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Abstract: There is no specific test for diagnosing neuromyelitis optica spectrum disorder (NMOSD),
a disabling autoimmune disease of the central nervous system. Instead, diagnosis relies on ruling
out other related disorders with overlapping clinical symptoms. An urgency for NMOSD biomarker
discovery is underscored by adverse responses to treatment following misdiagnosis and poor
prognosis following the delayed onset of treatment. Pathogenic autoantibiotics that target the water
channel aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) contribute to NMOSD
pathology. The importance of early diagnosis between AQP4-Ab+ NMOSD, MOG-Ab+ NMOSD,
AQP4-Ab− MOG-Ab− NMOSD, and related disorders cannot be overemphasized. Here, we provide
a comprehensive data collection and analysis of the currently known metabolomic perturbations and
related proteomic outcomes of NMOSD. We highlight short chain fatty acids, lipoproteins, amino
acids, and lactate as candidate diagnostic biomarkers. Although the application of metabolomic
profiling to individual NMOSD patient care shows promise, more research is needed.
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1. Introduction

The term ‘neuromyelitis optica spectrum disorder’ (NMOSD) was established as a way to unify
and classify neuromyelitis optica (NMO), formerly known as Devic’s disease, and a variety of related
neurodegenerative syndromes and autoimmune disorders in order to improve individual patient
care [1]. There is no cure for NMOSD. Our understanding of the complexity of NMOSD pathology has
grown over the past decade. Yet, there remains no definitive discriminatory biomarker for early disease
diagnosis. The probability that the continued use of single-candidate approach studies, that may not
capture the dynamic complexity of the underlying cause(s) of NMOSD or mechanism(s) of disease
progression is limited. Metabolomic profiling provides a means to quantitatively compare thousands
of endogenous metabolites from multiple tissues at multiple timepoints over the course of disease
from multiple subjects. The objective of this review is to provide a comprehensive data collection
and analysis of the currently known metabolomic perturbations and related proteomics outcomes
of NMOSD and relate these immune cell function. Our hope is that this extensive data resource
will facilitate additional metabolomic profiling to expedite biomarker discovery. An individual’s
metabolomic profile is reportedly as unique as one’s fingerprint given that no two individuals have
exactly the same enzyme activity at any given time—and thus holds great promise to facilite precision
medicine approaches for NMOSD patient care.
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1.1. A Role for AQPA-IgG1 and MOG-IgG1 Autoantibodies in NMOSD Pathology

NMOSD characteristically involves the inflammation and demyelination of the optic nerves
(optic neuritis) and spinal cord (transverse myelitis), and less commonly affects the brainstem and
hypothalamus to cause pain, blindness, and paralysis [2–4]. Characteristic lesions, including recurrent
attacks of optic neuritis and longitudinally extensive transverse myelitis (LETM) by magnetic resonance
imaging (MRI), are required to fulfill NMOSD diagnosis. The onset of optic neuritis in NMOSD is
believed to trigger subsequent inflammation and swelling, which increases the likelihood of pain and
the loss of vision. Alternatively, spinal cord damage triggers subsequent inflammatory responses that
potentiate fatigue, weakness, paralysis, and sensory, bowel, and bladder dysfunction. Nearly 90% of
patients undergo disease remission and relapse (known as relapsing NMOSD), while the remaining
patients develop progressive monophasic NMOSD [5].

