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Abstract: Metabolomics offers a hypothesis-generating approach for biomarker discovery in clinical
medicine while also providing better understanding of the underlying mechanisms of chronic
diseases. Clinical metabolomic studies largely rely on human biofluids (e.g., plasma, urine) as
a more convenient specimen type for investigation. However, biofluids are non-organ specific
reflecting complex biochemical processes throughout the body, which may complicate biochemical
interpretations. For these reasons, tissue metabolomic studies enable deeper insights into aberrant
metabolism occurring at the direct site of disease pathogenesis. This review highlights new advances
in metabolomics for ex vivo analysis, as well as in situ imaging of tissue specimens, including diverse
tissue types from animal models and human participants. Moreover, we discuss key pre-analytical
and post-analytical challenges in tissue metabolomics for robust biomarker discovery with a focus
on new methodological advances introduced over the past six years, including innovative clinical
applications for improved screening, diagnostic testing, and therapeutic interventions for cancer.

Keywords: review; capillary electrophoresis; cancer; chromatography; clinical medicine; metabolomics;
mass spectrometry; nuclear magnetic resonance; sample preparation; tissue biopsies

1. Introduction: A Historical Perspective to Tissue Metabolomics

Renowned French pathologist and founder of modern histology, Marie François Xavier
Bichat, first defined the term “tissue” as fundamental structural units of organs in the
human body, comprised of interlaced vessels and fibers resembling a woven structure [1].
Bichat’s tissue doctrine of general anatomy stated that the analysis of tissue specimens
was critical for understanding the origin of human diseases, as well as the development of
effective therapeutic interventions [1,2]. Through his contributions, histology emerged as a
systematic study of tissue specimens using microscopy. In 1847, Kün [3] first reported the
use of a needle-biopsy technique for extracting tumor tissue for microscopy. Thereafter,
Sir James Paget and Sir John Erichsen [4,5] subsequently introduced a needle-aspiration
biopsy method for histological analysis of breast tumors. The needle biopsy technique was
further developed as a diagnostic tool for assessing tumors later in the 20th century. For
instance, the needle aspiration biopsy technique became a routine clinical practice at the
Memorial Center in New York, where 2500 tumors were reported over a three year period
in the mid-1920s [5,6]. While initially being rejected in the US, the needle-aspiration biopsy
technique continued to be used across Europe. Ultimately, within the latter half of the 20th
century, further developments in the technique led to its widespread clinical use in other
countries worldwide.

At present, tissue biopsies are routinely used in histology and cytology for the diagno-
sis of malignant from benign tumors. Despite the prevalent use of histology in modern
clinical medicine, the method is prone to observer bias that stem from visual (e.g., differ-
ences in illusion of size, brightness, color hues) and cognitive biases (e.g., confirmation
and/or context bias) that may lead to subjective interpretation and grading when using
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semi-quantitative scoring systems [7]. For instance, Kleiner et al. [8] performed a study to
examine inter- and intra-observer variability in histopathology scoring of liver specimens
from patients with non-alcoholic fatty acid liver disease (NAFLD) as they are at high risk
for developing cirrhosis and hepatocellular carcinoma (HCC) if left untreated. While all
pathologists showed high agreement in steatosis and fibrosis scoring among adult cases,
there was less agreement in pediatric cases, especially when evaluating the presence of
microvesicular steatosis, pigmented macrophages and ballooning [8]. While histopathology
and semi-quantitative grading may be useful for patient stratification in diseases such as
NAFLD, there is growing use of non-invasive imaging techniques [9] and biochemical
tests [10] that are less prone to bias to ensure more reliable clinical decision making.

Tissue biopsies have emerged as a clinical specimen of interest in “-omics” ap-
proaches, including genomics, epigenomics, transcriptomics, proteomics and recently
metabolomics [11]. Metabolomics aims to characterize and quantify low molecular weight
metabolites (<1.5 kDa) within complex biological samples when using high field nuclear
magnetic resonance (NMR) and various separation techniques coupled to high resolution
mass spectrometry (MS), which can provide new insights into disease mechanisms [12,13].
Nontargeted metabolite profiling can also reveal the mechanisms of action of therapeu-
tic interventions and adherence monitoring, including exercise training and/or dietary
changes [14,15]. Traditionally, most metabolomics studies utilize surrogate biofluids (e.g.,
urine, plasma) due to their less invasive sample collection procedures, which are especially
useful for biomonitoring applications in large populations. However, biofluids are non-
organ specific and are reflective of many biochemical processes occurring over various
tissues within the body [16]. As a result, metabolic phenotyping of tissue specimens is
ideal (if available) as they are the localized site of most disease processes relevant to organ
dysfunction in specific disease processes, such as chronic kidney disease, coronary artery
disease, and inflammatory bowel disease. Furthermore, they may provide more robust and
sensitive biomarkers for disease screening, diagnosis or prognosis as compared to blood or
urine specimens notably at early stages of development [17].

Within the last two decades, there has been a steady growth in tissue metabolomic
applications, including new advances in sample preparation, as well as instrumental and
bioinformatic methods to improve the identification of clinically relevant metabolites and
lipids from minimal amounts of tissue [18]. For example, Watkins et al. [19] reported in
2002 one of the first comprehensive tissue metabolomic studies applied to murine heart and
liver tissues to examine the effects of rosiglitazone on lipid metabolism in type 2 diabetes.
In a recent PubMed search using the terms “tissue metabolomics,” over 1600 studies have
been reported for mammalian tissue specimens from January 2002 to May 2021, with a
majority of studies published from 2015 onwards as shown in Figure 1A. Moreover, a
diverse range of tissue specimens have been analyzed in these published reports with liver
(22%), brain (14%), heart (10%), skeletal muscle (10%) and kidney (8%) tissues comprising
of the top five organs mainly analyzed from mammals in pre-clinical animal studies
as highlighted in Figure 1B. Other mammalian tissues less frequently explored include
adipose, pancreas and breast tissue. Approximately 30% of these studies involved tissue
specimens collected from human participants—the most common being intestine (19%),
brain (11%), liver (9%), breast (8%), and kidney (7%) tissue specimens as indicated in
Figure 1C. A majority of these studies employed global metabolomic approaches for
differentiating tumor-related metabolite signatures in cancerous relative to noncancerous
tissue, including HCC, colorectal cancer (CRC), and breast cancer, whereas brain tissue
metabolomic studies have focused on neurodegenerative diseases, such as Alzheimer’s
disease. As a result, tissue metabolomics is a rapidly expanding field in clinical medicine
relevant for the prevention and/or treatment of chronic human diseases. This is important
given an alarming increase in cancer burden globally with fatalities mainly attributed to
lung, followed by colorectal, liver, stomach, and female breast cancers [20].
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Figure 1. (A) An overview of published research articles in the field of tissue metabolomics from January 2002 until May 
2021 (*) based on a PubMed search with the terms “tissue metabolomics.” Only original research articles were reported 
(excluding comprehensive reviews, book chapters, commentaries, conference abstracts) based on mammalian species 
(blue). Approximately 30% of these studies were based on human tissue specimens (yellow). Pie chart distributions of 
various (B) mammalian and (C) human tissue specimens analyzed from these published studies.  

