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Abstract: Urine is a popular biofluid for metabolomics studies due to its simple, non-invasive collection
and its availability in large quantities, permitting frequent sampling, replicate analyses, and sample
banking. The biggest disadvantage with using urine is that it exhibits significant variability in
concentration and composition within an individual over relatively short periods of time (arising from
various external factors and internal processes regulating the body’s water and solute content).
In treating the data from urinary metabolomics studies, one must account for the natural variability of
urine concentrations to avoid erroneous data interpretation. Amongst various proposed approaches
to account for broadly varying urine sample concentrations, normalization to creatinine has been
widely accepted and is most commonly used. MS total useful signal (MSTUS) is another normalization
method that has been recently reported for mass spectrometry (MS)-based metabolomics studies.
Herein, we explored total useful peak area (TUPA), a modification of MSTUS that is applicable to
GC×GC-TOFMS (and data from other separations platforms), for sample normalization in urinary
metabolomics studies. Performance of TUPA was compared to the two most common normalization
approaches, creatinine adjustment and Total Peak Area (TPA) normalization. Each normalized
dataset was evaluated using Principal Component Analysis (PCA). The results showed that
TUPA outperformed alternative normalization methods to overcome urine concentration variability.
Results also conclusively demonstrate the risks in normalizing data to creatinine.
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1. Introduction

Metabolomics studies strive for comprehensive monitoring of metabolites in biological systems [1].
As common practice, metabolomics studies often involve the investigation of chemical differences
between sample groups. One of the biggest challenges of group-based metabolomics studies is that
the difference in metabolite concentrations between the comparative groups can be very subtle and
detecting important differences is challenging [2,3]. Urine has been a popular matrix for metabolomics
studies due to its non-invasive collection and availability in large volumes with a rich metabolite content.
Due to these advantages, it has been reported as a precious clinical sample source for early non-invasive
disease diagnosis [4–7]. Despite the convenience of urine as a diagnostic biofluid, there exists a major
drawback as an analytical sample; urine concentration may vary significantly based on the level of
hydration and may also be influenced by external factors such as diet, excretion via sweating, or kidney
disease. This is in comparison to other biofluids, such as serum, plasma, and cerebrospinal fluids,
which are physiologically and homeostatically managed by the body, resulting in much more controlled
metabolite concentrations. When urine is sampled, factors such as the collection time and the flow rate
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can cause fluctuations in the concentrations of urinary metabolites [4,8–10]. It has been reported that
the total concentration of urinary metabolites, regarded as urine sample concentration, can vary by
more than 15-fold between samples [4]. Consequently, normalization is critical in urinary metabolomics
studies to correct for different sample concentrations. Once the sample-to-sample variation of urine
is considered and addressed adequately, then truly significant and relevant metabolomic changes of
interest can be observed [11].

Various normalization strategies have been reported to account for fluctuations in urine
concentrations [1,12]. The most common method is using creatinine concentration as a normalization
factor [10,12,13]. Creatinine is a waste product of muscle metabolism; in the absence of kidney
malfunction, the rate of urinary creatinine excretion is relatively constant between different individuals
and within an individual over time [9,14–17]. Using creatinine as a normalization factor has been a
gold standard for urinary metabolomics, with the underlying assumption that creatinine concentration
reflects the urine sample concentration [10,18]. However, it has been reported that creatinine excretion
is highly dependent on many factors, and thus it may not provide a reliable reference for sample
normalization [4,8–10,14,19]. The variation of creatinine excretion in human subjects may occur due to
differences in age, sex, ethnicity, level of physical activity, muscle mass, hydration, diet, diurnal rhythms,
emotional stress, disease state, body mass, etc. Recent publications suggest that the use of creatinine as
a single reference compound to normalize the wide concentration ranges of all urinary metabolites
present in the sample is not advisable [8,9,14,20].

