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Abstract: Oral squamous cell carcinoma (OSCC) represents 90% of oral malignant neoplasms. The
search for specific biomarkers for OSCC is a very active field of research contributing to establishing
early diagnostic methods and unraveling underlying pathogenic mechanisms. In this work we
investigated the salivary metabolites and the metabolic pathways of OSCC aiming find possible
biomarkers. Salivary metabolites samples from 27 OSCC patients and 41 control individuals were
compared through a gas chromatography coupled to a mass spectrometer (GC-MS) technique.
Our results allowed identification of pathways of the malate-aspartate shuttle, the beta-alanine
metabolism, and the Warburg effect. The possible salivary biomarkers were identified using the
area under receiver-operating curve (AUC) criterion. Twenty-four metabolites were identified with
AUC > 0.8. Using the threshold of AUC = 0.9 we find malic acid, maltose, protocatechuic acid,
lactose, 2-ketoadipic, and catechol metabolites expressed. We notice that this is the first report of
salivary metabolome in South American oral cancer patients, to the best of our knowledge. Our
findings regarding these metabolic changes are important in discovering salivary biomarkers of
OSCC patients. However, additional work needs to be performed considering larger populations to
validate our results.

Keywords: metabolomics; biomarkers; metabolites; oral squamous cell carcinoma; oral cancer; saliva;
mass spectrometry; GC-MS

1. Introduction

Oral cancer refers to the set of malignant neoplasms that affect the lips and other
intraoral regions [1]. It represents the 16th most common neoplasm in the world, with
355,000 new diagnoses and 177,000 deaths in 2018 [2]. It is a highly relevant problem for
global public health since there is no evidence of significant improvement for fast treatment
and prevention in spite of all the progress in current research and therapies [3]. Among
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oral malignancies squamous cell carcinoma (OSCC) is the most prevalent histological type
representing approximately 90% of cases. OSCC is often preceded by the presence of oral
potentially malignant disorders. They are clinically identifiable as either white or red
patches known as leukoplakia and erythroplakia, respectively. Non-healing ulcers may
also be noticed along cancer development [4]. The highest incidence of OSCC occurs in
the middle-aged population although the number of young individuals diagnosed with
the disease has increased [5,6]. The most common site for OSCC is the tongue followed
by the floor of the mouth. Less common sites include the gingiva, buccal mucosa, labial
mucosa, and hard palate [4]. OSCC has a survival rate of approximately 80% for individuals
detected with early stage disease (stage I) when compared to a rate of 20–30% in patients
diagnosed at advanced stages (stages III–IV) [7]. This fact emphasizes the importance
of early diagnosis. Unfortunately about 50% of cases are diagnosed in advanced stages
(III and IV) [8,9] which implies a worse prognosis, increased costs, and a high mortality
rate [10,11].

The predominant etiological factors for oral cancer are well established in the literature
and include the use of tobacco and alcohol which act as carcinogenic substances responsible
for constituting the so-called “field cancer” [12]. The carcinogenesis process is complex,
being influenced by genetic and epigenetic alterations [13,14]. The fact is that the sooner
these changes are detected, the earlier the disease will be discovered, contributing to a
better prognosis for patients [15]. Conventional biopsy is considered the gold standard
for the diagnosis of OSCC. However, it is inconvenient for large population screening and
monitoring of patients due to its invasiveness, high cost, and need for trained personnel
and equipment [16]. Thus, it is important to investigate biological molecules acting as
biomarkers that may provide valuable diagnostic data on OSCC [14].

The search for biomarkers for chronic diseases and malignant neoplasms is a very
active field of research worldwide [17]. Metabolomics employ state-of-the-art analytical
techniques to recognize and study metabolic alterations in individuals who are undergoing
some pathophysiological process or are undergoing pharmacological interventions and
genetic modifications [18–20].

Biofluids—urine, blood, and saliva—are often used as clinical specimens of patients for
metabolomic analysis [15]. Saliva is an oral fluid capable of reflecting the oral and systemic
health conditions of individuals [21]. It is a complex and valuable composition that includes
proteins, peptides, nucleic acids, enzymes, hormones, antibodies, electrolytes, antimicrobial
constituents, growth factors, and other molecules associated with the phenotype and even
diseases of individuals [22–25]. The main functions of saliva are related to digestion,
swallowing, tasting, and lubrication of the oral mucosa. However, it is known that in
addition to these functions saliva acts as a protective substance against pathogens and
toxins due to its specific composition [26].

Previous studies have identified metabolomic biomarkers for OSCC [27–43]. Some
of these probed salivary metabolites [27–36]. The fact that the metabolites profile can be
influenced by the sample collection time [31,44], the food intake [28,30,31,45], the general
oral health status [46], and even the oral microbiome [38,47] represents a challenge for
standardization of salivary studies in order to avoid inconsistencies and reproducibility
drawbacks. Ethnicity has also been shown to play an important role in the differentiation
of metabolites since populations of distinct ethnicities presented distinct salivary metabolic
profiles [31,37]. Most studies involving salivary metabolome in OSCC patients come from
Asian individuals [38], showing the importance of studying different ethnic groups [48].