2. An Overview of Tissue Metabolomic Workflows 
To date, two complementary strategies have been adopted for tissue metabolomics 

studies, namely targeted (i.e., hypothesis-driven) analysis of known metabolites and/or 
non-targeted (i.e., hypothesis-generating) analysis of metabolites when using one or more 
instrumental platforms [21]. Targeted metabolomics traditionally focuses on measuring a 
defined subset of defined metabolites within one or more metabolic pathways of interest 
in order to answer a defined biochemical question [12]. However, quantitative metabo-
lomic analyses of increasingly large metabolite panels are now feasible when using high 
throughput NMR [22], and notably direct infusion-MS methods using suitable matching 
stable-isotope internal standards [23] that also enables rapid spatial imaging of lipid pro-
files directly from tissue specimens [24]. In general, data preprocessing, statistical anal-
yses, and biochemical interpretation is more routine in targeted metabolomics than non-
targeted metabolite profiling data workflows [25] given that a large fraction of the metab-

Figure 1. (A) An overview of published research articles in the field of tissue metabolomics from January 2002 until May
2021 (*) based on a PubMed search with the terms “tissue metabolomics.” Only original research articles were reported
(excluding comprehensive reviews, book chapters, commentaries, conference abstracts) based on mammalian species (blue).
Approximately 30% of these studies were based on human tissue specimens (yellow). Pie chart distributions of various
(B) mammalian and (C) human tissue specimens analyzed from these published studies.

2. An Overview of Tissue Metabolomic Workflows

To date, two complementary strategies have been adopted for tissue metabolomics
studies, namely targeted (i.e., hypothesis-driven) analysis of known metabolites and/or
non-targeted (i.e., hypothesis-generating) analysis of metabolites when using one or more
instrumental platforms [21]. Targeted metabolomics traditionally focuses on measuring
a defined subset of defined metabolites within one or more metabolic pathways of in-
terest in order to answer a defined biochemical question [12]. However, quantitative
metabolomic analyses of increasingly large metabolite panels are now feasible when us-
ing high throughput NMR [22], and notably direct infusion-MS methods using suitable
matching stable-isotope internal standards [23] that also enables rapid spatial imaging of
lipid profiles directly from tissue specimens [24]. In general, data preprocessing, statistical
analyses, and biochemical interpretation is more routine in targeted metabolomics than
non-targeted metabolite profiling data workflows [25] given that a large fraction of the
metabolome constitutes unknown compounds [26]. However, a major drawback of tar-
geted approaches is their limited metabolite coverage that may be unsuitable for basic and
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applied discovery-based research [27]. In contrast, non-targeted metabolomics is a global
approach that aims to measure a far wider range of metabolites within a tissue specimen,
including the identification of unknown metabolites of biological or clinical significance
when using MS/MS [28]. In contrast to targeted approaches, non-targeted metabolomic
studies aim to filter, authenticate, and annotate metabolites from potentially thousands
of molecular features detected when using full-scan data acquisition with high resolution
MS, whose chemical structures are largely unknown a priori. High dimensional data sets
are generated in tissue metabolomics, and thus require multivariate statistical methods
for improved data visualization, pattern recognition/filtering, group classification, and
metabolite ranking [29]. As chemical standards and stable-isotope internal standards are
often not available, only semi-quantitative or relative quantification is feasible in discovery-
based tissue metabolomics [30]. There are numerous steps involved in non-targeted tissue
metabolomic workflows including pre-analytical, analytical and post-analytical processes
(Figure 2) in order to obtain high data quality while reducing bias and false discoveries.
These steps will be outlined in detail in the proceeding sections.
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Figure 2. Overview of a classic data workflow for tissue metabolomic studies. Tissue collection via biopsy or autopsy
by a trained physician represents the first key step in the workflow. Thereafter, tissue specimens undergo several steps
of sample preparation (e.g., lyophilization, homogenization etc.) prior to sample extraction. Following rigorous sample
preparation methods, metabolite profiling is performed using a suitable analytical platform of choice such as NMR, direct
infusion and/or MS-based instrumental platforms with high resolution separations. Data preprocessing and filtering are
then applied to the raw metabolome dataset to reduce dataset redundancy, spurious signals and false discoveries prior
to statistical analysis, metabolite identification, and biological interpretation. Direct and spatially-resolved metabolomic
analysis from tissue specimens is also feasible using new advances in MS imaging techniques.

3. Tissue Collection and Sample Preparation

Tissue collection and sample preparation remains the major bottlenecks and sources
of bias in tissue metabolomic workflows. Tissue collection is usually performed under
anesthesia through a biopsy, surgical procedure, or a post-mortem autopsy by a trained
physician. Depending on the tissue of interest, various biopsy procedures may be used
for tissue collection and storage. However, the most common procedures include percuta-
neous biopsy, core needle biopsy (CNB) and fine needle-aspiration biopsy (FNAB). The
percutaneous biopsy is a classic outpatient procedure used for obtaining liver tissue for
assessing disease severity, diagnosis and/or treatment responses. The technique involves
inserting a biopsy needle through the abdomen to obtain a liver biopsy. Complications
such as localized discomfort and/or pain as well as mild hypotension can arise. However,
only 1–3% require hospitalization for these complications [31]. CNB is a biopsy technique
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routinely used in clinical and/or research settings that employs a large core needle to
obtain intact tissues for examination. The method requires local anesthesia and is prone to
minor complications, including pain, discomfort, bruising and infection [32,33]. Figure 3
illustrates an example of a CNB technique (i.e., Bergström muscle biopsy) introduced
by Tarnopolsky et al. [34] for obtaining skeletal muscle tissue. After local anaesthesia is
applied, the biopsy needle is inserted through the subcutaneous tissue, fascia, and into
the muscle, where suction is applied to obtain the tissue [34]. Similar CNB techniques
have been utilized for other tissue types, including liver [35], breast [36] and lymphatic
tissue [37]. FNAB is a minimally invasive, low cost and simple biopsy technique that
requires no anesthesia to obtain small amounts of tissue using a small, fine needle [38].
FNAB has been used in breast [39], thyroid [40] and pancreatic [41] tissue for disease
diagnosis and/or monitoring tumor progression. Nonetheless, tissue biopsies still remain
an invasive procedure that requires informed patient consent, which limits its applicability
to recruit large numbers of healthy volunteers as controls.
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Figure 3. Schematic of a suction-modified Bergström muscle biopsy technique. (A) Lidocaine is first applied to the skin and
subcutaneous tissue. (B) An incision is made though the subcutaneous tissue into the fascia to help guide the biopsy needle
(C) into the muscle, where suction is applied to obtain the tissue specimen. (D) Removal of the needle is facilitated using
counterpressure and twisting motion. (E) The specimen is examined for adequacy and dissected into smaller sections prior
to flash freezing in liquid nitrogen. (F) The incision is closed using a 3.0 silk suture. Reproduced from Tarnopolsky et al.,
2011 with permission.