Another method uses osmolality, a measure of total urinary solute concentration, as a normalization
factor [1,11]. The procedure of measuring osmolality, however, is not straightforward, and requires
a separate analysis to measure freezing-point depression [12]. Another well-known approach for
global urinary metabolic profiling is the constant sum normalization, which is to use the sum of all
signals from metabolites detected in a sample as a normalization factor [21,22]. As a post-acquisition
normalization technique, this carries a great advantage of not requiring any additional experimental
procedures [9]. However, the major drawback of this approach is that the number of compounds
detected in each sample can vary widely from one sample to the next. Therefore, using the total signal of
all the metabolites as a normalization factor may not be an accurate reflection of the urine concentration.
Thus, MS Total Useful Signal (MSTUS) as a normalization factor was proposed and is routinely
used in multiple MS-based metabolomics studies coupled to liquid chromatography (LC) [8,23,24].
This method involves computational data processing to identify component mass spectral signals,
associate related ions into molecular components, and then sum all peaks that are common to all samples
to obtain the MSTUS normalization factor [8]. By incorporating only useful signals that are common
to all samples, contributions from xenobiotics and artefacts can be diminished [4]. From several
non-targeted metabolomic profiling studies, it has been reported that MSTUS normalization yielded
better results when compared to other common normalization approaches [8,9]. The limiting factor of
this approach is that it can only be applied to MS data and the method involves a proprietary algorithm
to calculate the normalization factor [4,8,9].

Although the importance of sample normalization has been well-received and recognized by
the metabolomics community, to date there is no standardized method for the normalization of
urine concentration [9,25]. Unlike other omics work, sample normalization in metabolomics is much
more complicated because of the greater diversity of chemical structures and concentration ranges.
Nonetheless, normalization is an indispensable step in data pre-processing ahead of further advanced
data analysis and mining to ensure that results are an accurate reflection of the relative concentrations
of the samples so that true metabolomic variances of interest can be found. Failure to correct for
such variation may lead to bias in the data that can lead to false discovery and misinterpretation of
results [1]. Despite the awareness of the necessity of sample normalization, it has been ignored in
many metabolomics studies due to the lack of a suitable, easy means of sample normalization.
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Herein, three sample concentration normalization methods are discussed, with a particular
focus on urine. Urine samples from two different groups classified on the basis of sex were
analyzed by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry
(GC × GC-TOFMS). The acquired data were normalized by the three different methods; 1) creatinine,
a conventional method of urine normalization; 2) Total Peak Area (TPA), the sum of the areas of all
detected peaks in a given sample, and 3) Total Useful Peak Area (TUPA), a strategy that the authors
propose as an adaptation of MSTUS that makes it amenable to normalization of data from any
chromatographic technique, regardless of the detector type (assuming that through a combination of
detector selectivity and separation power of the chromatographic system, peaks can be unequivocally
identified and tracked across the entire series of chromatograms). Contrary to MSTUS, TUPA does not
mandate the use of an MS instrument, nor sophisticated computational data processing. While it is
common in metabolomics studies to have MS detection, TUPA could equally be applied to normalize
GC×GC-FID signals, LC-fluorescence, or any other chromatographic data. TUPA only requires a table
of analyte identifiers (retention coordinates) and response data (peak areas) from a set of samples
analyzed and processed with a consistent method. The performance of the three different normalization
methods was then evaluated by a manual review of the data after normalization, along with principal
component analysis (PCA). The aim of this paper is to examine the impact of normalization methods
on the result of chemometric analysis and to propose a reliable sample normalization method for
chromatographic data in metabolomics and, potentially, applications in other fields.

2. Results

Two samples, S15E and S26E, were removed due to an apparent instrument malfunction
(frozen cold jet) in the data. PCA was used to visually inspect the clustering of QC samples.
All QC samples were within the ordinary range of cluster, which is indicative of the absence of
abnormal analytical variability. Aligned GC×GC-TOFMS data of 54 urine samples including replicates
of one male and one female sample (S11MR, S17MR), were then normalized using the three different
strategies: urinary creatinine concentration, TPA, and TUPA. The effects of different normalization
strategies on the chemometric analysis were evaluated by visualizing the effects of normalization on
the data in PCA score space both pre- and post-feature selection.

The creatinine peak area, TPA and TUPA for each of the 54 urine samples are listed in Table 1.
The minimum creatinine peak area out of all 54 samples was found to be 1.33 × 106, whereas the
maximum creatinine peak area was 22.1 × 106 (a 16.6-fold difference). The average creatinine value
of the 54 urine samples was 8.61 × 106 with a relative standard deviation of 65%. Creatinine levels
were compared based on the sex of the donor, but there were no statistically significant differences in
this respect. For female samples, 2.07 × 106 was the minimum creatinine peak area and the maximum
creatinine peak area was 22.1 × 106. The average creatinine peak area value of 30 female urine samples
was 8.53 × 106 with a relative standard deviation of 65%. For male samples, 1.33 × 106 was the
minimum creatinine peak area and the maximum creatinine peak area was 20.5 × 106. The average
creatinine peak area value of 24 male urine samples was 8.72 × 106, with a relative standard deviation
of 66%.

