time
of flight (MALDI-TOF) MSI. The measured cohorts were then used to train three of the
most commonly employed classification algorithms (LDA—linear discriminant analysis,
RF—random forest, and SVM—support vector machine) before and after histological
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annotations. These classification algorithms are all based on supervised learning, hence the
input information, which is required for building the model, is subsequently used in the
decision making in the classification process.

As tumor heterogeneity differs depending on the tissue origin, we have investigated
different entities. Renal tumor samples (including clear cell renal cell carcinoma—ccRCC,
papillary renal cell carcinoma—pRCC, chromophobe renal cell carcinoma—chRCC, renal
oncocytoma—RO, and angiomyolipoma—AML), which present a more uniform tissue
composition, colon cancer (CC) which presents a medium tissue complexity, pancreatic
ductal adenocarcinoma (PDAC), and cholangiocarcinoma (CCC), which are usually more
heterogeneously composed. The models were then employed for the classification of a
subset of the data, and accuracy values were compared.

2. Results

To evaluate the impact of histological annotations we have considered 6 different tissue
microarrays (TMAs), with a total of 354 samples from patients of four different pathology
institutes. Based on the hematoxylin and eosin (H&E) staining of the measured samples,
the epithelial regions were carefully annotated by a pathologist. For the annotations either
SCiLS Cloud (which is now a discontinued service previously provided by Bruker) or
QuPath were used. The annotated regions were then co-registered with the measurement
regions using SCiLS Lab (Figure 1).
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Figure 1. Example of histological annotation (in yellow) on the PDAC primary (left) and metastasis
(right) TMA overlaid with the measurement regions (orange).

The datasets were divided in training and validation (70% of the measured regions)
and test set (30%). The average accuracies (Tables 1–5) of each classification model were
obtained from the confusion matrix of the test set. To allow for a fair comparison, all
models were fitted using the same classification algorithms and without tuning.

Table 1. Classification accuracies of the different supervised classification models using non-
annotated renal cell carcinoma samples versus using the same dataset with histological annotations
of the tumor region.

RCC (Tumor vs. Normal) Without Annotations Annotated Improvement

LDA 74.92 75.35 0.43

SVM 74.33 75.28 0.95

RF 77.97 78.39 0.42
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Table 2. Classification accuracies of the different supervised classification models using primary
pancreatic ductal adenocarcinoma (PDAC) samples and distant metastasis in direct comparison with
the same samples considering the histological annotations of the epithelial regions.

PDAC (Primary vs. Metastasis) Without Annotations Annotated Improvement

LDA 58.67 80.64 21.97

SVM 61.36 84.08 22.72

RF 70.50 91.27 20.77

Table 3. Classification accuracies of the different supervised classification models using cholangiocar-
cinoma (CCC) samples with and without histological annotations.

CCC (Tumor vs. Normal) Without Annotations Annotated Improvement

LDA 82.36 93.41 11.05

SVM 83.41 94.84 11.43

RF 91.52 96.44 4.92

Table 4. Classification accuracies of the different supervised classification models using samples from
stage I and II colon cancer (CC) with and without histological annotation of the epithelial regions.

CC (Stage I vs. II) Without Annotations Annotated Improvement

LDA 93.54 95.24 1.7

SVM 94.34 95.96 1.62

RF 97.13 96.98 −0.15

Table 5. Classification accuracies of the different supervised classification models of pancreatic ductal
adenocarcinoma (PDAC) versus cholangiocarcinoma (CCC) samples in direct comparison with the
same samples with histological annotations of the tumor regions.

mTMAs (PDAC vs. CCC) Without Annotations Annotated Improvement

LDA 80.86 88.77 7.91

SVM 81.62 90.32 8.70

RF 95.49 96.16 0.67

Duplicates of samples from 60 patients (total of 120 tissue cores) diagnosed with renal
cell carcinoma were combined in a TMA with tumor tissue and normal tissue neighboring
the tumor regions. Renal cell carcinoma (RCC) was selected as it presents a more homo-
geneous setting with only little stroma. The classification accuracy was evaluated on the
models’ capability to differentiate normal from tumor tissue (Table 1).

Pancreatic ductal adenocarcinoma (PDAC) displays a more heterogeneous tissue
composition with various amounts of intermingled stroma and inflammatory cells, and
often presents distant metastasis at the time of diagnosis [10]. Therefore, we have evaluated
the impact of histological annotation of the tumor regions in pairs of primary and metastasis
collected from 17 patients (Table 2).

CCC, a tumor that exhibits an aggressive growth and low rate of recovery, being
therefore one of the most lethal cancer types [11,12], was also evaluated by itself, by
comparing tumor tissue with healthy tissue (Table 3). Here we have considered 145 tissue
cores from 51 patients.