There are numerous other precautions one should take for collecting tissues for non-
targeted metabolomics studies [30]. For instance, after tissue collection via biopsy or
surgical procedures, tissues should be removed of fat and connective tissue as well as
potential contamination from blood, in order to obtain an accurate, metabolite profile
representative of the tissue. Moreover, it is imperative to immediately freeze tissues upon
collection (i.e., flash-freezing in liquid nitrogen) and store at low temperatures (−80 ◦C)
in order to halt metabolism and ensure metabolites within tissues remain stable with
long-term storage [17,30]. This is crucial for labile metabolites such as major phosphagens
(e.g., ATP) and reduced thiols (e.g., GSH) that are prone to hydrolysis and oxidation arti-
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facts, respectively. These processes are exacerbated following repeat freeze–thaw analysis
of frozen tissue specimens or their extracts [42].

After collection, tissues can either be lyophilized (i.e., freeze-dried) or remain wet prior
to various sample workup protocols that are critical for subsequent metabolomic analysis,
such as tissue disruption, liquid extraction, sample deproteinization and/or chemical
derivatization. Certain tissues may require more extensive grinding with a nitrogen cooled
mortar and pestle if needed, however, it is labor intensive and low throughput. As a
result, tissue homogenization usually consists of physically disrupting the tissue using
a homogenizer [43–46]. While homogenization is evidently less labor intensive, it is
impractical for smaller tissue quantities [47]. Alternatively, lyophilization is recommended
as an effective strategy to eliminate excess water in heterogenous tissue specimens [17]. In
this case, lyophilization of wet tissue specimens offers a useful sample preparation step to
reduce biological variance in metabolomic studies, as well as facilitate sample handling
(e.g., weighing as a fine powder) and enhance subsequent solvent extraction efficiency.
Reported metabolite concentrations are thus normalized to total dried tissue weight [42],
which is allows for better comparative analysis of other heterogenous clinical specimens,
such as loose stool collected from pediatric inflammatory bowel disease patients [48].
Therefore, several factors such as minimum tissue amount, total number of samples, and
available infrastructure/budget must be considered when choosing an appropriate method
for homogenization of tissue specimens prior to metabolite extraction.

To date, numerous metabolite extraction methods have been reported for various
tissue specimens from animals and humans; this stems from the diverse polarity of metabo-
lites and lipids that span a wide dynamic range having different solubilities and chem-
ical stabilities [49]. As a result, there is no single extraction procedure that allows for
truly unbiased tissue analyses while also being compatible with NMR and MS-based
metabolomics [50]. In general, the optimal extraction method should be non-selective,
reproducible, simple, and produce high metabolite yields with good long-term stability
that can also be automated for large-scale studies [17]. Lin et al. [47] reported a simple,
reproducible extraction method for muscle and liver tissues for NMR metabolomics. Var-
ious extraction solvents were compared in this study including perchloric acid, as well
as organic solvents (i.e., methanol, ethanol, acetonitrile) mixed with water and/or chlo-
roform. Overall, the methanol/chloroform/water solvent system based on the classic
biphasic Folch and/or Bligh-Dyer extraction procedure was ideal due to its efficiency
in obtaining both hydrophilic metabolites and non-polar lipids with high efficiency and
reproducibility [47]. To date, many studies have made progress in overcoming the low
throughput in tissue metabolite extraction methods that can be implemented in multi-
platform approaches [16,46,49]. Furthermore, recent efforts have been made to establish
standard extraction procedures for various tissue types such as liver, kidney, and skeletal
muscle in murine tissues [16]. However, there is urgent need for better harmonization of
various tissue metabolomic/lipidomic protocols similar to recent initiatives introduced for
serum/plasma [50] and cell cultures [51].

4. Instrumental Methods for Tissue Metabolomics

Comprehensive analysis of complex and heterogeneous tissue specimens with high
data fidelity remains a persistent challenge in metabolomics [52,53]. In most cases, comple-
mentary extraction conditions and/or analytical platforms are required to achieve broad
metabolome coverage for a diverse range of compounds ranging from abundant elec-
trolytes and osmolytes to lower abundance metabolites and lipids. Recent advances in
both nuclear magnetic resonance (NMR) and mass spectrometry (MS)-based instrumen-
tal platforms enable the identification and quantification of metabolites especially when
coupled to high efficiency separation techniques, such as gas chromatography (GC), liquid
chromatography (LC), capillary electrophoresis (CE) and ion mobility (IM) [54]. Never-
theless, the development of a compatible multi-platform pipeline for reliable analyses of
specific tissue specimens is important for optimal metabolome coverage [11].
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Solution NMR spectroscopy offers a fast and reproducible platform for metabolite
profiling and metabolic flux analysis [55] while allowing for quantitative and qualitative
determination of metabolites with excellent long-term stability [56]. Moreover, minimal
sample preparation is typically required allowing for the analysis of metabolites non-
destructively in complex biological samples within minutes (i.e., ~10 min/sample) depend-
ing on spectral acquisition settings and magnet field strength. However, one-dimensional
proton (1H)-NMR methods for tissue extracts generally require larger sample volumes
(i.e., >100 µL) while also being prone to spectral overlap and lower concentration sensitivity
(e.g., detection limits >5 µM) as compared to MS-based techniques [57]. In most cases,
effective removal of lipids and protein from biofluids or tissue extracts is needed to improve
the quality of NMR spectra [58] allowing for reliable automated spectral processing [59].
The advent of High Resolution Magic Angle Spectroscopy (HRMAS)-NMR, first introduced
by Cheng et al. [60] in 1996 enables intact tissue analysis (i.e., 10–20 mg) without homoge-
nization, extraction or complicated sample processing [61,62]. More importantly, since the
sample remains unaltered during analysis, other diagnostic tests such as histopathology
can be performed on the same tissue specimen. Since 2004, HRMAS-NMR has been suc-
cessfully applied for metabolomics analyses of various tissue types including brain, breast,
lung, and pancreas [63]. In particular, HRMAS-NMR has been used to examine regional
differences in metabolite profiles between cancerous and adjacent, non-cancerous tissue
that could better inform treatment decisions [64,65]. However, the use of spectral binning of
integrated peaks from the analysis of NMR-observable tissue metabolites typically includes
contributions from many known or undefined metabolites, thus lacking specificity for
biochemical interpretation [66].