Total Peak Area (TPA) and Total Useful Peak Area (TUPA) were calculated based on the aligned
peak table. From the 54 urine chromatograms, 5572 peaks were aligned using the statistical compare
feature in ChromaTOF®. For TPA, the areas of all aligned 5572 peaks were summed to generate a TPA
normalization factor for each sample. Out of 54 samples, the minimum TPA was found to be 5.37 × 108,
while the maximum TPA was 3.61 × 109. For calculation of TUPA, the sum of all peak areas for those
peaks that are present in all samples under study was taken as the normalization factor. Out of 5572
aligned peaks, 470 peaks were found to be present in all 54 samples, covering about 8.4% of the total
analyte response. The peak areas of these 470 compounds in each sample were summed, and the
total peak area of these useful compounds was used as a normalizing factor for the respective sample.
Since these compounds are common in all samples and the peak area was determined using the same



Metabolites 2020, 10, 376 4 of 13

mass channel for the same analyte in all samples, it was considered that the total peak area of these
compounds could be regarded as a realistic representation of urine sample concentration. The smallest
TUPA out of all 54 samples was 1.67 × 108, whereas the largest TUPA was 8.48 × 108.

Table 1. Comparison of creatinine (CT) peak areas, TPA, and TUPA of 54 urine samples.