Current employed approaches for Union for International Cancer Control (UICC)
staging I/II colon cancer (CC) are insufficient for reliable prognosis prediction [13]. Here
the different staging attributed on diagnosis was compared before and after histological
annotations (Table 4). By choosing to compare such small proteomic changes, we are
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also challenging the approach and evaluating the impact of histological annotations for
convoluted changes in the tissue. This TMA is composed by 78 tissue cores from 41 patients.

PDAC and CCC have comparable tissue complexity and high histomorphological
resemblance [14]. We have therefore evaluated two mixed TMAs with a total of 120 tissue
cores from 54 patients diagnosed with PDAC or CCC (Table 5). The use of two TMAs also
introduces some experimental variability, which impacts the classification accuracy.

On a parallel note, the removal of the regions on the border of the core (for TMAs) or
measurement regions, may also impact the analysis (Figure 2). Areas without tissue tend
to ionize better than areas with tissue (so called edge effect), which can cause the ionization
in the tissue to get lost among the higher intensity peaks from the non-tissue areas.
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3. Discussion

As MSI is a rapidly evolving technology, it becomes essential to develop fast and
reliable methods to further its applications. Using machine learning approaches to analyze
the vast data from on-tissue measurements does not only provide quicker answers but also
allows for deeper scrutiny of the data. However, the analysis outcome is unequivocally
connected to the input data, which should be carefully curated in order to achieve mean-
ingful results. Here we have weighed the effect of histological annotations of the measured
tissue in the classification accuracy of different datasets. For that, we have utilized the very
same tissue section, which after matrix removal was stained with H&E and scanned for
evaluation and annotation by a pathologist.

As tissues have different cellular compositions depending on their origin and function,
also tumor tissues can differ in their composition and complexity. For that reason, we
have evaluated specimens with different degrees of heterogeneity (tissue heterogeneity is
illustrated in more detail in the Supplementary Materials, in Figures S1–S5). From what we
can see from the classification results (Tables 1–5), classification accuracies do not show a
consistent improvement across all tumor types. Perhaps not surprisingly, tissue heterogene-
ity also dictates different needs when it comes to tissue annotation. More homogeneous
tumor samples, such as kidney tumors (Figures S1 and S2), only benefit slightly from
meticulous histological annotations, with an overall improvement of 0.4% for LDA and RF
and approximately 1% for SVM. More heterogeneous tumor samples (such as the PDAC),
have a more pronounced benefit from precise annotation of the histological features, with
an improvement of classification accuracy of over 20%. Additionally, CCC, with a heteroge-
neous tissue distribution, shows an impactful improvement on the classification accuracy
after detailed histological annotation.

Often datasets have more than one TMA, or different measurements need to be com-
pared, which also introduces inter-measurement variabilities that impact the classification.
Considering that, we have also tested the impact of histological annotations on a dataset
composed of two mixed TMAs. By attempting to differentiate PDAC and CCC (Figure S4),
we achieved an improvement comparable to the CCC (tumor vs. normal), proving once
again the relevance of this step in the data preparation. We have also posed seemingly im-
possible questions, to challenge the hypothesis and provide deeper insight into the impact
of the histological annotations. We compared CC samples with different patient outcomes,
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to assist in prognosis prediction, which is currently lacking for UICC stage I/II CC patients.
However, only 22% of the patients had been diagnosed with stage II colon cancer, making
the cohort classes unbalanced. Despite the inequality, also here we see an improvement due
to histological annotations for two of the three tested models, indicating that even in most
challenging cases, the use of annotated structures still benefits the accuracy of the model.
Overall, we can objectively state that annotation of the histological features benefited the
datasets included in this study, and therefore should be considered an integral step of data
curation with the purpose of building more accurate classification models.

It is also important to stress that all samples were collected from donor blocks, where
only tumor enriched regions had been pre-selected for building the TMAs. However, this
does not always translate in cores only harboring tumor for two main reasons. One of
the reasons can be explained by the way TMAs are constructed. In the first step, areas of
interest (e.g., tumor and adjacent normal) are annotated on a stained H&E section from
each donor block. These annotations are transferred to the matching area on the donor
tissue block, and subsequently, cores are punched out of the donor block and placed into
the preformed hole within the recipient block. Cores might not harbor the intended tissue
type due to errors during annotation transfer from section to block or TMA construction
itself. Another reason lies in the fact that tissue blocks are three-dimensional, and a section
only captures one plane in a three-dimensional space. Thus, a TMA section might initially
harbor the tissue type of interest, but as sections are cut from the block this might no longer
be the case for deeper sections. The second reason is based on the tissue of interest itself. If
the tissue of interest is heterogeneous, it will be heterogeneous no matter the size of the
investigated area.