MS-based techniques have been more widely applied in tissue metabolomics studies
due to their higher sensitivity and wider dynamic range as compared to NMR. Moreover,
contemporary MS instrumentation have greatly improved analytical performance (e.g.,
mass resolution, mass accuracy, scanning speeds) to reduce isobaric interferences to mea-
sure distinct metabolite or lipid species with lower detection limits. However, non-targeted
MS-based approaches are still constrained by inconsistent reporting standards and several
technical challenges, including quantitative reliability and structural elucidation of novel
compounds [67]. Direct infusion (DI)-MS of crude tissue extracts offers a “separation-
free” platform making it an attractive technique for high throughput screening, such as
shotgun lipidomics [68]. In this case, lipid extracts comprised of non-aqueous solvent(s)
prevents the introduction of highly saline tissue samples. Greater sample throughput
(>1500 samples/day) for discovery-based metabolomics can be achieved by flow injection
analysis (FIA) coupled to time-of-flight mass analyzers with excellent intrascan dynamic
range [27]. However, DI or FIA-MS methods are prone to ion suppression due to matrix
effects as well as lower specificity due to lack of resolution of isobaric and isomeric ions
that can contribute to false discoveries. Additionally, unknown identification is challenging
due to convoluted MS/MS spectra from co-eluting ions when compared to reference spec-
tral databases without orthogonal retention, migration or ion drift time information [52].
However, selective chemical derivatization strategies of lipid classes or sub-classes can be
applied in shogun lipidomic workflows to reduce interferences when analyzing complex
sample extracts [69]. Nevertheless, large-scale studies using DI-MS require implementa-
tion of preventative maintenance protocols and robust data pre-processing approaches to
reduce long-term signal drift and bias, such as intra- and inter-batch correction algorithms
as demonstrated with cardiac tissue extracts [70].

Alternatively, ambient ionization-MS is a rapid technique for the direct analysis of
tissue specimens with minimal sample preparation enabling ex vivo metabolic profiling
without separation. The use of ambient MS-based techniques have increased for tissue
metabolomics studies in recent years [71]. Desorption electrospray ionization (DESI)-MS,
first introduced by Cooks and colleagues [72], enables the direct analysis of metabolites
from intact tissue specimens by applying a fine spray of charged droplets to extract metabo-
lites from the sample surface. Importantly, DESI-MS also allows for mass spectral imaging
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of tissue that retains the underlying spatial distribution of metabolite concentrations in
situ that are otherwise lost with conventional metabolomic methods relying on tissue
homogenization and extraction processes. Eberlin et al. [73] first developed a DESI-MS
technique combined with machine learning methods for brain tumor classification based
on lipidomic profiling in representative surgical specimens. Interestingly, the regional
distribution of lipids shown in the DESI-MS images were highly correlated with the distri-
bution of meningioma cells observed via histopathology of the same brain tissue specimen.
Similarly, DESI-MS was also recently applied for rapid intraoperative assessment of tu-
mor margins (<3 min) during glioma resection based on analysis of N-acetylaspartate,
2-hydroxyglutarate, and various membrane-based lipid profiles identified from brain tissue
smears [74] as shown in Figure 4. This data provides prompt yet accurate information to
better guide surgeons on safe tumor resection procedures on patients that is needed to
reduce malignancy progression.
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Probe electrospray ionization (PESI)-MS has also emerged as an ambient MS technique
for real-time analysis of tissue specimens. The mechanism of ionization is achieved via
insertion of an acupuncture needle into the sample of interest, where the water content
enables ionization to occur upon application of a high voltage [75]. The advent of laser
ablation electrospray ionization (LAESI)-MS by Nemes and Vertes [76] allows for both
in situ and in vivo tissue analysis with no sample preparation over a wide mass range
of ions. Using the native water content of the sample, a mid-infrared laser is focused on
the tissue specimen, facilitating ablation followed by ionization [71]. LAESI-MS has been
applied to various specimen types, most notably in brain tissue and single cells. Rapid
Evaporative Ionization Mass Spectrometry (REIMS) or “iKnife” was recently introduced
as a practical ambient ionization technique that also allows for in situ tissue sampling
and real-time characterization of lipid profiles from human tissue to better guide surgical
operations and procedures. In this case, a high frequency current is applied to the surgical
blades to facilitate tissue plume formation to produce charged species that are subsequently
removed by suction from the surgical site to a MS for data analysis [71]. Intriguing results
reported by Balog et al. [77] revealed that the intraoperative REIMS technique coincided
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with postoperative histopathology results in 96.2% of reported cases, demonstrating the
potential clinical utility of iKnife technology during surgical procedures. While the use
of ambient MS-techniques is steadily increasing due to its ability to dynamically analyze
spatial distributions of metabolites directly from tissue samples during operations, these
techniques are still prone to matrix interferences and ion suppression effects. Moreover, a
well-defined patient cohort is needed to validate differentiating lipid profiles associated
with disease severity and heterogeneity in specific tissues during model training.

To date, a majority of tissue metabolomics studies still rely on hyphenated analyti-
cal platforms that couple one or more separation methods to electrospray ionization-MS
in order improve selectivity despite longer total analysis times and more complicated
data pre-processing [56]. To date, tissue metabolomic studies have applied various in-
strumental configurations and data workflows based on targeted and/or non-targeted
approaches as summarized in Figure 5. Overall, LC-MS is the most commonly used plat-
form to date (~44%) due to the fact that complementary retention mechanisms can be
used to resolve chemically diverse classes of metabolites and lipids from tissue extracts
when using reversed-phase (RP) and hydrophilic interaction (HILIC) [78]. As a result, the
broad selectivity of LC-MS enhances metabolome coverage with high sensitivity, small
sample requirements, and compatibility with various mass analyzers [54]. GC-MS is the
second most widely used analytical platform (~18%) in tissue metabolomics studies de-
spite the need for more complex pre-column chemical derivatization and sample workup
procedures, with most studies (~14%) using both LC-MS and GC-MS to increase over-
all metabolome coverage when analyzing tissue extracts [30,79–81]. Both solution NMR
and HRMAS-NMR were used in about 25% of published tissue metabolomic studies as
they are non-destructive methods that also allow for direct measurement of metabolites
within intact tissue [57]. Interestingly, while CE-MS is ideal for the analysis of mass-
restricted tissue specimens (<5 mg dried tissue mass), it remains an underutilized tech-
nique in tissue metabolomics (~4%) as compared to more established hyphenated-MS based
platforms [42,82–85]. Furthermore, DI-MS and FIA-MS are also underrepresented instru-
mental platforms in tissue metabolomics studies (~1–2%) due to their low specificity and
issues with ion suppression matrix effects and isomeric/isobaric interferences. Other
emerging techniques recently used in tissue metabolomics include ultra-fast ion mobility-
MS to improve the resolution and detection of low abundance lipids [86], as well as ambient
MS techniques for spatially resolved tissue imaging applications as described above, in-
cluding DESI-MS [87,88] and matrix-assisted desorption ionization (MALDI)-MS [89]. A
list of representative metabolomic studies recently published are summarized in Table 1
that use different analytical methods applied to various tissue specimens.
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Table 1. Recently published metabolomic studies demonstrating advanced technical advancements in spatial imaging
and/or mass limited analysis of various tissue specimens.