Immunoglobulin G1 (IgG1) autoantibodies (Ab) that target the astrocyte aquaporin-4 (AQP4) water
channel have been detected in approximately 70% of NMOSD patients worldwide [6–9]. However,
this estimate may be underestimated, because not all testing used the more sensitive diagnostic AQP4
cell-based assay (CBA) [10,11]. AQP4-Ab binds to and internalizes AQP4 expressed on astrocyte end
feet surrounding blood vessels and synapses [4,6,12–15]. Immunoglobulin G1 (IgG1) autoantibodies
that target myelin oligodendrocyte glycoprotein (MOG-Ab) has been detected in approximately 40% of
AQP4-Ab− NMOSD patients [16–21]. MOG-Ab binds to MOG and destroys myelin covering neurons.
AQP4-Ab and MOG-Ab further contribute to disease pathology by fixing complement, which results
in astrocyte and neuron death. Neither AQP4-Ab or MOG-Ab have been detected in the remaining
NMOSD patients. The presence of both AQP4-Ab and MOG-Ab have not been detected in any NMOSD
patients. The influx of neutrophils and eosinophils into the CNS plays a key role in propagating
inflammation and cell damage [12–15,22–24]. More recently, AQP4-reactive CD4+ T cells and gut
microbiome dysbiosis have also been linked to disease pathology [25].

1.2. The Urgency for Novel NMOSD Biomarker Discovery

Relapsing NMOSD rarely converts to a secondary progressive phenotype to support the opinion
that the underlying mechanism(s) that cause these two disease subtypes are different [26]. Current
treatment options for NMOSD include a variety of non-specific immune suppressive modalities [27–36].
The more recent inclusion of B cell-depleting monoclonal antibodies has improved patient response to
therapy, given the importance of humoral immunity in driving disease pathology [36–39]. Unfortunately,
neither AQP4 or MOG autoantibodies predict disease relapse, response to therapy, or prognosis.
Promising new therapies, such as eculizumab (C5 complement inhibitor), tocilizumab (interleukin
(IL)-6 receptor blocker), and Cl-esterase inhibitor (complement Clr and Cls inhibitor) [28,29,40–42],
bring new options for treatment. However, the continued absence of biomarkers for early diagnosis
between AQP4-IgG+ NMOSD, AQP4-IgG− MOG-IgG+ NMOSD, AQP4-IgG− MOG-IgG− NMOSD,
and related disorders, therapy will remain hindered. An urgency for novel biomarker discovery
is further highlighted by the challenge to discriminate between MOG-IgG1

+ NMOSD and related
MOG antibody disease (MOGAD) patients that are also MOG-IgG1

+ [16–21] and between AQP4-IgG−

MOG-IgG−NMOSD and related AQP4-IgG−MOG-IgG− disorders with overlapping clinical symptoms.
The presence of AQP4-IgG unequivocally differentiates NMOSD from multiple sclerosis [6–9]. Increased
cerebrospinal fluid (CSF) eosinophils, neutrophils, glial fibrillary acidic protein (GFAP), or neurofilament
light chain and the absence of CSF-restricted oligoclonal IgG bands also argue in favor of NMOSD over
multiple sclerosis [43–45]. The misdiagnosis of NMOSD may result in adverse effects to therapies by
NMOSD patients [46–49], and highlight the importance of early diagnosis and monitoring of individual
NMOSD patient response to therapy.
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1.3. Metabolomic Profiling Applied to Autoimmune Disease

Metabolic processes, including glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate
pathway, fatty acid oxidation, fatty acid synthesis, and amino acid metabolism, are essential for
precise regulation of immune cell fate. These pathways are tightly regulated by a host of factors,
including energy, nutrients, cytokines, chemokines, and microbes and their metabolites. Metabolic
perturbations of specific metabolites have been implicated in autoimmune disease. For example,
ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry
(UPLC-HRMS) has differentiated rheumatoid arthritis from primary Sjogren’s syndrome [50]. These
are two autoimmune disorders that present with overlapping symptoms of joint pain, swelling,
and stiffness. In this study, rheumatoid arthritis had increased levels of serum 4-methoxyphenylacetic
acid, glutamic acid, l-leucine, l-phenylalanine, l-tryptophan, l-proline, glyceraldehyde, formate,
and cholesterol, but decreased levels of capric acid, argininosuccinic acid, and bilirubin when
compared to Sjogren’s syndrome patients. In pediatric type 1 diabetes mellitus, the presence of islet
autoantibodies associates with increased phospholipids and triglycerides, but decreased methionine and
hydroxyproline levels [51]. The discovery of metabolic dysbiosis in systemic lupus erythematosus (SLE)
has identified novel targets for drug development [52,53]. For instance, metformin, an anti-diabetic
drug that regulates systemic and cellular metabolism, promotes CD4+ T regulatory cell expansion [54].
Moreover, metabolomic profiling of celiac disease has led to the inclusion of personalized lifestyle and
dietary habits as prophylactic intervention for individuals suffering from gluten intolerance [55,56].