However, despite existing limitations, previous studies have shown consistent changes
between OSCC and healthy patients [28], mainly due to the direct contact between saliva
and the oral cancer lesion [30].

In the present work we investigated the salivary metabolites profile from a sample of
OSCC patients from a South American population. The objectives were to identify possible
salivary metabolomic biomarkers and also altered metabolic pathways.
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2. Results
2.1. Demographic Data

The main clinical data of patients are summarized in Table 1. Data on sex and age did
not show a statistically relevant difference between the groups (p < 0.05).

Table 1. Demographic data of patients.

Variable OSCC 1

(n = 27)
CONTROL

(n = 41) p-Value *

Sex 2

Female 8 (29.6%) 20 (49%) 0.3326

Male 19 (70.4%) 21 (51%) 0.9131

Age 3 57 ± 13.87 57.34 ± 11.66
0.9131(28–88) (31–86)

1 OSCC, oral squamous cell carcinoma group. 2 Sex was described with their respective means and (%) percentages.
3 Age described as mean± standard deviation and in parentheses the minimum and maximum age of the patients.
n represents the number of patients in each group. * p-values according to the Student’s t-test considering as
significant p < 0.05.

Table 2 presents the TNM cancer staging system, smoking habits, and racial ethnicity
data of the patients.

Table 2. Cancer staging system, smoking habits, and racial ethnicity of patients.

TNM 1 OSCC
(n = 27)

Control
(n = 41)

T (tumor)
T1 5 (19%)
T2 7 (26%) Not applicable
T3 6 (22%)
T4 9 (33%)

N (node)
N0 14 (52%)
N1 4 (15%) Not applicable
N2 8 (30%)
N3 1 (4%)

M (metastasis)
M0 27 (100%) Not applicable

Stages
I 4 (15%)
II 4 (15%) Not applicable
III 6 (22%)
IV 13 (48%)

Smokers 20 (74%) 8 (20%)
Non smokers 7 (26%) 20 (49%)
Ex smokers 0 (0%) 13 (32%)

Racial ethnicity
Leucoderma 24 (89%) 32 (78%)
Melanoderm 1 (4%) 4 (10%)

Pheoderm 2 (7%) 4 (10%)
Xanthoderm 0 (0%) 1 (2%)

1 TNM—classification of malignant tumors. The TNM system is used to describe the anatomical extension of the
disease, where T—the extension of the primary tumor, N—the absence or presence and extension of metastasis
in regional lymph nodes, M—the absence or presence of distant metastasis. All data are described with their
respective n of each group and their respective (%) percentages.
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2.2. Metabolomic Analysis

A total of 108 metabolites were identified as relevant for OSCC and control discrimi-
nation. All metabolites found in both groups studied were allocated on a Venn diagram to
assess their distribution between groups (Figure 1). The analysis showed that the OSCC
group has a higher number of specific metabolites (26 metabolites), while the control group
had 5 specific metabolites. Seventy-seven metabolites were common for both groups. These
metabolites are show on Table 3.

The dispersion score plot PC2 against PC1 (Figure 2) shows a clear separation among groups.
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Table 3. Exclusive and shared salivary metabolites for OSCC and control groups.

OSCC CONTROL OSCC AND CONTROL

2-Hydroxyglutaric acid 2-Ketoadipic acid 1,6-Anhydroglucose
2-Ketoglutaric acid Catechol 1-Hexadecanol

3-Hydroxypropionic acid Lactose 2-Aminoethanol
4-Hydroxyphenyllactic acid Leucine 2-Deoxy-glucose

Cystamine Urea 2-Hydroxyisovaleric acid
Dihydroxyacetone phosphate 3-Aminoglutaric acid

Galacturonic acid 3-Aminoisobutyric acid
Gluconic acid 3-Aminopropanoic acid
Hippuric acid 3-Hydroxyisovaleric acid

Indol-3-acetic acid 3-Phenyllactic acid
Inosine 4-Aminobutyric acid

Isocitric acid 5-Aminovaleric acid
Lactitol Acetoacetic acid
Lyxose Adenine

Malic acid Allose
Maltose Arabitol

Methionine Arachidonic acid
O-Phospho-Serine Arginine
Pantothenic acid Aspartic acid