Sample Sex CT TPA TUPA Sample Sex CT TPA TUPA

S1M M 8.42 × 106 1.34 × 109 3.27 × 108 S14M F 1.75 × 107 2.41 × 109 7.01 × 108

S1E M 3.57 × 106 8.28 × 108 2.48 × 108 S14E F 1.32 × 107 1.83 × 109 5.99 × 108

S2M F 3.83 × 106 1.81 × 109 5.02 × 108 S15M F 1.58 × 107 2.79 × 109 6.85 × 108

S2E F 2.14 × 106 7.14 × 108 2.53 × 108 S16M F 1.47 × 107 2.16 × 109 7.05 × 108

S3M M 1.28 × 107 1.67 × 109 4.31 × 108 S16E F 6.64 × 106 1.19 × 109 3.65 × 108

S3E M 8.77 × 106 2.68 × 109 6.48 × 108 S17M F 1.02 × 107 1.75 × 109 5.71 × 108

S4M F 1.46 × 107 1.67 × 109 5.41 × 108 S17MR F 5.47 × 106 1.05 × 109 3.35 × 108

S4E F 3.04 × 106 1.38 × 109 3.66 × 108 S17E F 2.31 × 106 6.06 × 108 2.48 × 108

S5M * M 1.33 × 106 2.39 × 109 7.46 × 108 S18M M 2.05 × 107 2.71 × 109 8.30 × 108

S5E * M 1.65 × 107 1.95 × 109 5.15 × 108 S18E M 1.65 × 107 1.86 × 109 6.28 × 108

S6M F 5.74 × 106 1.70 × 109 8.48 × 108 S19M F 2.21 × 107 2.28 × 109 6.91 × 108

S6E F 1.19 × 107 1.53 × 109 4.71 × 108 S19E F 2.07 × 106 5.37 × 108 1.67 × 108

S7M M 3.76 × 106 1.78 × 109 4.61 × 108 S20M F 3.60 × 106 1.26 × 109 3.54 × 108

S7E M 4.06 × 106 9.66 × 108 3.33 × 108 S20E F 4.71 × 106 8.62 × 108 2.78 × 108

S8M M 4.59 × 106 3.61 × 109 4.31 × 108 S21M F 4.38 × 106 1.80 × 109 4.79 × 108

S8E M 1.48 × 107 1.55 × 109 4.20 × 108 S21E F 7.29 × 106 1.42 × 109 4.55 × 108

S9M M 7.16 × 106 9.16 × 108 2.70 × 108 S22M M 6.00 × 106 1.22 × 109 3.40 × 108

S9E M 3.61 × 106 6.77 × 108 2.19 × 108 S22E M 1.72 × 106 8.50 × 108 2.35 × 108

S10M F 1.36 × 107 1.67 × 109 4.47 × 108 S23M F 7.29 × 106 9.50 × 108 2.57 × 108

S10E F 1.38 × 107 1.71 × 109 3.88 × 108 S23E F 2.42 × 106 5.38 × 108 1.80 × 108

S11M M 1.35 × 107 1.88 × 109 5.96 × 108 S24M M 2.75 × 106 8.70 × 108 2.43 × 108

S11MR M 1.32 × 107 1.87 × 109 5.49 × 108 S24E M 9.66 × 106 1.39 × 109 3.82 × 108

S11E M 1.17 × 107 1.64 × 109 4.44 × 108 S25M F 1.51 × 107 3.01 × 109 7.31 × 108

S12M F 7.71 × 106 1.46 × 109 3.87 × 108 S25E F 5.27 × 106 1.04 × 109 2.77 × 108

S12E F 4.68 × 106 1.04 × 109 3.25 × 108 S26M M 4.26 × 106 1.29 × 109 3.45 × 108

S13M M 2.72 × 106 1.54 × 109 4.25 × 108 S27M F 1.17 × 107 2.18 × 109 6.17 × 108

S13E M 1.74 × 107 2.07 × 109 6.09 × 108 S27E F 3.16 × 106 6.40 × 108 2.21 × 108

* denotes the samples selected for further detailed comparison. “R” denotes replicate samples.

Two urine samples (S5M and S5E) from the same individual at different concentrations were
randomly selected for a more detailed and thorough comparison of the different normalization methods.
The region of interest in the TIC chromatograms (1500 s–3100 s 1tR and 1.0 s–2.5 s 2tR) and the zoomed-in
regions for creatinine (plotted as ion 329 EIC) are illustrated in Figure 1. The color scales are constant
for the TIC and EIC to facilitate visual comparison. From Figure 1, it is evident that S5M produced
slightly more intense signals than S5E in general. The TPA were 2.39 × 109 and 1.95 × 109, and the
TUPA were 7.46 × 108 and 5.15 × 108 for S5M and S5E, respectively. The peak areas of creatinine
obtained from the creatinine-specific processing method were also compared. The creatinine peak area
of S5M was found to be 1.33 × 106 whereas the creatinine peak area was 16.49 × 106 for S 5E.

To evaluate the impact of the different normalization strategies on the chemometric interpretation
of the results, the three normalization methods were compared in PCA space in addition to the dataset
without normalization. With all 5572 variables included, no distinct separation was possible for any of
the normalizations. The PCA score plots of each dataset normalized with different methods are included
in the Supplementary Materials, Figure S1. Feature selection was applied to each normalized version of
the data to discover which variables were of value to separate the two sample groups while removing
noise and irrelevant variables. This was achieved using an in-house algorithm for cluster-resolution
guided feature selection (CR-FS). In applying the CR-FS algorithm, the 54 urine samples were randomly
split into a training set for feature selection and model construction (36 samples—2/3 of the dataset),
and a test set for model validation (18 samples—the remaining 1/3). Assignment into either set
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was random, and the process was permuted 100 times to diminish the possibility of overfitting or
obtaining a good model by chance due to a particular division of samples into training, optimization,
and validation sets. A survival rate of 50% was chosen for the feature selection algorithm (i.e., variables
that were selected more than 50% of the time were included in the list of selected variables) Since
the starting data matrices differ in terms of the values of the analyte responses depending on the
normalization strategy (or lack of normalization), the number of variables selected for each data set was
different, although the same automated feature selection algorithm was used. After feature selection,
PCA was performed on the data to allow visualization of the effects of normalization on the data after
feature selection. Without normalization, the optimal model required 223 variables; explaining 11.95%
of total variance by PC 1 and 7.84% by PC 2. With normalization to creatinine, 168 variables were
chosen, and 10.84% of the variance was explained by PC 1 and 7.34% was explained by PC 2. In neither
case is there a clear distinction between the two groups in the first two components of PCA space.
When normalized with TPA, 285 variables were selected and 13.89% was explained by PC1 and 7.05%
was explained by PC2, with a slight overlap of 95% confidence level ellipse. When TUPA was used,
306 variables were selected which could clearly distinguish between male and female samples in
PCA space.
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Figure 2 also depicts the points for the pairs of samples from three subjects, labeled in a bigger
font, to show the sample locations in the PCA score space. In the order of Figure 2A–D, the Euclidean
distances between 5M and 5E are 18.4, 26.1, 13.0, and 18.1, respectively. The distances between 6M and
6E are 19.9, 13.1, 17.5, 12.2 and the distances between 22M and 22E are 8.3, 11.9, 7.1, and 6.6.