Analytical
Platform

Tissue
Type

Sample
Size Unique Features Key Findings Reference

LC-MS Kidney n = 5 Global analysis of metabolites
and lipids by RP/HILIC

>1000 features reliably measured in
kidney tissue with differentiation of

malignant from non-cancerous tissue

Leuthold et al.,
2017

LC-MS Colon n = 24 Analysis of ascending versus
descending colon tissue

Colon lipids and metabolites elevated
in obese/overweight as compared to
normal weight with distinct regional

differences in colon profiles

Baxter et al.,
2020

LC-MS Esophagus n = 211
Validation of biomarkers of
esophageal squamous cell

carcinoma

Diagnostic/predictive metabolites with
good accuracy that also provide

insights into esophageal squamous cell
carcinoma tissue calcification

Chen et al.,
2021

GC-MS Skin
wound n = 11 Novel tissue specimen and

sampling method

Dynamic microbiome and metabolome
analysis of >346 features during normal
wound healing using patch sampling

Ashrafi et al.,
2020

GCxGC-
MS Ovaries n = 224

Predictive biomarkers of
ovarian tumor burden and

patient survival

Accumulation of hydroxybutyric acids
with strong predictive ability of patient
survival prior to surgery as confirmed

by gene expression data

Hilvo et al.,
2016

NMR Placenta n = 13 Novel tissue specimen from
non-labored pregnancies

Differentiation of maternal and fetal
placental tissue reflecting flux from
mother to fetus following delivery

Walejko et al.,
2018

NMR Adipose n = 3640 Visceral adipose tissue extract
analysis in two large cohorts

Validation of a metabolite/lipid
signature of visceral adiposity that
persisted after adjustment for BMI

Neeland et al.,
2019

HRMAS-
NMR Prostate n = 365 Direct analysis of tumor grade

and stage of prostate cancer

Differential analysis revealed
metabolites were upregulated in tumor

tissues with elevated myo-inositol

Vandergrift
et al., 2018
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Table 1. Cont.

Analytical
Platform

Tissue
Type

Sample
Size Unique Features Key Findings Reference

DESI-MS Brain
smears n = 73 Spatial imaging of tumor

margins for resection

High tumor cell percentage at surgical
margins with 93% sensitivity and 83%
specificity for safe tumour resection

Pirro et al.,
2017

DI-MS Cardiac n = 20
Best practice data workflows

and rigorous quality
assurance

8 batches of cardiac tissue extracts
acquired over 7 days with inter-batch

adjustment with QC spectra

Kirwan et al.,
2014

MSI-CE-
MS

Skeletal
muscle n = 14

Repeat muscle tissue biopsies
in cross-over study using a

multiplexed CE-MS platform

Modest treatment effect from
bicarbonate intake prior to exercise

with intramuscular changes in
potassium, uric acid, oxidized mixed

glutathione and anserine

Saoi et al., 2019

5. Pre-Analytical Considerations to Reduce False Discoveries in Tissue Metabolomics

In order to achieve reproducible research findings with high data quality in non-
targeted metabolomic studies, the utmost care must be taken in the pre-analytical phase to
minimize false discoveries. Inadequate study power [90,91] is a major limitation in tissue
metabolomics studies due to the modest number of study samples typically available,
the large biological variance underlying disease heterogeneity, as well as the technical
variability related to specimen collection, storage and workup. For these reasons, well
designed studies should be performed, where comparison groups are closely matched in
terms of anthropometric and clinical characteristics (i.e., sex, age, BMI, co-morbidities),
especially when measuring small to modest effect sizes [92]. A unique advantage of tissue
metabolomics is that each specimen can serve as its own control since specific malignant
tissue regions can be analyzed relative to non-cancerous segments. This can be performed
by resection of tissue segments prior to homogenization and extraction or directly via
spatially resolved imaging MS techniques [93]. Furthermore, it is crucial to implement
stringent quality control (QC) and quality assurance (QA) practices in the experimental
workflow to minimize bias [94]. However, due to the diverse range of instrumental plat-
forms, specimen types, sample workup procedures, and data workflows adopted in tissue
metabolomics, a single unified QC/QA procedure may not fit all laboratories. Nonetheless
specific guidelines are being increasingly adopted to promote good analytical practice and
transparency in reporting, such as the Metabolomics Quality Assurance and Quality Con-
trol Consortium [95,96]. For instance, QA practices to prevent bias include implementation
of preventative maintenance, regular instrument calibration, staff training in all laboratory
operations, data storage and archival processes, as well as standardized operating protocols
as related to tissue sample collection, extraction and storage. Similarly, QC procedures en-
compass analysis of suitable blanks, use of multiple internal/recovery standards, standard
reference samples, and calibrants for reporting of data quality. However, the lack of certi-
fied standards for specific tissue specimens do not allow for effective harmonization studies
as required to compare the performance of various analytical platforms between laborato-
ries [97]. Alternatively, an internal reference material derived from pooled tissue samples
in a study may serve as a surrogate QC sample for assessment of technical precision and
long-term signal drift in longitudinal studies involving multi-user instrumentation.

6. Data Preprocessing and Statistical Analysis

Data preprocessing is a critical step for converting raw data prior to multivariate statis-
tical analysis and metabolite identification [98]. This encompasses several steps including
data filtering, peak picking and spectral deconvolution, time alignment, normalization and
scaling [99,100]. In MS-based workflows, noise filtering is a crucial process that aims to
authenticate molecular features from background ions (e.g., buffers, solvents), dataset re-
dundancy (e.g., in-source fragments, isotopic ions, adducts) and spurious or irreproducible
signals that constitute the majority of ions detected when using electron impact (GC-MS)
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or electrospray (LC/CE-MS) ionization with full-scan data acquisition [101]. This process
is critical to eliminate redundant information in the data matrix while avoid data overfit-
ting and false discoveries. Thereafter, an authentic molecular feature reflecting a unique
metabolite can be annotated based on at least two orthogonal parameters, such as accurate
mass and retention time (m/z:RT). Peak alignment is also a key data pre-processing step
in tissue metabolomics to correct for long-term instrumental drift and potential isobaric
interferences during data acquisition when using separation-based MS platforms. Addi-
tionally, authenticated molecular features in discovery-based metabolomic studies often
need to satisfy specific criteria for acceptable technical precision based on repeat analysis
of pooled QC specimens (CV < 35%), as well as their detection frequency to reduce missing
values (>75%) notably when conducting longitudinal or large-scale studies [102]. However,
specific thresholds used for data filtering in nontargeted metabolomics are dependent on
the specific instrumental platform, metabolite abundance within tissue sample, as well as
the availability of matching stable-isotope internal standards.

Thereafter, normalization and scaling methods are frequently used to reduce data
variance while minimizing bias notably when comparing metabolite or lipid profiles over
a wide dynamic range across different samples over time [96]. A common strategy in
MS-based workflows is to normalize feature responses to internal standards, based on
the assumption that systematic error exclusively contributes to the variance observed in
the internal standards. For tissue metabolomics studies, feature responses are also often
normalized to the (wet or dry) weight of tissue specimen analyzed, to account for variations
in tissue specimens analyzed [42,85]. Mathematical transformations (i.e., log transforma-
tion) can also be employed to correct for heteroscedasticity and skewed distribution in the
datasets [96]. Additionally, scaling methods (i.e., autoscaling, Pareto scaling, range scaling)
are frequently used to correct for variances in feature abundances, where highly abundant
features are scaled down to reduce their influence on statistical outcomes compared with
features of lower abundance [103]. Furthermore, different strategies for missing value
input are needed for non-detected metabolites measured in sub-sets of samples based on
their impact of overall data variance and data quality, such as a k-means nearest neighbour
algorithm [104]. To date, there are a plethora of open-source and commercial software
packages and resources available for processing of metabolomic data sets [105], including
XCMS, mzMine and MetaboAnalyst.