Protocatechuic acid Batyl alcohol
Ribose 5-phosphate Cadaverine

Sorbose Caproic acid
Spermidine Citramalic acid
Thymidine Citric acid

Uracil Cysteine
Ureidosuccinic acid Dopamine

Eicosapentaenoic acid
Elaidic acid

Fructose
Galactosamine

Galactose
Glucono-1,5-lactone

Glucosamine
Glucose

Glucuronic acid
Glutamic acid

Glycerol
Glycerol 2-phosphate

The heatmap showing the clustering of classes against metabolites is shown in Figure 3.
Samples in OSCC and control classes clustered in two big groups with 100% discrimination.
Metabolites urea, lactose, catechol, palmitic acid, 2-ketoadipic acid and leucine appeared
underexpressed in the OSCC group. On the other hand, lyxose, protocatechuic acid, uracil,
2-hydroxyglutaric, inosine, methionine, indol-3-acetic acid, 4-hydroxyphenyllac, malic
acid, pantothenic acid, isocitric acid, maltose, O-phospho-serine, lactitol, dihydroxyacetone
and ribose 5-phosphate were overexpressed in patients with cancer.

Table 4 displays the up- and down-regulated metabolites presenting statistical rele-
vance. Twenty metabolites were up-regulated (malic acid, methionine, maltose, protocate-
chuic acid, inosine, pantothenic acid, dihydroxyacetone phosphate, hydroxyphenylatic acid,
galacturonic acid, indole-3-acetic acid, uracil, isocitric acid, ribose-5-phosphate, o-phospho
serine, lactitol, gluconic acid, hippuric acid, 3-hydroxypropionic acid and spermidine) and
20 down-regulated (lactose, catechol, 2-ketoadipic acid, leucine, urea, maleic acid, palmitic
acid, ornithine, margaric acid, sucrose, octadecanol, threitol, acetoacetic acid, methionine
sulfone, phosphoric acid, elaidic acid, mannose, sorbitol, citric acid, 3-aminopropanoic
acid) in OSCC samples.



Metabolites 2021, 11, 650 6 of 18

Metabolites 2021, 11, x FOR PEER REVIEW 6 of 18 
 

 

The heatmap showing the clustering of classes against metabolites is shown in Fig-
ure 3. Samples in OSCC and control classes clustered in two big groups with 100% dis-
crimination. Metabolites urea, lactose, catechol, palmitic acid, 2-ketoadipic acid and leu-
cine appeared underexpressed in the OSCC group. On the other hand, lyxose, proto-
catechuic acid, uracil, 2-hydroxyglutaric, inosine, methionine, indol-3-acetic acid, 
4-hydroxyphenyllac, malic acid, pantothenic acid, isocitric acid, maltose, 
O-phospho-serine, lactitol, dihydroxyacetone and ribose 5-phosphate were overex-
pressed in patients with cancer. 

 
Figure 3. Heatmap using PCA data for OSCC and control classes. 

Table 4 displays the up- and down-regulated metabolites presenting statistical rel-
evance. Twenty metabolites were up-regulated (malic acid, methionine, maltose, proto-
catechuic acid, inosine, pantothenic acid, dihydroxyacetone phosphate, hydroxy-
phenylatic acid, galacturonic acid, indole-3-acetic acid, uracil, isocitric acid, ri-
bose-5-phosphate, o-phospho serine, lactitol, gluconic acid, hippuric acid, 
3-hydroxypropionic acid and spermidine) and 20 down-regulated (lactose, catechol, 
2-ketoadipic acid, leucine, urea, maleic acid, palmitic acid, ornithine, margaric acid, su-

Figure 3. Heatmap using PCA data for OSCC and control classes.



Metabolites 2021, 11, 650 7 of 18

Table 4. Set of metabolites up- and down-regulated in OSCC samples according to PCA analyses.

Metabolites
OSCC Control

p-Value 1 q-Value (FDR) 2 FC Volcano Plot 3
Mean Standard

Deviation Mean Standard
Deviation

Lactose * −1.090 0.492 0.718 0.673 <0.0001 3.1755 × 10−16 0.015832 Down
Malic acid ** 0.917 0.622 −0.604 0.444 <0.0001 3.7012 × 10−16 40.712 Up

Methionine ** 1.088 0.939 −0.717 0.367 <0.0001 3.0633 × 10−15 311.66 Up
Catechol * −0.952 0.521 0.627 0.734 <0.0001 7.1635 × 10−13 0.035587 Down

2-Keto adipic acid * −0.925 0.522 0.609 0.768 <0.0001 6.363 × 10−12 0.029706 Down
Maltose ** 0.889 0.959 −0.586 0.407 <0.0001 2.0868 × 10−11 325.18 Up

Protocatechuic acid ** 0.806 0.827 −0.531 0.447 <0.0001 2.7666 × 10−11 35.723 Up
Leucine * −1.177 0.394 0.775 1.173 <0.0001 8.7168 × 10−11 8.2595 × 10−4 Down
Inosine ** 1.070 1.317 −0.704 0.330 <0.0001 9.7882 × 10−11 2873.0 Up