To further demonstrate the need for proper normalization, the variables that were selected to
model the data after TUPA normalization (Figure 2D) were used to model the system both without
normalization, and with normalization to creatinine. (Figure 3). This was to demonstrate that the
separation is not just based on the selected variables, but on the combination of proper normalization
of analyte responses and the appropriate choices of variables.



Metabolites 2020, 10, 376 6 of 13
Metabolites 2020, 10, x 6 of 13 

 

 
Figure 2. PCA score plots with 95% confidence ellipse for (A) without normalization, (B) 

normalized to creatinine concentration, (C) normalized to TPA, (D) normalization to TUPA 
To further demonstrate the need for proper normalization, the variables that were selected to 

model the data after TUPA normalization (Figure 2D) were used to model the system both without 
normalization, and with normalization to creatinine. (Figure 3). This was to demonstrate that the 
separation is not just based on the selected variables, but on the combination of proper normalization 
of analyte responses and the appropriate choices of variables.  

 

Figure 2. PCA score plots with 95% confidence ellipse for (A) without normalization, (B) normalized
to creatinine concentration, (C) normalized to TPA, (D) normalization to TUPA.

Metabolites 2020, 10, x 6 of 13 

 

 
Figure 2. PCA score plots with 95% confidence ellipse for (A) without normalization, (B) 

normalized to creatinine concentration, (C) normalized to TPA, (D) normalization to TUPA 
To further demonstrate the need for proper normalization, the variables that were selected to 

model the data after TUPA normalization (Figure 2D) were used to model the system both without 
normalization, and with normalization to creatinine. (Figure 3). This was to demonstrate that the 
separation is not just based on the selected variables, but on the combination of proper normalization 
of analyte responses and the appropriate choices of variables.  

 
Figure 3. PCA score plots with 306 variables that were selected for TUPA modelled on the dataset (A)
without normalization (B) normalization to creatinine.



Metabolites 2020, 10, 376 7 of 13

3. Discussion

In Table 1, the creatinine peak area, TPA and TUPA for each of the 54 urine samples are listed.
Out of the three methods, the creatinine peak area showed the most variability. In order to use its peak
area as a normalization factor for urinary metabolomics, integrating the creatinine peak area accurately
is extremely important. In addition to the inaccurate biological assumption of constant creatinine
excretion, it seems doubtful whether a single analyte can be used as a normalization factor over the
entire range of metabolites. It is noteworthy that the total variation in TUPA is the smallest amongst
the three different normalization methods at ~1/3 the variation in creatinine concentration.

Two samples were randomly selected from the same individual at different concentrations (S5M
and S5E) for a more thorough investigation of the effect of each normalization method (Figure 1).
S5M is expected to be more concentrated than S5E because urine produced in the morning is generally
more concentrated than urine produced throughout the day due to the overnight dehydration [26–28].
According to the TUPA, S5M is approximately 1.5 times more concentrated than S5E, which agrees
with a visual inspection of the data, and is consistent with normal daily variation patterns in urine
concentration. Conversely, the creatinine peak suggests that S5E is about 12 times more concentrated
than S5M, which is obviously incorrect judging by visual inspection of the data.

PCA was used to evaluate the performance of each normalization method. PCA is an unsupervised
method that helps visualizing and interpreting the data in exploratory data analysis. In this study,
we used PCA for dimensionality reduction with the aim to project the data using the first two principal
components. PCA as an unsupervised method was not used to classify male versus female, but PCA
was employed to visualize similarity/dissimilarity between samples on the PCA score space [29].

The major challenge of urine analysis is the variability of urine concentration, which can depend on
the time of sample collection, diet, exercise, and level of hydration, etc. [9,25,30]. Ideally, the differences
between samples from the same subject at different times during the same day without any major
change in diet, disease state, etc. should be relatively small with effective normalization. In PCA score
space, one would expect that samples coming from the same subject should project relatively closer
together with an optimal sample normalization method. To show how the normalization method
would affect these results, the Euclidean distance between the projected pairs of points for three
subjects was calculated for each PCA model. To reflect distances in the original data, 20 PCs were
selected to build each model, explaining 71–74% of variance. It is noteworthy that for all four PCA
score plots (Figure 2), approximately 20% of the variance was explained with the first two principal
components. PCA score plots were set at the same scale, therefore the distances between samples can
be easily measured directly from the plots, and similarities and differences among the samples can be
quickly assessed [29]. It is observed that by using TUPA, samples from a single subject tend to project
closer together in PCA space. It is also evident from the PCA score plots that TUPA displays tighter
clusters (smaller within-group variation), especially for the male group, and a more distinct separation
between the two classes (large between-group variation). This suggests that TUPA outperforms the
other normalization strategies to correct for the urine sample concentration.