Another relevant note is that areas without tissue or with very low tissue content,
which are often included in the measurement regions, in particular at the edge between
tissue and the glass slide, can also impact the classification. These areas usually produce
higher ion intensity than tissue regions, as shown in Figure 1, which can result in sup-
pression of lower signals and further challenge the data analysis process. Histological
annotation also addresses this issue, removing non-tissue areas from the data analysis,
considering only tissue regions, and avoiding border regions, and where the tissue might
have poorly adhered to the glass slides (thus, for example, resulting in changes in tissue
height). Additionally, sample preparation can alter the shape and size of the samples,
and some difficulties might arise when co-registering the measurement regions and the
H&E scan. This has higher impact in more heterogeneous tissue, where more detailed
annotations are required, and also in larger TMAs. To solve this predicament, software
that can accommodate those changes, and provide a good overlay of the measurement
regions and the annotated H&Es is required to maximize the accuracy of the analysis pro-
cess. A perfect overlay is, as we see it, essential for the evaluation of more heterogeneous
tissue structures. Additionally, the measurement resolution is of high relevance to the
topic especially in relation to more heterogeneous samples. Routine MSI, usually carried
at 30–50 µm pixel size, might not provide enough detail to accommodate smaller tissue
structures. Especially when considering smaller samples, such as biopsies, where tumor
content can be significantly less and therefore, a higher measurement resolution must be
considered.

As spatial resolution increases towards single cell level, it will become very time
consuming, especially for routine measurements, to carry out manual annotation. In
such cases, employing digital pathology, that can facilitate and expedite the annotation of
samples, could be the solution for further advancement of the technology.

MSI is setting itself to solve the most challenging conundrums in pathology, there
are, however, a few things that the scientific and medical community need to establish
before the technology leaps to standard practice. Gathering vast sample pools that include
adequate diversity per tumor type/ subtype, collect detailed patient data, treatment and
outcome information, and thoroughly annotated specific tumor regions are some of the
steps required to achieve highly accurate classification models.
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4. Materials and Methods
4.1. Sample Selection and TMA Preparation

The cohorts were identified by searching the administrative database of the respec-
tive pathology institutes (PDAC and CCC from the Institute of Pathology, University of
Regensburg; CC from the Institute of Pathology, University of Augsburg; PDAC primary
and metastasis, and RCC from the Institute of Pathology, Technical University of Munich,
CCC normal and tumor, Institute of Pathology, Charité, Berlin) to identify relevant cases.
The clinical data was provided by the internal clinical data from the respective University
Hospitals. In order to allow for high-throughput analysis, selected areas of the tumor tissue
of every patient were combined in the TMAs. The study was conducted in accordance with
the Declaration of Helsinki. PDAC vs. CCC, CCC tumor vs. normal protocol has been
approved by the ethics committee of the Medical University Charité Berlin (application
EA1/06/2004). Renal tumors protocol and PDAC primary vs. metastasis has been ap-
proved by the review board of ethical committee of the School of Medicine of the Technical
University of Munich (Approval 403/17S). CC protocol of was approved by the Institu-
tional Review Board of the University Hospital of Augsburg (Approval 25.09.2018—BKF
2018-18) and performed according to the national rules. The resected tissue was analyzed
by hematoxylin and eosin (H&E) staining and areas of interest were marked. Cylindrical
tissue cores (0.4–1.0 mm in diameter, 4–8 mm in height) were removed from a specific
area of interest within individual ‘donor’ paraffin blocks and relocated in an array-like
format into preformed holes, equally spaced 0.5 mm apart, in an empty recipient paraffin
block (45 × 20 mm). Tumor tissue used for TMA construction had been initially fixed in 4%
buffered formalin and embedded into paraffin. Patient samples were randomly distributed
across TMAs. The TMAs were produced according to the standard operation procedure of
each institution.

4.2. Sample Preparation

From each TMA, a section of 4 µm was adhered to an indium-tin-oxide (ITO) slide
(Bruker Daltonics, Bremen, Germany). Sample preparation has previously been described
in detail [15,16]. Briefly, sample slides were heated to 80 ◦C prior to dewaxing with xylene
(Carl Roth GmbH, Karlsruhe, Germany), and subsequent rehydration with increasingly
concentrated ethanol washes (Carl Roth GmbH, Karlsruhe, Germany). Afterward, the
samples were subjected to heat-induced antigen retrieval in MilliQ water at 95 ◦C for
20 min. A trypsin (Promega, Mannheim, Germany) solution was prepared in 40 mM
ammonium bicarbonate (Sigma-Aldrich Chemie GmbH, Munich, Germany) to a final
concentration of 0.1 µg/µL. The enzyme solution was sprayed with an automatic sprayer
(TM Sprayer, HTX Technologies, Chapel Hill, NC, USA) in 16 cycles with a fixed spraying
flow of 150 µL/min. On-tissue digestion was carried out for 2 h at a controlled temperature
of 50 ◦C. Following digestion, four cycles of matrix solution (10 mg/mL of alpha-cyano-
4-hydroxycinnamic acid matrix (Sigma-Aldrich Chemie GmbH, Munich, Germany) in
70% acetonitrile aqueous solution with 1% trifluoracetic acid (Carl Roth GmbH, Karlsruhe,
Germany)) were deposited with a defined flow of 120 µL/min and a temperature of 75 ◦C.