1.4. Immunometabolism in Autoimmune Disease

Immunometabolism, an emerging frontier that investigates the interplay between immunological
and metabolic processes, is gaining momentum due to the growing appreciation that dysregulated
metabolic processes underlie many aberrant immune-mediated responses. As such, cellular metabolism
is a target for drug development. The environment contributes to autoimmune disease pathology,
and the same principle holds true for metabolism. Tissue metabolism shifts, in part, following the
recruitment of inflammatory cells, including neutrophils and monocytes, and local expansion of effector
lymphocytes [57]. As lymphocytes transition from a resting to proliferative state, they undergo a
metabolic switch in order to acquire substrates from the environment in order to meet their increased
energy demands required for effector function [58]. Immune cells with different functions use different
metabolic pathways. Although these metabolic pathways rely on the same pool of fuel sources and
key synthetic precursors, they generate different outputs in different cell types. The importance of
understanding that these needs change markedly between states of inflammation and disease relapse
and not be overemphasized.

1.5. A Role for Metabolomics in Multiple Sclerosis

Metabolomic profiling has been used in order to discriminate between multiple sclerosis and
other related diseases, discriminate between RRMS, secondary progressive multiple sclerosis (SPMS),
and primary progressive multiple sclerosis (PRMS), and to characterize patient disability [59–80].
These studies have incorporated human subjects and experimental animal models. Serum samples
from multiple sclerosis patients have differentiated from healthy controls by increased levels of serum
sphingomyelin, phosphatidyl-ethanolamine, phosphatidyl-choline, phosphatidyl-inositol, glutamate,
and selective amino acids, as determined by mass spectrometry (MS) and nuclear magnetic resonance
(NMR) spectroscopy [59,63,67,76]. The serum levels of sphingomyelin, phosphatidyl-ethanolamine,
phosphatidyl-choline, phosphatidyl-inositol, glutamate, and other amino acids have further been
identified as possible biomarkers to discriminate between multiple sclerosis and healthy controls,
as determined by UHPLC-MS and UHPLC-TOF-MS. Further, SPMS has been differentiated from RRMS
by decreased levels of phosphatidylcholine, N-acetyl species, lactate, and glucose, but increased levels
of other fatty acids and β-hydroxybutyrate [81].
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Multiple sclerosis has discriminated from NMOSD by increased levels of serum lysine and
histidine and decreased large HDL particles, unsaturated lipid, and alanine in a lipid profiling
study [82]. When comparing CSF profiles between multiple sclerosis and healthy controls, multiple
sclerosis had increased levels of choline, myo-inositol, and threonate, but decreased levels of
3-hydroxybutyrate, citrate, phenylalanine, 2-hydroxyisovalerate, and mannose, carboxymethylated,
neuroketal, and malondialdehyde [78,83]. LC/MS/MS lipid profiling has correlated disease severity of
multiple sclerosis with increased levels of 15-hydroxyeicosatetraenoic acid (15-HETE), prostaglandin
E2, DHA-derived resolvin D1 (RvD1), and DHA-derived neuroprotectin D1 (NPD1) [84]. Surprisingly,
similar perturbations were not observed in the serum samples from the same subjects. In these
same studies, CSF and serum levels of thromboxanes, leukotrienes and prostaglandin D2 were
comparable between multiple sclerosis and healthy controls. In a separate study, MRS coupled
with neuroimaging discriminated multiple sclerosis from healthy controls by increased expression of
glutamate, N-acetylaspartate (NAA), GABA, and aspartate [79].