Prior to statistical analysis, the use of normality testing is warranted as most metabolo-
mics data may be skewed and not normally distributed. Graphical methods (i.e., his-
tograms) as well as univariate normality tests such as the Kolmogorov-Smirnov (K-S) or
Shapiro-Wilk tests may be used in this case. However, if the data remains skewed, even
after applying transformations, non-parametric tests must be used (i.e., Mann-Whitney U
test) [90]. Multivariate statistical analysis methods are employed as a first step to evaluate
the relationship (i.e., correlations, covariances) amongst all metabolites simultaneously
in a dataset. Unsupervised methods such as principal component analysis (PCA) and
hierarchical clustering analysis (HCA) are common exploratory methods used to assess
the overall data structure while observing trends and groupings due to inherent variation
without information on the data structure. In contrast, supervised methods such as partial
least squares-discriminant analysis (PLS-DA) have a priori information regarding the data
structure and thus, are often used to generate predictive models for classification. It is
imperative to validate these predictive models using cross-validation and independent test
set validation to decrease the risk of data overfitting and false discoveries [90,91]. Other
methods such as bootstrapping, permutation testing and rotation tests can also be used
for method validation in tissue metabolomic studies. For large, complex metabolomics
datasets, univariate significance testing such as a paired or unpaired t-test are performed
for tens to hundreds of metabolites simultaneously. In such cases, multiple hypothesis test-
ing correction, such as the Bonferroni correction or the Benjamini-Hochberg false discovery
adjustment is recommended to control false positives (type I errors) and false negatives
(type II errors). Additionally, univariate statistical tests for robust biomarker candidates
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should also be adjusted for potential confounding following adjustments of covariates in a
study (e.g., sex, age, BMI etc.) [106].

7. Unknown Compound Identification via High Resolution MS/MS

Unlike NMR, most detectable molecular features in MS based metabolomics remain
largely unknown [26]. Indeed, a significant fraction of the human metabolome is derived
from exogenous compounds derived from dietary intake, environmental exposures, and
the microbiome [107]. As a result, no publicly available databases provide complete
reference MS/MS spectra for all metabolites or lipids present in various tissues and species
so reliance on de novo structural elucidation for chemical identification is often needed prior
to biological interpretation. Contemporary software from MS vendors enable automated
generation of most likely molecular formulae based on high resolution MS, including the
accurate mass of a molecular ion, its isotopic pattern and charge state [108]. However, this is
still insufficient to deduce a definitive chemical structure, yet can filter out potential isobaric
candidates especially when combined with independent solute retention time, mobility or
drift time information. As a result, collisional-induced dissociation experiments are often
used for acquisition of MS/MS spectra from precursor ions. Recommended guidelines
in the confidence of metabolite reporting is dependent on the specific application and
compound class [109], with more stringent requirements for unambiguous lipid structural
identification based on their unique stereochemistry [110]. Even if reference MS/MS
spectra are available for a putative candidate ion in various curated spectral databases
such as HMDB [111], METLIN [112], or LIPID MAPS [113], direct comparisons may
be challenging due to co-eluting interferences without optimal spectral deconvolution
approaches [114]. Alternatively, a global pathway meta-analysis approach directly from
unidentified metabolite features may offer useful biochemical insights into mechanisms,
such as in breast cancer [115].

Additional methods to support metabolite identification include functional group/ch-
emical reactivity, enzymatic transformations, correlation analysis to other known metabo-
lites, as well as integration with genetic data [116]. Furthermore, in silico approaches for
predicting MS/MS spectra [117] in conjunction with target-specific databases relevant to
species/sample type represent promising developments [118]. Some progress has also
been made in establishing tissue specific databases, such as the Mouse Multiple Tissue
Metabolome Database (MMMDB) introduced by Soga et al. [119]. The MMMDB is a curated
public database that provides quantitative metabolite information from multiple murine
tissues and plasma using non-targeted metabolomics approaches. The database contains
annotated mass spectra and electropherograms that are readily accessible for on-line data
comparison with other studies. Similarly, Fouroutan et al. [120] performed a comprehen-
sive characterization of seven different bovine tissues (e.g., liver, muscle) and five different
biofluids (e.g., serum, ruminal fluid) using NMR, LC-MS/MS and ICP-MS with references
ranges reported for 2100 metabolites, lipids, electrolytes, and trace metals. These findings
led to the creation of the Bovine Metabolome Database (BMDB), a public database and
open access resource summarizing experimental, computational and literature research
relevant to beef and dairy researchers, food/nutritional scientists, and consumers [120].

Figure 6 illustrates a MS/MS spectra acquired for an unknown intramuscular cation
(m/z 241.1295, [M + H]+) that was elevated following high dose oral bicarbonate pretreat-
ment prior to strenuous exercise in a randomized placebo-controlled cross-over intervention
trial [42]. The unknown cation was subsequently identified as anserine, a unique β-alanyl-1-
methylhistidine dipeptide. This identification was achieved based on its co-migration after
spiking a pooled muscle tissue extract together with excellent MS/MS spectral overlap as
shown in the mirror plot with four diagnostic products ions that match well with a reference
compound acquired under standardized conditions (20 V). Access to a purified standard
is critical for confirmatory identification while also enabling its accurate quantification
when reporting its intramuscular concentrations normalized to dried mass. Alternatively,
a comparison of an unknown ion with a putative known analog based on differences
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in their characteristic MS/MS spectra and retention/migration time changes provides
additional evidence for metabolite identification, such as 3-hydroxyhexanoylcarnitine and
hexanoylcarnitine from murine placental tissue extracts [85]. Nevertheless, metabolite
identification remains a significant bottleneck in global tissue metabolomic studies, notably
when commercial standards and reference MS/MS spectra are lacking.
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Figure 6. (A) Box-whisker plots of four top-ranked intracellular skeletal muscle metabolites/electrolytes (p < 0.05) associated
with improved muscle function due to oral bicarbonate pretreatment following strenuous interval exercise in this placebo-
controlled cross-over intervention study including an initially unknown metabolite at m/z 241.1295. (B) Extracted ion
electropherogram with full-scan mass spectrum of the unknown ion, subsequently identified unambiguously as anserine by
comigration after spiking pooled muscle tissue with an authentic standard. (C) Mirror plot comparing MS/MS spectra
acquired for the unknown ion at 20 V as compared to anserine standard demonstrates a high matching score based on four
characteristic product ions that is consistent with the β-alanyl-1-methylhistidine dipeptide. Adapted from Saoi et al., 2019
with permission.