Pantothenic acid ** 1.153 1.459 −0.759 0.304 <0.0001 1.4172 × 10−10 4271.4 Up
Urea * −0.861 0.530 0.567 0.810 <0.0001 1.687 × 10−10 0.037894 Down

Dihydroxyacetone phosphate ** 0.793 0.895 −0.522 0.439 <0.0001 1.687 × 10−10 45.791 Up
4-hydroxyphenylactic acid ** 1.092 1.403 −0.719 0.318 <0.0001 2.1476 × 10−10 2173.8 Up

Galacturonic acid ** 0.725 0.831 −0.477 0.467 <0.0001 8.9307 × 10−10 19.383 Up
Indole-3-acetic acid ** 0.906 1.242 −0.597 0.365 <0.0001 3.0805 × 10−9 341.04 Up

Uracil ** 0.644 0.817 −0.424 0.491 <0.0001 3.04 × 10−8 10.819 Up
Isocitric acid ** 0.665 0.885 −0.438 0.472 <0.0001 3.6657 × 10−8 20.802 Up

Ribose-5-phosphate ** 0.647 0.969 −0.469 0.461 <0.0001 3.1666 × 10−7 41.912 Up
O-Phospho-Serina ** 0.609 0.945 −0.401 0.474 <0.0001 9.548 × 10−7 17.64 Up

Lactitol ** 0.630 1.061 −0.415 0.446 <0.0001 2.1547 × 10−6 41.538 Up
Gluconic acid ** 0.609 1.101 −0.401 0.443 <0.0001 7.7433 × 10−6 183.99 Up

2-Ketoglutaric acid ** 0.515 0.836 −0.339 0.512 <0.0001 1.3092 × 10−5 6.7421 Up
Hipuric acid ** 0.518 0.888 −0.341 0.506 <0.0001 1.4925 × 10−5 7.3906 Up

Maleic acid −0.664 1.049 0.437 0.817 <0.0001 3.294 × 10−5 0. 8093 Down
Palmitic acid −0.430 0.657 0.283 0.551 <0.0001 3.3213 × 10−5 0.38165 Down

3-hydroxypropionic acid ** 0.608 1.265 −0.400 0.411 0.0002 4.4319 × 10−5 202.32 Up
Spermidine ** 0.481 0.887 −0.317 0.514 0.0001 5.3374 × 10−5 10.562 Up

Ornithine −0.614 1.197 0.405 0.986 0.0003 0.0010593 0.33872 Down
Margaric acid −0.453 1.055 0.298 0.648 <0.0001 0.0018846 0.28057 Down

Sucrose −0.487 1.005 0.321 0.928 0.0002 0.0039383 0.25406 Down
Octadecanol −0.310 0.666 0.204 0.628 0.0010 0.0064518 0.56165 Down

Threitol −0.465 1.148 0.307 0.847 0.0012 0.0069549 0.37775 Down
Acetoacetic acid −0.373 0.732 0.246 0.826 0.0024 0.0074047 0.25319 Down
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Table 4. Cont.

Metabolites
OSCC Control

p-Value 1 q-Value (FDR) 2 FC Volcano Plot 3
Mean Standard

Deviation Mean Standard
Deviation

Methionine sulfone −0.306 0.767 0.202 0.582 0.0001 0.0085698 1.123 Down
Phosphoric acid −0.374 0.806 0.246 0.968 0.0103 0.022159 0.12317 Down

Elaidic acid −0.254 0.578 0.167 0.722 0.0134 0.038044 0.4826 Down
Mannose −0.398 1.309 0.262 0.881 0.0324 0.042273 0.51969 Down
Sorbitol −0.361 0.890 0.238 1.048 0.0173 0.046325 0.11612 Down

Citric acid −0.416 1.200 0.274 1.111 0.0369 0.046725 0.11946 Down
3-Aminopropanoic acid −0.324 0.895 0.213 0.907 0.0004 0.048905 0.39703 Down
1 p-value was calculated using the Wilcoxon-Mann-Whitney test (p-value < 0.05). 2 All metabolites shown in the table were statistically significant with a false discovery rate (FDR) of 5%. 3 Volcano plot shows up-
and down-regulated metabolites in patients with OSCC. * Metabolites exclusively found in control patients. ** Metabolites exclusively found in OSCC patients.
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2.3. Analysis of Altered Metabolic Pathways in the OSCC Group

The precedent analysis enables us to investigate the altered metabolic pathways in
OSCC patients and find the role of each metabolite in these pathways.