Overall, perturbations in phospholipids, sphingolipids, amino acids, and long-chain polyunsaturated
fatty acids appear to associate with multiple sclerosis pathology. It remains to be determined whether
these differences reflect changes in myelin-specific lipid content as a consequence of demyelination,
increased immune cell activity, or a combination of both. Further studies are needed to establish causal
relationships and explore metabolic differences between female and male patients. It is intriguing that
most metabolite perturbations correlated with immune cell survival, migration, and/or effector function.

2. Metabolomic Profiling of NMOSD

2.1. Metabolomic Studies to Discriminate NMOSD

Five untargeted and two targeted metabolomic studies have profiled, using multivariate and/or
univariate analyses, metabolite perturbations in blood, plasma, CSF, or urine samples from NMOSD
patients. These studies are listed here and highlight potential confounding factors, including
metabolomic platform, origin of biopsy, state of disease at the time of biopsy collection, serology,
biological sex, therapeutic pharmacological usage, and comparative control cohorts. Moussallieh et al.
2014 utilized proton High Resolution Magic Angle Spinning NMR spectroscopy (1H-HRMAS NMR) in
order to compare sera from 44 NMO patients (22 AQP4-IgG+ and 22 AQP4-IgG−) with 47 RRMS patients
and 42 healthy controls [85]; however, the reported results did not differentiate between AQP4-IgG+

and AQP4-IgG− NMO. In a second, separate study, Gebregiworgis et al. 2016 used one-dimensional
proton NMR spectroscopy (1D 1H-NMR) to compare urine samples from nine AQP4-IgG+ NMO
patients undergoing remission, eight patients with RRMS, and 12 healthy controls [86]. In a third
study, Park et al. 2016 applied GC-time of flight-mass spectrometry (GC-TOF-MS) to analyze CSF
from 49 NMO patients (of unreported AQP4-Ab or MOG-Ab serology), 30 idiopathic transverse
myelitis patients, 54 patients with RRMS, and 12 healthy controls [87]. In a fourth investigation,
Kim et al. 2017 employed multiple forms of 1H-NMR spectroscopy, including one-dimensional
proton nuclear overhauser effect spectroscopy (1D 1H-NOESY), 1H-13C heteronuclear single quantum
coherence spectroscopy (1H-13C HSQC), and two-dimensional proton total correlated spectroscopy
(2D 1H-TOCSY), in order to quantify and compare CSF metabolites from 57 NMO patients (of
unreported AQP4-Ab or MOG-Ab serology) with 50 RRMS patients and 17 healthy controls [74].
Finally, Jurynczyk et al. 2017 applied a 1D 1H-NOESY pre-saturation scheme to 1H-NMR spectroscopy
and subsequent lipoprotein profiling to compare plasma metabolites between 54 AQP4-Ab+ NMOSD,
20 MOG-Ab+ NMOSD, and 34 RRMS patients [82]. While Jurynczyk et al. was the only study to report
the comparison of AQP4-Ab+ NMOSD and MOG-Ab+ NMOSD with RRMS, these investigations did
not compare NMOSD or RMSS with healthy controls.