8. Applications of Tissue Metabolomics in Clinical Research: Recent Advances

Since tissues are the origins of aberrant metabolism from aging and/or environmental
stressors (e.g., viral infections, carcinogen exposure etc.), they are ideal specimens for
exploring the mechanisms underlying disease pathogenesis, such as advanced stages of
liver fibrosis from chronic hepatitis C infection [121]. One of the most illustrative tissue
metabolomics studies was the discovery of sarcosine as a putative biomarker of prostate
cancer in 2009 [122]. Elevations in sarcosine were observed in metastatic and clinically
localized prostate cancer tissues compared to benign tissues (n = 42), and these changes
were also associated with cancer progression in patients with matching serum (n = 110)
and urine (n = 110) samples. These results indicated that sarcosine could serve as a
potential biomarker for early detection of prostate cancer given limitations of screening
using digital rectal exams and prostate specific antigen tests. However, there have been
subsequent studies reporting poor associations between sarcosine levels and prostate
cancer progression in both urine [123] and serum [124], suggesting its limited utility for
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prostate cancer screening. Additionally, de Vogel et al. [125] reported that high serum
sarcosine levels were modestly associated with reduced prostate cancer risk, contrary to the
original findings by Sreekumar et al. [122]. These discordant findings highlight the need for
independent replication while avoiding potential study design flaws, such as a temporal
lag between serum collection and tissue biopsy sampling. Indeed, better standardization
of biomarker validation studies, specimen collection procedures, and robust analytical
protocols are required to render metabolomic discoveries more translatable in a clinical
setting [126]. We will discuss recent tissue metabolomic studies with a focus on unique
tissue specimens analyzed by innovative methods, as well as their application to improve
clinical diagnostics for tissue-specific cancers lacking effective biomarkers for their early
detection, such as urachal adenocarcinomas [127].

Saglik et al. [128] recently reported the first characterization of pterygium tissue, a
fibrovascular mass that typically forms in the eye, often causing vision loss. Elevated levels
of arginine, methionine, glycine and tyrosine were measured in pterygium tissue as com-
pared to normal conjunctiva tissues. While this was the first study to perform metabolite
profiling on this tissue type, a major limitation of the study was the modest metabolome
coverage when using FIA-MS that focused on amino acids. In contrast, Leuthold et al. [129]
developed and validated a comprehensive metabolomics and lipidomics workflow using
LC-MS to characterize human kidney tissue derived from patients undergoing routine
radical nephrectomy. Over 4177 metabolic and lipidomic features were detected using
LC-MS in orthogonal reversed-phase and HILIC separations under both positive and nega-
tive ion modes. Furthermore, over 260 polar/ionic metabolites were annotated, including
organic acids, amino acids, purines, nucleosides, monosaccharides, sugar alcohols and
acylcarnitines. Major lipids from kidney tissue extracts were also analyzed in this study,
including phosphatidylcholines, phosphatidylserines, and phosphatidylglycerols, as well
as ceramides, glycosphingolipids, diacylglycerols and triacylglycerols. Furthermore, a
cross-platform comparison was performed when analyzing tumor and non-malignant
kidney tissue from clear cell renal cell carcinoma patients, which demonstrated good
mutual agreement of their non-targeted LC-MS assay relative to a commercial Biocrates
Absolute IDQ p180 targeted assay kit [129]. Independent replication of discriminating
disease biomarkers by two or more analytical platforms is an effective way to reduce false
discoveries in metabolomics [121] prior to their subsequent validation in larger/multi-
center cohorts. A recent study by Sato et al. [130] also demonstrated the clinical utility
of global metabolomic analyses for classifying disease progression and malignant status
among clear cell renal carcinoma patients, which were correlated with clinicopathological
factors, such as tumor volume, pathological T stage, presence of metastasis, and Furman
nuclear grade. Anchoring specific metabolite signatures with previously validated blood-
based biomarkers, well-established diagnostic algorithms (e.g., histopathology, imaging),
and/or clinically meaningful outcomes provides greater credibility in the potential utility
of tissue-based metabolomic discoveries.

To date, there have been several metabolomic studies on skin/epidermis tissue speci-
mens, such as ex vivo analysis of the volatile metabolome from skin biopsies using head-
space solid-phase microextraction with GC-MS to differentiate melanoma from benign
naevi cases [131]. However, the characterization of dynamic changes in skin tissue follow-
ing an acute injury has been unexplored. For the first time, Ashrafi et al. [132] reported
the wound metabolome following skin tissue biopsies performed on four spots on the
inner arm of volunteers in conjunction with skin microbiome analyses. Non-invasive
headspace sampling was also performed using polydimethylsiloxane patches positioned
at the wound site at three time points following a 28 day period of healing. As expected,
fewer features (129 versus 346) were detected in headspace wound sampling as compared
to direct tissue biopsy analyses when using GC-MS. Temporal changes in metabolite levels
were identified after a false discovery adjustment, where specific volatile organics from
headspace sampling were associated with skin healing processes (e.g., blood flow), such as
isobutyl-2,2,4-trimethyl-3-hydroxypentanoate. However, no changes in bacterial genera
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abundances were evident since they remain largely stable on the skin when normal healing
processes occur after an acute injury [132]. Nevertheless, further validation of this study is
warranted in a larger cohort with standardized sampling collection procedures to enable
reliable quantification of metabolites from skin tissues/wounds, whereas MS/MS is needed
for the identification of a large fraction of unknown volatile organic compounds.

There have been numerous studies published on the characterization of human colon
tissues given their key role in nutrient absorption and immunological adaptations espe-
cially in the context of colorectal cancer screening [133]. For example, previous studies have
shown that right colon cancer patients have poor prognosis outcomes due to larger tumor
sizes and higher tumor grade compared to those with left side colon cancer, which is exac-
erbated by obesity as a co-morbidity. Baxter et al. [134] used metabolomics to characterize
differences between ascending and descending colon tissue from 24 adults scheduled for
routine colonoscopy. Using an expanded yet targeted metabolomic analysis by LC-MS/MS,
over 500 metabolites were detected and identified in both ascending and descending colon
tissue biopsy extracts, including endogenous metabolites/lipids, as well as various dietary
and microbiota-derived compounds. Overall, obese/overweight individuals had notable
differences in their metabolome when comparing right-ascending and left-descending
colon regions relative to normal weight controls, namely metabolites associated with gut
inflammation, nutrient uptake, and products of microbiota metabolism, such as an enrich-
ment in colonic trimethylamine-N-oxide [134]. The integration of metabolomic together
with microbiome analyses of colonic mucosa may further improve understanding of mi-
crobiome dysbiosis that may also contribute to functional changes at specific cancer sites
within the colon [135]. For example, Johnson et al. [136] used metabolomics to assess the im-
pact biofilms have on colon tissue in the context of colon carcinogenesis. Using nontargeted
LC-MS based metabolomics, over 300 molecular features were differentiated between can-
cerous and non-cancerous tissue from patients undergoing routine surgery from two sites
at John Hopkins University (USA) and Karolinksa University Hospital (Sweden). Notable
upregulations in polyamines including N,N-diacetylspermine, N-acetylspermidine, and
N-acetylspermine were consistently observed in the two patient populations. Furthermore,
Nanostructure Imaging Mass Spectrometry (NIMS) was used as a direct imaging method
to confirm higher spatial distributions of polyamine concentrations in malignant tissue as
compared to healthy controls, notably at the mucosal edge where biofilms typically form as
depicted in Figure 7. Importantly, independent replication of discovery-based metabolomic
analyses of colonic tissue extracts together with in situ imaging-MS and biochemical con-
firmation of increased spermidine/spermine N1-acetyltransferase expression provided
supporting evidence that polyamine metabolites may be cooperatively produced by biofilm
bacterial communities. These results revealed that targeting both polyamine production
and biofilm interactions may pave the way towards a more successful therapeutic strategy
in colon cancer [136].