We analyzed 25 metabolites which were found exclusively in the OSCC group. Cys-
tamine was absent from the databases of the chosen metabolomic compound and was
excluded from further analysis. Thus, the role of 2-ketoglutaric acid, 2-hydroxyglutaric
acid, 3-hydroxypropionic acid, 4-hydroxyphenylatic acid, galacturonic acid, gluconic acid,
hippuric acid, indol-3-acetic acid, isocitric acid, malic acid, pantothenic acid, protocate-
chuic acid, ureidosuccinic acid, spermidine, dihydroxyacetone phosphate, inosine, lactitol,
lyxose, maltose, methionine, O-phospho-serine, ribose 5-phosphate, sorbose, thymidine,
and uracil in metabolic pathways was investigated. The pathway enrichment analysis is
shown in Figure 4.
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A total of 41 metabolic pathways were identified as present in OSCC salivary samples.
However, only 25 presented statistical relevance. From these we can mention the malate-
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aspart (p = 0.0229), beta-alanine metabolism (p = 0.0467), and the Warburg effect (p = 0.048)
signaling pathways.

2.4. Analysis of Possible Salivary Biomarkers for the OSCC Group

A receiver operating characteristic (ROC) curve was used to establish promising
biomarkers for OSCC. The area under the ROC curve value (AUC) measures the perfor-
mance of the biomarkers. Thus, an excellent biomarker has an AUC value of 1.0. Good
biomarkers have AUC > 0.80. Using this criterion, we list in Table 5 the set of possible good
salivary biomarkers for OSCC.

Table 5. Area Under the Receiving—Operator Curve (AUC) for possible OSCC salivary biomarkers.

Metabolite AUC

Malic acid 0.98103
Lactose 0.96387
Catecol 0.94670

2-ketoadipic acid 0.94128
Maltose 0.93360

Methionine 0.92502
Urea 0.92502

Leucine 0.92322
Inosine 0.92186

Protocatechuic acid 0.91192
Dihydroxyacetone phosphate 0.89657

Galacturonic acid 0.88573
Margaric acid 0.86902

Uracil 0.86721
Isocitric acid 0.86585

Ribose 5-phosphate 0.84146
O-Phospho-Serine 0.82385

Indole-3-acetic acid 0.82204
Palmitic acid 0.82204

2-ketoglutaric acid 0.81798
Maleic acid 0.81030

Pantothenic acid 0.80307
Spermidine 0.80217

3. Discussion

The relevance of the investigation of the salivary metabolome of OSCC relies on
the identification of predominantly altered metabolic pathways which may lead to the
discovery of possible biomarkers. This could improve the capacity of early diagnosis and,
consequently, the quality of life of patients.

Reports of the salivary metabolome of patients with oral cancer described in the
literature are presented in Table 6 and compared to our findings. The present study sought
the main altered salivary metabolic pathways in OSCC patients and, additionally, the main
metabolites that can be used as future salivary biomarkers for early diagnosis. To the best
of our knowledge, this is the first research in this area focusing on Latin American patients.

OSCC is mostly diagnosed at late stages, as also evidenced by our study, in which
only 15% of patients were diagnosed with early-stage cancer (stage I), revealing that early
diagnosis remains a challenge [49]. It is noteworthy that early diagnosis implies greater
possibilities of successful treatment, less mutilation of the patient concerning the treatments
carried out, decreased mortality rate, and reduced costs [50–52].
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Table 6. Main salivary metabolomic studies of patients with OSCC.

Possible Salivary
Metabolic Biomarkers Studied Population Notes References

Malic acid ↑, Lactose ↓, Catecol ↓,
2-Keto adipic acid ↓, Maltose ↑,

Methionine ↑, Urea ↓, Leucine ↓,
Inosine ↑, Protocatechuic acid ↑ and
others metabolites present in Table 3

South American We compared OSCC patients with
healthy control This study

Lactic acid ↑, phenylalanine ↓, valine ↓ Not mentioned in the study
They compared OSCC patients
with healthy control and oral

leukoplasia
[36]

L-phenylalanine ↓, L-leucine ↓,
Propionylcholine ↑,

Acetylphenylalanine ↓, sphinganine ↓,
phytosphingosine ↓,

S-carboxymethyl-L-cysteine ↓, Choline
↑, betaine ↑, pipecolinic acid ↑,

L-carnitine ↓

Chinese They compared OSCC patients
with healthy control [32–35]

S-adenosylmethionine ↑, pipecolate ↑ Not mentioned in the study Two cases from the oral cancer
group were oral melanoma [28]

Ornithine ↓, o-hydroxybenzoate ↓,
ribose-5-phosphate ↓

Caucasian, African American,
Hispanic, Asian

They compared OSCC patients
and oral epithelial dysplasia

patients with the healthy control
[29]

Alanine ↑, choline ↑,
Leucine + isoleucine ↑, glutamic acid ↑,

120.0801 m/z ↑, phenylalanine ↑,
alpha-aminobutyric acid ↑, serine ↑

Caucasian, Asian,
African-American, Hispanic

They compared OSCC patients
with healthy control [31]

Indole-3-acetate ↑, ethanolamine
phosphate ↑ Not mentioned in the study

They compared OSCC patients
with control patients with oral

lichen planus
[27]

They studied conductive polymer
spray ionization mass spectrometry
(CPSI-MS) associated with machine
learning (ML) as a viable tool for the

diagnosis of OSCC

Chinese
They compared OSCC patients
with oral lichen planus and oral

leukoplakia controls
[30]

↑ Up arrow indicates increased metabolites in OSCC patients. ↓ Down arrow indicates decreased metabolites in OSCC patients.