Although not explicitly self-identified as metabolomic investigations, at least two additional
studies have incorporated targeted metabolomic platforms to evaluate NMOSD [88,89]. In the first
of these two studies, Tortorella et al. 2011 used high performance liquid chromatography-mass
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spectrometry/more selective (HPLC-MS/MS) to quantify NAA from CSF and sera from 32 NMO
patients (13 AQP4-Ab+ and 9 AQP4-Ab−), and compared these results with 48 RRMS and 76 healthy
cohorts [88]. More recently, Cha et al. 2016 employed liquid chromatography-electrospray ionization
tandem mass spectrometry with picolinyl ester derivatization (LC-ESI/MS/MS + PE) to quantify
CSF 24S-, 25-, and 27-hydroxycholesterols (OHCs) in 26 AQP4-Ab+ NMO patients and 23 control
patients with other non-inflammatory, non-degenerative neurological disorders (ONNDs) [89]. This
publication further reported elevated serum OHC levels in NMOSD when compared to ONNDs,
as detected by liquid chromatography-silver ion coordination ionspray tandem mass spectrometry
(LC-Ag+CIS/MS/MS) [89]. Neither of these studies included healthy controls.

Collectively, these metabolomic investigaations identify significant perturbations of 36 metabolites
in plasma, serum, blood, CSF, and urine biopsies collected from NMOSD patients as compared to
RRMS and healthy controls (Table 1). Of these 36 metabolites, acetate, lysine, formate/formic acid,
glucose, lactate/lactic acid, N-actyl aspartate (NAA), and scyllo-inositol discriminated NMOSD in
two or more biopsy sources from two or more independent studies [74,82,85–89]. Of these eight
metabolites, only one inter-study discordance was noted, and this was increased serum lysine [85]
compared to decreased plasma lysine [82], in NMOSD compared to RRMS. A host of technical, but not
known, biological possibilities could explain these lysine observations. In terms of technique, different
sample sources, sample preparations, assay sensitivities, and metabolomic platforms for data analyses
were used. Overall, the levels of a select few metabolites discriminate between NMOSD and multiple
sclerosis and between AQP4-Ab+ NMOSD and MOG-Ab+. These include circulating levels of SCFA,
lipoproteins, lipids, glycolysis intermediates, and essential amino acids, as illustrated in Figure 1.

Six of the seven NMOSD metabolomic studies reviewed considered demographics, duration of
disease, treatment, AQP4-Ab and MOG-Ab serology, age, biological sex, or MRI lesions in their data
analyses [74,82,85,87–89]. Of these variables, increased CSF fatty acids or lactic acid levels [87], but
decreased CSF isobutyrate levels discriminated relapsed and acute NMOSD [74]. Further, increased
CSF OHC levels positively correlated with acute NMOSD disease severity, as determined by increased
expanded disability status scale (EDSS) scores [89]. Otherwise, no metabolite perturbations correlated
with these variables, but it is important to recognize that no study considered most of these confounding
environmental factors. No study has yet addressed the sexual dimorphism associated with disease
susceptibility to discriminate between AQP4-Ab+, MOG-IgG+, and seronegative NMOSD.

Collectively, these data provide a supportive basis for the continued use of metabolic profiling for
NMOSD biomarker discovery. Putative candidate diagnostic markers to differentiate NMOSD from
RRMS include increased levels of lactate, alanine, unsaturated lipids, NAA, acetate, and lysine and
decreased levels of histidine and glutamine (Figure 1). Putative biomarkers to discriminate between
AQPA-Ab+ NMOSD and MOG-Ab+ NMOSD include increased levels of unsaturated fatty acids,
concentration and size of large LDL particles, size of small LDL particles, glutamate, and glucose,
formate, and leucine. To our knowledge, metabolic profiling has not been applied to AQPA-Ab−

MOG-Ab− NMOSD. More studies are needed in order to validate these observations, and the
consideration of clinical and environmental variables need to addressed in these future investigations.
In the following paragraphs, we further discuss the relationship of these metabolite perturbations
with respect to alterations in energy and fatty acid metabolism, immune cell function, and the gut
bacterial microbiome.
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Table 1. Altered Metabolite Outcomes in Neuromyelitis Optica Spectrum Disorder (NMOSD) Metabolomic Studies.