Although the PCA score plot of the urine data with no normalization technique applied (Figure 2A)
shows a moderate separation between the two groups, this result is analytically invalid because the
variations in sample concentrations were not corrected. It has been extensively studied in the
metabolomics community that urinary metabolite profiles vary widely based upon physiological and
external factors such as diet, BMI, age, stress, exercise and etc. [14] For this particular study, it was
intended to collect samples of widely varying concentrations from the donors of diverse backgrounds to
obtain a dataset that contains sufficient diversity for investigating normalization approaches. With the
collected widely varying samples for the study, neglecting normalization is irrational regardless of the
performance of the resulted model. The PCA score plot that was normalized to creatinine (Figure 2B)
shows the worst separation between the two groups out of all four PCA score plots. The normalization
to creatinine made the separation worse than when no normalization was applied. This is likely due
to creatinine normalization contributing nonsensical variations into the data (Figure 1). The use of
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creatinine for normalization was based on the assumption of constant creatinine excretion [10,13,17–19].
The poor performance of the creatinine-normalized model and the conclusion drawn from it that
creatinine may not be a reliable normalization method is in agreement with the recent study that
compared three normalizations—creatinine, specific gravity, and probabilistic quotient normalization
(PQN) [31]. The TPA-normalized PCA score plot (Figure 2C) shows significantly improved separation
between the two classes. However, this method would include all the insignificant peaks from the
instrument and sample preparation in the normalization factor. The best separation was achieved
by TUPA normalization. The whole dataset was normalized to a sum of only those peaks that are
present in all samples; thus, the contributions from non-desired signals such as false peaks, noise,
column bleed, and uncommon exogenous compounds could be eliminated.

The present study adds weight to the current consensus in the metabolomics literature that failure
to properly normalize the data and correct between-sample variation can create bias and result in the
false discovery of biomarkers. A considerable variation in urine sample concentration, which can differ
by up to an order of magnitude, must be managed by using a suitable normalization technique to
minimize biases in the data. Of note, this study was conducted with a relatively small sample size and
the question of the study may be viewed as too simple compared to more challenging and complex
questions in metabolomics that involve very subtle differences between comparative groups. Yet,
TUPA was the only normalization method that was able to produce data which could be separated into
two distinct groups in this study. A thorough review of the data reveals TUPA to be a more reasonable
method to account for urine sample concentration variability than using creatinine concentration.

4. Materials and Methods

4.1. Subjects and Sample Collection and Storage

Two urine samples from each subject were collected for this study from a group of healthy
volunteers (i.e., volunteers without any known preconditions). The instruction was given to each
participant to collect the first urine of the day in the morning (M) to obtain highly concentrated
urine, and another sample during the same evening (E) with enough hydration to obtain relatively
less-concentrated urine from the same individual. A total of 24 urine samples from males and 30 urine
samples from females were collected from the 12 male and 15 female participants for the study.
The instructions for the study participants also included directives to store the sample approximately
at 4 °C (in a refrigerator or in an ice bag without freezing the sample) upon collection and to bring
the sample to the lab within at most 12 h. Upon receiving the sample, aliquots were taken to store
the samples in smaller portions to avoid excessive freeze/thaw cycles followed by storage at −80 °C
until sample preparation. A pooled QC sample was made by taking equal aliquots (500 µL) from each
sample to check for analytical variability. All samples were analyzed in random order with adequate
blanks, replicates and quality control (QC) samples. Informed consent was obtained from all individual
participants included in the study. The study was approved by the University of Alberta Research
Ethics Board (Study ID: Pro00071285).