There is growing interest in placental tissue metabolome analyses to explore the
underlying mechanisms of early life exposures, and the developmental origins of dis-
ease in offspring since it functions as a critical interfacial organ during pregnancy. For
instance, Walejko et al. [137] used NMR metabolomics to characterize both maternal and
fetal placental tissue samples collected at two time intervals from non-labored women
undergoing cesarian section following delivery. Overall, 40 metabolites were quantified
consistently in these two distinct tissue types with a greater abundance of choline, as well
as specific amino acids (e.g., Thr, Ser) and organic acids (e.g., citrate, succinate) in maternal
as compared fetal tissue samples. Results from this study emphasize the maternal and
fetal sides of the placenta have distinct metabolic phenotypes that likely reflects nutrient
transport from the maternal to the fetal compartment via a concentration gradient during
normal development [137]. Fattuoini et al. [138] also reported distinct differences in the
placental metabolome from obese relative to normal weight pregnant women when using
GC-MS, including metabolites associated with antioxidant defenses, lipid biosynthesis,
and energy production. Furthermore, Saoi et al. [85] revealed sex-dependent differences
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in the placental metabolome, with intracellular metabolites associated with fatty acid
oxidation and purine degradation were elevated in females as compared to male murine
placentae. Obesity before pregnancy is associated with impaired metabolic status of the
mother that impacts disease risk of the offspring [139], highlighting the important roles
of habitual diet, maternal health, and early life chemical exposures that may have fetal
sex-dependent susceptibilities.
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9. Current Challenges in Tissue Metabolomics: Future Directions

Despite the mechanistic insights derived from tissue-based metabolomics studies in
human participants and animal models, persistent technical challenges remain. These
include the small amounts of tissue samples available for comprehensive cross-platform
analyses, modest study power and inadequate control/patient specimens for rigorous
biomarker validation, as well as the lack in harmonization of tissue-specific extraction proce-
dures. Additionally, there remains few dedicated tissue biobanks for metabolomic/lipido-
mic studies, as well as public accessible MS/MS spectral libraries to support metabolite
identification in specific tissues/species that include their reference concentrations. Due to
the invasive nature of tissue biopsies in humans, limited sample quantities are typically ob-
tained (~100 mg wet weight) yet often need to be utilized for other “-omics” platforms (e.g.,
transcriptomics, proteomics) or independent clinical tests (e.g., histopathology, cytology).
Therefore, non-targeted tissue metabolomics studies face the challenge of achieving broad
metabolite coverage while working with mass-limited tissue specimens. Although the
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majority of tissue metabolomic studies have been focused on differentiation of cancer from
other types of malignancies or benign conditions, adipose tissue is not widely characterized
despite its relevance in the pathogenesis of obesity-related chronic disorders, including
diabetes and cardiovascular disease [140].

Recent studies have developed standardized workflows to overcome this challenge
by maximizing the amount of metabolite information derived from the same tissue. For
instance, Vorkas et al. [141] developed a pipeline for untargeted analysis using a simple ex-
traction protocol to extract hydrophilic metabolites and non-polar lipids for cardiovascular
disease research using the same arterial tissue with two consecutive extractions to improve
metabolome coverage while using two orthogonal LC-MS methods (RP/HILIC) in positive
and negative ion modes. This approach is applicable to other tissue metabolomic studies
to achieve high data quality and broad metabolome coverage as reflected by 226 struc-
tural assigned metabolites and lipids identified from arterial tissue extracts [142]. Deeper
metabolome coverage may be realized via chemical isotope labeling strategies for spe-
cific metabolite classes (i.e., sub-metabolomes) to enhance their retention properties and
ionization responses when using LC-MS [142]. Huan et al. [143] reported one of the first
studies to perform comprehensive metabolite profiling from intact tissue using a molecu-
lar preservation by extraction and fixation in conjunction with chemical isotope labeling
and LC-MS, which enabled quantification of more than 4000 isotopic pairs of metabolites
(i.e., 13C/12C-dansylated amine/phenol species) from stored prostate tissues. Importantly,
this method enables the extraction of metabolites in methanol without alterations to tis-
sue morphology, which allows histopathology or other clinical tests to be performed on
the same tissue specimen. Alternatively, new advances in multiplexed CE-MS allows
for higher throughput tissue metabolomic analyses, including novel data workflows for
unambiguous biomarker classification via temporal signal pattern recognition [102]; this
approach was used to identify a novel anserine analog reported for the first time from
residual amounts of lyophilized human skeletal muscle tissue, where certain metabolites
and electrolytes had strikingly higher relative abundances as compared their extracellu-
lar concentrations measured in fasting serum samples (e.g., phosphocreatine, reduced
glutathione, potassium etc.) [42].

A major constraint of most tissue metabolomics studies published to date is the lack
of spatial information, which is critical for accurately defining regions requiring surgical
removal of malignant tissue. As a result, in situ localization of metabolites and their
abundances in specific organelles or histologically defined parts of tissues is not feasible
when using classical tissue extraction procedures or ex vivo tissue-based NMR approaches.
Tissue metabolomic studies via imaging MS is thus ideally suited for analysis of the distri-
bution of metabolites, lipids and/or drugs especially when combined with new advances
in machine learning, deep learning, and artificial intelligence [144]. In fact, MS imaging
heralds a revolutionary approach for digital pathology based on data-rich molecular in-
formation that may enable accurate discrimination of tumour from non-tumor regions of
tissue after adequate model training [127]. However, further advances in tissue preparation,
method reproducibility, faster acquisition times, and broader metabolome coverage is still
needed. For instance, Li et al. [145] introduced air flow-assisted DESI-MS as a sensitive and
more rapid approach for nontargeted and spatially resolved tissue metabolomic studies.
This method allowed for a single imaging analysis of a lung cancer tissue cryosection
(1 × 1 cm2) within 40 min as required for clinical lung cancer diagnosis and image-guided
surgery. Lastly, the integration of microbiome, proteomic and/or genomic data sets is
also critical in tissue metabolomic studies to better validate the putative clinical utility
of prognostic or diagnostic biomarkers, as well as exploring their likely causative role in
disease pathophysiology as demonstrated by the accumulation of hydroxybutyric acid
metabolites in ovarian cancer [146]. This strategy can also lead to the identification of
new potential therapeutic targets for treating cancers with poor survivorship, such as
esophageal squamous cell carcinoma [147]. Nevertheless, future discovery-based tissue
metabolomic studies are recommended to incorporate rigorous study designs that are
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replicated independently in representative populations using complementary analytical
methods to demonstrate their reproducibility, diagnostic accuracy, and overall clinical
utility based their estimated health impact [148].
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