3.1. The Malate-Aspartate Shuttle Pathway

ATP consumption is higher for cancer cells compared to healthy ones. Thus, high
glycolytic rates and mitochondrial oxidative phosphorylation are observed in tumor cells
to deliver a greater amount of ATP in a short period of time [53]. Glycolysis is the metabolic
pathway chosen by the body in the absence of oxygen, so less energy is generated, although
the pathway normally occurs without the presence of oxygen [54]. If the body has plenty
of oxygen, the glycolysis process will only be the beginning of the aerobic respiration cycle,
in which the lactate generated by glycolysis will be consumed by the tricarboxylic acid
cycle, also known as the Krebs cycle [55]. During the Krebs cycle, ATP is not produced
directly. NADH and FADH2 are produced, which are essential for the production of ATP
during oxidative phosphorylation. Oxidative phosphorylation is the preferred method
of generating energy in the presence of oxygen, since the process generates 38 ATPs in
contrast to anaerobic glycolysis that generates 2 ATPs [56].

The tricarboxylic acid cycle (Krebs cycle) and oxidative phosphorylation occur within
the mitochondria. The malate-aspartate shuttle is responsible for transporting NADH
from the cytoplasm to the mitochondrial matrix in the ATP production process [57,58]. In
our study, the malate-aspartate launcher is one of the altered pathways and it is directly
related to the energy production of tumor cells. The malic acid metabolite was abundant
in most patients with OSCC. Malic acid is an intermediate product of the Krebs cycle
explaining its higher concentration in patients with OSCC [59]. Based on our results, there
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is a high energy production in cancer cells that provides a favorable environment for
disorderly growth.

3.2. Warburg Effect Pathway

Cancer metabolism has been studied for decades, mainly because cells exhibit rapid
growth, proliferation, and survival [60]. These characteristics are inherent in an altered
metabolism. In 1920, Otto Warburg observed a common characteristic in the metabolism
of tumor cells. This characteristic consisted of increased glucose uptake with high lactate
release, signaling that the rate of glycolysis in tumor cells is high even in the presence of
oxygen and perfectly functioning mitochondria [61]. This process, known as the Warburg
effect, was established as the form of energy generation in tumor cells [60–63]. Our findings
indicate that the Warburg effect was also one of the metabolic pathways activated in
OSCC patients.

Although the Warburg effect is established as the way tumor cells acquire energy,
some studies have shown that several types of cancer can obtain energy through oxidative
phosphorylation in conjunction with glycolysis. A study on breast cancer metabolism
reported that 20% of energy production comes from the glycolytic pathway and 80% from
oxidative phosphorylation [64]. Furthermore, in a study on hepatoma cells, it was found
that the cells obtained energy mainly through the oxidative pathway, in contrast to a small
portion via the glycolytic pathway [65].

Xu and Guppy conducted a study with different types of cancers (breast, ovary, lung,
uterus, melanoma, various types of hepatomas, and many others) to measure the rate of
ATP production through glycolytic and oxidative processes. Among the types of cancer
studied, the average contribution of the glycolytic pathway to the production of ATP was
17%. The authors concluded that the vast majority of tumor cells can generate ATP via
oxidative phosphorylation, but also through glycolysis, in addition to the fact that some
tumors are glycolytic as a result of the hypoxic environment [66]. This corroborates our
findings since both the Warburg effect and malate-aspartate pathways contributed to the
maintenance of oxidative phosphorylation. Studies involving OSCC show that the Warburg
effect is present in cell metabolism [28,30,34,36,37]. However, our study is the pioneer in
demonstrating that oxidative phosphorylation is also present in OSCC.

3.3. Beta-Alanine Pathway

Beta-alanine is a non-essential amino acid responsible for reducing fatigue and in-
creasing muscle strength [67,68]. Its metabolism was indirectly involved with uracil and
spermidine metabolites [69], both up-regulated in OSCC. A previous study on oral cancer
metabolome revealed the beta-alanine metabolite as a possible biomarker for oral can-
cer [31]. It is related to conditions of hypoxia, hypoglycemia, ischemia, and oxidative stress
due to the presence of free radicals [70]. Therefore, this oxidative stress is responsible
for damage to neural cells [71]. In this sense, a study on metabolites in breast cancer
demonstrated that beta-alanine is one of the metabolites related to high glycolytic activity
and associated with aggressiveness of tumor cells [72].