Endpoint Change Biopsy
NMO Patients Disease State a AQP4-Ab

Control b Method c Ref.
Female Male Relapse Remission + −

1-Monostearin ↑ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]
1-Monopalmitin ↑ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]

2-Hydroxybutyrate ↑ CSF 51 6 36 21 NR NR 17 HC 1D & 2D 1H-NMR [74]
3-Hydroxybutyrate ↓ Urine 6 3 – 9 9 – 8 RRMS, 7 HC 1D 1H-NMR [86]

3-Hydroxyisovalerate ↓ Urine 6 3 – 9 9 – 8 RRMS 1D 1H-NMR [86]
3-Hydroxypropionic acid ↓ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]

25-Hydroxycholesterol ↑ CSF 19 7 26 – 26 – 23 ONND LC-ESI/MS/MS + PE [89]
27-Hydroxycholesterol ↑ CSF 19 7 26 – 26 – 23 ONND LC-ESI/MS/MS + PE [89]

Acetate ↑ Serum 32 12 NR NR 22 22 47 RRMS, 42 HC 1H HRMAS NMR [85]
↓ CSF 51 6 36 21 NR NR 17 HC 1D & 2D 1H-NMR [74]

Acetone ↑ CSF 51 6 36 21 NR NR 17 HC 1D & 2D1H-NMR [74]
Alanine ↑ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]

Butane-2,3-Diol ↓ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]
Citrate ↓ CSF 51 6 36 21 NR NR 50 MS 1D & 2D 1H-NMR [74]

Creatinine ↓ Urine 6 3 – 9 9 – 8 RRMS, 7 HC 1D 1H-NMR [86]
Formate ↑ CSF 51 6 36 21 NR NR 17 HC 1D & 2D 1H-NMR [74]

(MOG-Ab+) * ↑ Plasma 46 8 NR NR 56 – 34 RRMS + AQPA-Ab+ 1D 1H-NOESY [82]
Fumaric Acid ↑ CSF 43 6 32 17 NR NR 12 HC, 54 RRMS GC-TOF-MS [87]

Glucose ↓ CSF 51 6 36 21 NR NR 17 HC 1D & 2D 1H-NMR [74]
↑ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]

Glutamate ↑ Serum 32 12 NR NR 22 22 47 RRMS, 42 HC 1H HRMAS NMR [85]
Glutamine ↓ Serum 32 12 NR NR 22 22 47 RRMS, 42 HC 1H HRMAS NMR [85]
Histidine ↓ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]
Inosine ↓ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]

Lactate/Lactic Acid ↑ CSF 51 6 36 21 NR NR 50 MS, 17 HC 1D & 2D 1H NMR [74]
↑ Plasma 46 8 NR NR 56 – 34 RRMS 1D 1H-NOESY [82]
↑ Serum 32 12 NR NR 22 22 47 RRMS, 42 HC 1H HRMAS NMR [85]
↑ CSF 43 6 32 17 NR NR 12 HC, 54 RRMS GC-TOF-MS [87]
↓ Urine 6 3 – 9 9 – 8 RRMS, 7 HC 1D 1H-NMR [86]

Large LDL particles,
Concentration ↑ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]

Large LDL particles, Size ↑ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]
Leucine (MOG-Ab+) * ↑ Plasma 46 8 NR NR 56 – 34 RRMS + AQPA-Ab+ 1D 1H-NOESY [82]
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Table 1. Cont.

Endpoint Change Biopsy
NMO Patients Disease State a AQP4-Ab

Control b Method c Ref.
Female Male Relapse Remission + −

Lysine ↓ Plasma 46 8 NR NR 56 – 34 RRMS 1D 1H-NOESY [82]
↑ Serum 32 12 NR NR 22 22 47 RRMS 1H HRMAS NMR [85]
↓ Serum 32 12 NR NR 22 22 42 HC 1H HRMAS NMR [85]

Methylmalonate ↓ Urine 6 3 – 9 9 – 8 RRMS, 7 HC 1D 1H-NMR [86]
Myo-Inositol (MOG-Ab+) * ↓ Plasma 46 8 NR NR 56 – 34 RRMS 1D 1H-NOESY [82]