4.2. Chemicals, Reagents, and Solvents

Urease (Millipore Sigma, Oakville, ON, Canada) suspensions of approximately 40 mg per 250 µL
of 18.2 MΩ deionized water (Elga PURELAB flex 3 system, VWR International, Edmonton, AB, Canada)
were prepared on the day of derivatization. HPLC Grade Methanol (>99.9%) was purchased from
Millipore-Sigma Canada, HPLC Grade Toluene (Millipore Sigma, Oakville, ON, Canada), was dried
with anhydrous sodium sulfate (Millipore Sigma, Oakville, ON, Canada) prior to use. Methoxyamine
hydrochloride (Millipore Sigma, Oakville, ON, Canada) was dissolved in HPLC Grade Pyridine
(Millipore Sigma, Oakville, ON, Canada) to make a 20 mg/mL solution. Also, 1 mL ampoules of
N-Methyl-N-trimethylsilyltrifluoroacetamide + 1% chlorotrimethylsilane (MSTFA + 1% TMCS) were
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purchased from Fisher Scientific, Ottawa, ON, Canada. A 100 µg/mL solution of 4-13C methylmalonic
acid was prepared in deionized water to use as an internal standard.

4.3. Sample Preparation

All urine samples were prepared according to a modified protocol for global derivatization
of urinary metabolites, which involves a typical two-step derivatization process of methoximation
followed by subsequent trimethylsilylation [21,32]. The frozen urine samples were thawed on ice on the
day of analysis, then vortexed for 1 min. Then, 40 µL of each urine sample was transferred into a 2-mL
centrifuge tube. Also, 20 µL of internal standard was added along with 10 µL of urease suspension.
Samples were vortexed for three minutes then incubated at 37 ◦C for 1 h. Next, 960 µL of methanol
was added to each of the samples. Samples were vortexed again for 5 minutes, then centrifuged for
10 min at 10,000× g and 4 ◦C. Then, 500 µL of the supernatant was transferred to a 2-mL GC vial,
and dried under a gentle stream of nitrogen at 50 ◦C until dry. Next, 50 µL of 20 mg/mL methoxyamine
hydrochloride in pyridine was added to the dried residue and incubated at 60 ◦C for 2 h. Subsequently,
100 µL of MSTFA was added and incubated again at 60 ◦C for 1 h, and 100 µL of the derivatized
metabolite extract was transferred to GC vials with 300-µL inserts for analysis by GC×GC-TOFMS.

4.4. GC×GC-TOFMS Conditions

All GC×GC-TOFMS analyses were performed on a LECO Pegasus 4D system (LECO, St. Joseph,
MI, USA) equipped with a four-jet dual-stage modulator. A 60 m × 0.25 mm; 0.25 µm df Rxi-5SilMS was
used as the first-dimension column and 1.6 m× 0.25 mm; 0.25µm df Rtx-200MS as the second-dimension
column (Chromatographic Specialties, Brockville, ON, Canada). Two-dimensional chromatographic
separations were performed with a constant flow rate of 2.0 mL/min using helium as the carrier gas and
a modulation period of 2.5 s. A GERSTEL MPS Autosampler was used for automated injection of 1 µL
aliquots of sample. The oven was initially held at 80 ◦C for 4 min and heated to 315 ◦C at a ramping
rate of 3.5 ◦C/min. The final temperature was held for 10 min. The secondary oven and modulator
temperature offset were constant at + 10 °C relative to the GC oven temperature and + 15 °C relative to
the secondary oven temperature, respectively. Mass spectra were collected at an acquisition rate of
200 Hz over a mass range between 40 and 800 m/z. A relative voltage offset of 200 V was selected as the
optimized detector voltage with an electron impact energy of −70 eV. The ion source temperature was
200 °C with a transfer line temperature of 250 °C. The total analysis time for each run was 81.1 min.

4.5. Data Processing and Analysis

Data were initially processed using ChromaTOF® (v.4.72; LECO, St. Joseph, MI, USA). Each of the
54 urine samples was processed with two different data processing methods; one for general-purpose
data processing and one for targeted integration of the creatinine peak. Omics data sets exhibit
differences in analyte concentrations that span several orders of magnitude within a sample. The general
data processing method was developed to detect as many compounds as possible while minimizing
artefacts such as split peaks and spurious signals, while the creatinine method was optimized to
specifically integrate only the creatinine peak.

For the general data processing method, the baseline offset was set to 0.9 and the expected peak
widths throughout the entire chromatographic run were set to 10 s for the first dimension and 0.15 s
for the second dimension. The peak-finding threshold of S/N was set to 100:1 with the minimum S/N
ratio for sub-peaks to be retained set at 10. A chromatographic region of 3530 s to 3640 s in the first
dimension and 0.8 s to 1 s in the second dimension was excluded from data processing due to signal
saturation from residual urease and siloxane column bleed. All chromatographic peaks were searched
against the NIST-MS 2017 Libraries.