3.4. Biomarkers

We have found that some metabolites such as malic acid, maltose, methionine, and
inosine were over-expressed in the saliva of patients with OSCC. Malic acid was reported
above to be present in the malate-aspartate pathway. It has been reported that maltose is a
possible natural substance with carcinogenic potential [73].

Ishikawa et al. identified the following metabolites over-expressed in the saliva of
OSCC patients: hypoxanthine, guanine, guanosine, trimethylamine N-oxide, spermidine,
pipecolate, methionine [28]. Of these, methionine and spermidine were also increased
in our study, with an AUC of 0.92 and 0.80, respectively. Ishikawa et al. showed that
the metabolism of purines was altered since the metabolites hypoxanthine, guanine, and
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guanosine are part of this pathway. However, in our study, only the inosine metabolite was
altered in the purine metabolism pathway, being a potential biomarker for OSCC.

Ohshima et al., also found urea in lower concentrations in OSCC patients and in
higher concentrations in control patients, indicating that the urea cycle might be altered
in oral cancer. This was the first study to describe urea as a possible biomarker for oral
cancer. It was carried out using capillary electrophoresis-mass spectrometry (CE-MS) to
evaluate saliva from Japanese patients with OSCC [37]. Liang et al. observed changes in
urea concentration when studying the metabolome of patients with gastric cancer [74].
Our study showed a significant change in urea in salivary samples from control patients,
corroborating data from the Japanese survey [37]. According to Ohshima et al., OSCC
patients may have difficulty eating due to pain and trouble in opening the mouth, which
makes it difficult to ingest proteins and, consequently, form urea [37]. In addition, these
patients may have a Helicobacter pylori infection, which produces urease, reducing the
availability of urea [75].

Another metabolite present in salivary metabolome studies found in our study is
leucine. Leucine was present in a study with 24 salivary metabolites that are candidate
biomarkers in OSCC [31]. Wei et al. identified leucine, isoleucine, valine, and all inter-
mediate branched-chain amino acids (BCAAs) underexpressed in the saliva of OSCC
patients [36]. These metabolites are involved in the Krebs cycle. Thus, the activation of the
glycolytic pathway (Warburg effect) decreases the entry of pyruvate into the TCA cycle.
Therefore, the aforementioned metabolites are less necessary for the process due to the lack
of energy supply via TCA [36].

In summary, we conclude that the whole nature of cellular energy production was
altered in the OSCC group. This is the first salivary metabolomic study of a South American
population with OSCC. Therefore, carrying out new studies covering larger populations
may bring similar results and new insights so that these metabolites can be used as a non-
invasive tool in oral cancer screening. Thus, salivary metabolic screening in populations
exposed to risk factors, such as smoking and alcohol consumption, can reveal possible
salivary biomarkers of oral cancer and improve the early diagnosis of carcinoma.

4. Materials and Methods

This study was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Research Ethics Committee of the Institute of Science and
Technology of São José dos Campos (ICT-UNESP), as part of the study entitled “Genetic
study of the main risk factors in the prognosis of patients with oral squamous cell car-
cinoma”, protocol number 1.033.312/2015 PH/CEP. Patients were informed about the
objectives, propositions, and conditions of this project, and those who agreed to participate
signed the Free and Informed Consent Term (FICT). After acceptance, all patients under-
went an extra and intraoral physical examination. Patients were divided into OSCC and
control groups.

The OSCC group consisted of 27 patients diagnosed with OSCC. Inclusion criteria
were patients over 18 years of age concomitant with the diagnosis of OSCC. The exclusion
criterion considered patients diagnosed with cancer anywhere on the body that had already
undergone some type of treatment, that is, surgery, radiotherapy, and chemotherapy.
Cancer staging followed tumor-node-metastasis (TNM) classification according to the 8th
edition of the American Joint Committee on Cancer (AJCC) Cancer Staging Manual [76].
The control group was composed of 41 patients from the oral medicine outpatient clinic of
the Department of Biosciences and Oral Diagnosis of ICT-UNESP. The inclusion criterion
was patients over 18 years of age, who wanted to participate in the research. The exclusion
criterion was patients with some type of cancer during their lifetime.

4.1. Collection and Storage of Salivary Samples

Patients were instructed not to ingest pasty or hardened foods for 1 h before collection,
as well as not to consume alcoholic beverages for at least 12 h before saliva collection. They
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could only swallow water and had to brush their teeth at least 2 h before the collection.
Patients were instructed to expectorate 3 mL of saliva in the plastic tubes, which were then
hermetically closed, immersed in ice, and transported within 1 h to the storage location.
Salivary samples were stored in a freezer at −80 ◦C at the Laboratory of Microbiology and
Immunology of the ICT-UNESP.