4.3. Proteomic Characterization by Matrix-Assisted Laser Desorption/Ionization Mass
Spectrometry Imaging

MSI was performed using a RapifleX MALDI Tissuetyper time-of-flight (TOF) mass
spectrometer (Bruker Daltonics). A peptide calibration standard mix (bradykinin, an-
giotensin II, angiotensin I, substance P, bombesin, ACTH clip 1–17, ACTH clip 18–39, and
somatostatin 28 (Bruker Daltonics)) was used for external calibration. Each spectrum was
automatically generated at a spatial resolution of 50 µm using flexControl (Bruker Dalton-
ics) in the mass range of m/z = 600–3200. 500 laser shots were acquired for each spectrum
at 1 kHz, with a laser power of 65–80%. The measurement regions were defined using
flexImaging (Bruker Daltonics). Following the MSI measurements, matrix was removed by
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two washes in 99.99% methanol (Carl Roth GmbH, Karlsruhe, Germany) for 2 min each,
followed by two washings in 99.99% ethanol (Carl Roth GmbH) for 10 s.

4.4. Tumor Annotation, Data Processing, and Extraction

Following matrix removal, the very same TMA sections measured by MSI, were
stained with H&E and digitalized utilizing a slide scanner (Aperio CS2, Leica Biosystems,
Nussloch, Germany). H&E scans were uploaded, and tumor regions were thoroughly
annotated using SCiLS Cloud (discontinued service from Bruker Daltonics, Bremen, Ger-
many) or QPath (v0.2.2) (Queen’s University, Belfast, UK) by a pathologist (B.C., B.M.,
and K.S.) [17]. MSI data was processed using SCiLS Lab Pro (Bruker Daltonics) for mass
spectrometry and image visualization. No damage was inferred on the tissue by the
MALDI-TOF laser. Annotations were imported into SCiLS Lab Pro software. Spectra
baseline was normalized to the total ion count (TIC). Additionally, the spectra were prepro-
cessed for intensity profile normalization, re-sampling, spatial de-noising, and calculation
of a second normalization profile [18,19]. Subsequently, automated peak picking with
weak de-noising was performed, and spectra of individual spots were exported to .csv-
format, and imported to R statistical software (version 3.6.3) (R Foundation for Statistical
Computing, Vienna, Austria) via RStudio 1.2.5033 [20,21], for further analysis.

4.5. Statistical Analyses—Supervised Classification

The dataset was split into training (70%) and test (30%) sets, with the method control
set to 10-fold cross-validation for all models. The classification models were fitted using
the “caret” package on R (3.6.3). Linear Discriminant Analysis (LDA) was fitted using the
method “lda”. The principle behind LDA is to define a comparable space for data sample of
lower dimension in which the data points are “separable”. The data “separability” is based
on the mean value and variance. As the solution can be obtained by solving generalized
eigenvalues, this model allows for fast processing of large data sets [22]. Random forest
classification, simply put, uses a combination of tree classifiers where each classifier is
generated using a random vector. A series of decision trees are then evaluated to cast the
most popular class and input the vector [23]. Random Forest (RF) was fitted using the
method “ranger”, with the number of trees set to 50. Tuning parameter ‘min.node.size’
was held constant at a value of 1. Accuracy was used to select the optimal model using the
largest value, but kept the same with and without annotations. Support Vector Machine
(SVM) accomplishes the classification by creating, in a higher dimensional space, a plane
or hyperplane that optimally separates the data into two categories [24]. This model was
fitted using the method “svmLinearWeights”. Accuracy was used to select the optimal
model using the largest value. The final values used for the models were cost = 0.25 and
loss = L1. The fitted models were used to predict the test data subset. The accuracy value
was based on the results of the confusion matrices.
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gions, Figure S2: Section of the kidney tissue microarray annotations in the H&E scan, Figure S3:
Non-annotated regions comparison with annotated regions, Figure S4: Tumor class division of the an-
notated samples, Figure S5: Section of the pancreatic ductal adenocarcinoma and cholangiocarcinoma
mixed tissue microarray annotations in the H&E scan.
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