Small retention time shifts are possible in GC×GC and common in metabolomics studies.
The Statistical Compare feature of ChromaTOF® aligned the peak tables across runs and ensured that
the same ion was chosen to quantify a given peak throughout the data set. Tolerances for retention
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time shift were ± 5 modulation period (PM = 2.5 s) in the first dimension, and 0.2 s for the second
dimension to account for the possible retention time shift across all samples. The minimum similarity
for the mass spectral match to combine sub-peaks was set at 600 using all m/z values with abundances
greater than 1 %. After aligning the peak tables with the set parameters, the Statistical Compare result
was then exported as a .csv file for further processing, normalization, and chemometric analysis in
MATLAB® R2017a, Windows 64-bit version (The Mathworks Inc., Natick, MA, USA).

4.6. Normalization to Creatinine

The data processing method for targeted creatinine integration was used to account for variable
creatinine peak sizes/shapes arising from concentration differences in various samples. The processing
method for creatinine limited the search region to the window of 1720 s to 1850 s in the first dimension
with an expected peak width of 50 s and 0.5 s in the first and second dimensions, respectively. The m/z
of 329, which is the molecular ion of creatinine-3TMS (derivatized creatinine with three trimethylsilyl
groups), was used as a quantification mass. The rest of the parameters were the same as for the
general data processing method. The creatinine peak data processing method was applied to all 54
chromatograms and the peak tables were aligned using the statistical compare feature in ChromaTOF®.
The aligned peak table was then imported to MATLAB® R2017a. Peak areas of all metabolites in each
sample were then normalized to the creatinine response for that particular sample.

4.7. Normalization to TPA and TUPA

With the Statistical Compare feature in ChromaTOF®, the individual peak tables were aligned and
ChromaTOF® generated an aligned peak table containing basic statistics including average, standard
deviation, minimum and maximum responses for each compound across the data set. The table also
included a count column, which records the number of samples in which the corresponding peak
appeared. For TPA normalization, the total peak area for each sample was calculated by summing the
areas of all aligned peaks as the normalization factor. The TUPA normalization factor includes only
peaks that were present in all 54 samples across the full dataset in the summation. All metabolites
processed and aligned according to Section 4.5 were then normalized to the corresponding TPA and
TUPA of the respective sample by dividing the original peak areas of metabolites by either TPA or
TUPA normalization factors.

4.8. Multivariate Analysis

Further multivariate statistical analysis was performed using PLS Toolbox (R8.5.2; Eigenvector
Research Inc., Wenatchee, WA, USA). The data were normalized using the three different normalization
approaches for comparison as described in Section 4.6 and 4.7. Principal component analysis (PCA)
was applied with cross-validation to evaluate general clustering of normalized data by two different
methods. An in-house feature selection algorithm, Cluster Resolution Feature Selection (CR-FS),
was used for variable selection. This approach is based on the evaluation of ranked variables via a
sequential backward-elimination and forward-selection mechanism to maximize cluster resolution
between comparative groups [33]. The feature selection was permuted over the data set 100× with the
samples being randomly partitioned between training and optimization sets to avoid spurious results
due to optimization with any given partitioning of the data. Complete information on this feature
selection tool is beyond the scope of this paper and more detail regarding the approach can be found
in other literature [33–35].

5. Conclusions

An appropriate normalization method is vital to prevent the biological information of the study
from being masked by variation in urine sample concentration. This paper demonstrated conclusively
that normalization to creatinine response can be misleading as the creatinine response (and thus
normalization factor) can be at odds with changes in overall concentration that are self-evident upon
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manual inspection of the raw data. This result is in agreement with other recent literature. The present
study demonstrated that normalization using TUPA appears to be a more suitable way to account
for the variations of urine concentration when performing GC×GC-MS-based metabolomics studies
as opposed to using creatinine concentration or TPA as a normalization factor. This post-acquisition
normalization method is easy and convenient to apply without requiring any additional experiments.
Our findings suggest that TUPA may be an effective and feasible alternative to normalize untargeted
metabolomics data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/9/376/s1,
Figure S1: PCA score plots for different normalization methods before applying any feature selection. Each dataset
was 54 samples × 5572 compounds.
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