4.2. Preparation and Metabolomic Analysis of Salivary Samples

The methodology for analyzing the salivary metabolome was adapted from a previous
study [77]. First, 300 µL of saliva samples were dried in a vacuum centrifuge (Labconco
Centrivap Concentrator, Kansas City, MI, USA). Metabolites were extracted adding 300 µL
of methanol containing methionine sulphonate as internal standard and stirred (LCG
Vortex Mixer, Taiwan, China) for 2 min, and the supernatant was dried in a vacuum
centrifuge. After extraction, derivatization was performed by adding 100 µL of a solution
with proportions (1:1) of N-methyl-N-(trimethylsilyl) trifluoroacetamide and a solvent
solution: acetonitrile/dichloromethane/cyclohexane (5:4:1) and 5% trimethylamine. The
samples were stirred for 30 s and then kept in a thermal bath (Nova Instruments NI
1225, Piracicaba, Brazil) at 60 ◦C for 1 h. Next, the samples were centrifuged (Eppendorf
MiniSpin, Hamburg, Germany) at 12,044× g for 2 min. The supernatant was analyzed
via GC-MS. The data obtained were processed using GCMS solution and the metabolites
identified using Smart metabolite database version 4.2. GC-MS analysis conditions:

• MRM analysis method
• running time: 67 min
• injection temperature: 280 ◦C
• interface temperature: 280 ◦C
• ionization source temperature: 200 ◦C
• heating rate: from 100 ◦C to 320 ◦C in a linear ramp of 4 ◦C/min, remaining at this

temperature for 8 min.

4.3. Statistical Analysis

Clinical data were analyzed from the description of categorical variables with counts
and proportions and quantitative variables with normal and asymmetric distribution and
described as mean and deviation. For the consideration of normality, visual inspection of
histograms or application of a normality test was used when appropriate. For all analyses,
we considered the significance level of 5% (p < 0.05). Descriptive statistical analysis of
clinical data was performed using GraphPad Prism 5.03 software (GraphPad Software, San
Diego, CA, USA). For the salivary metabolomic analysis, principal component analysis
(PCA) was performed, which allows the amount of information collected to be reduced. Its
results select a subset of n variables capable of describing variability of data. The heatmap
cluster was also used as a way to visualize the metabolites and hierarchical grouping of
the compounds in each group. To demonstrate the significance of the metabolic data, we
used the Wilcoxon-Mann-Whitney test. The p values to assess differences in metabolite
concentrations between oral cancer and controls were corrected using the false discover
rate (FDR) analysis of Benjamin-Hockberg [78] to consider several independent tests at a
value of q < 0.05.

The volcano plot was used to visibly identify and illustrate the metabolites that are
significant and most expressed in each study group. The volcano plot presents a diagram
showing the set of metabolites in the salivary samples that would be down- and up-
regulated. That is, it can indicate whether the compound is present with significance
in the control group or in the OSCC group. The volcano plot combines the measure of
statistical significance, in this case the q-value (FDR) with the measure of magnitude
variation FC (fold change). In order to identify possible salivary biomarkers for OSCC,
a ROC (receiver operating characteristic) curve was drawn for each metabolite. For this,
the ROC curve uses the parameters of sensitivity and specificity. The area under the
ROC curve, also called AUC, allows identification of whether a condition is present or
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not. That is, an AUC of 0.5 has no discriminating capacity, while an AUC of 1.0 shows
an ideal discrimination [79]. For our study, we considered AUCs above 0.8 as the ideal
cutoff point. In addition to the statistical tests mentioned above, the averages and standard
deviations of the metabolites of each group were also performed. MetaboAnalyst 5.0
software (https://www.metaboanalyst.ca/ accessed on 18 December 2020) was used to
analyze the metabolomic data.

All metabolites found were allocated on a Venn diagram to assess their distribution
between groups. InteractiVenn (http://www.interactivenn.net/ accessed on 18 December 2020)
was used for the analysis of the Venn diagram. The relative quantification of the metabolites
for each group was performed from specific peak areas for each metabolite using the MRM
analysis method. For the search for metabolites to be effective in the main databases, the
Kyoto Encyclopedia of Genes and Genomes (KEGG pathway) and Small Molecule Pathway
Database (SMPDB), the initial standardization of compound names was carried out on the
MetaboAnalyst platform.

5. Conclusions

In summary, in our study, three important altered metabolic pathways were identified
in OSCC for South American patients: the malate-aspartate shuttle, the beta-alanine
metabolism pathway and the Warburg effect. These pathways are related to the cellular
energy production in carcinogenesis, promoting a favorable environment for high energy
consumption and cell survival. It was possible to statistically distinguish the salivary
metabolites of control patients compared to patients with oral cancer. These metabolic
changes may help in the discovery of salivary biomarkers of oral cancer and stimulate
interest for new studies with larger populations to validate our results.
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