NAA ↓ CSF 24 8 10 22 13 19 48 RRMS HPLC-MS/MS [88]
↓ Serum 24 8 10 22 13 19 48 RRMS HPLC-MS/MS [88]

Oxaloacetate ↑ Urine 6 3 – 9 9 – 7 HC 1D 1H-NMR [86]
Phosphocholine/lipoprotein

Lipoprotein ↓ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]

Pyroglutamate ↑ CSF 51 6 36 21 NR NR 17 HC 1D & 2D 1H-NMR [74]
Salicylaldehyde ↑ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]
Scyllo-Inositol ↓ Serum 32 12 NR NR 22 22 47 RRMS 1H HRMAS NMR [85]

↓ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]
Small HDL Particles ↓ Plasma 46 8 NR NR 56 – 34 RRMS + 20 MOG+ 1D 1H-NOESY [82]

Threose ↓ CSF 43 6 32 17 NR NR 12 HC GC-TOF-MS [87]
Unsaturated Lipid ↑ Plasma 46 8 NR NR 56 – 34 RRMS 1D 1H-NOESY [82]

1D 1H-NMR, one dimensional proton nuclear magnetic resonance spectroscopy; 1D 1H-NOESY, 1D 1H overhauser effect spectroscopy; 1D & 2D 1H-NMR, 1D & two dimensional 1H-NMR;
AQP4-Ab, aquaporin-4 autoantibody; CSF, cerebrospinal fluid; HC, healthy controls; HDL, high density lipoprotein; 1H HRMAS NMR, 1H high resolution magic angle spinning NMR;
HPLC-MS/MS, high performance liquid chromatography-mass spectrometry/more selective; GS-TOF-MS, gas chromatography time-of-flight mass spectrometry; LC-ESI-MS/MS + PE,
liquid chromatography-electrospray ionization-tandem mass spectrometry with picolinyl ester derivatization; LDL, low density lipoprotein; MOG, myelin oligodendrocyte glycoprotein;
MS, multiple sclerosis; NAA, N-acetyl aspartate; NMOSD, neuromyelitis optica spectrum disorder; NR, not reported; ONND, other noninflammatory neurological disorders; RRMS,
relapsing-remitting MS. a NMOSD patient disease status at the time of biopsy sampling, b Statistical significance reported between NMOSD and each comparison group, c Method of
metabolomic spectral data acquisition. * Indicates that MOG-Ab+ biopsies differed from AQPa-Ab+ and RRMS biopsies.
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Figure 1. Circulating Metabolites that Discriminate between AQP4-Ab+ NMOSD, MOG-Ab+

NMOSD, and RRMS. The clinical manifestations of auaporin-4 (AQP4)-antibody (Ab) neuromyelitis
optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein (MOG)-Ab NMOSD,
and relapsing remitting multiple sclerosis (RRMS) overlap. Given that (1) the clinical features
of NMOSD overlap with other central nervous system (CNS) demyelinating inflammatory disorders,
(2) a subtype of AQP4-Ab− and MOG-Ab− NMOSD has been proposed, (3) circulating Abs may not be
detectable following treatment or during disease remission, and (4) circulating levels of Abs are not
prognostic—Ab-independent biomarkers to accurately discriminate NMOSD from other CNS disorders
as well as between NMOSD subtypes is needed. Shown are the proposed circulating metabolites,
for which varying levels of evidence exist, that discriminate or overlap between AQP4-Ab+ NMOSD,
MOG-Ab+ NMOSD, and RRMS. Each metabolite indicated is increased relative to other(s) disease.
Not enough evidence is yet available to propose whether fumaric acid, acetate, and/or N-acetylaspartate
(NAA) discriminates AQP4-Ab+ NMOSD from MOG-Ab+ NMOSD and RRMS or discriminates
AQP4-Ab+ NMOSD and MOG-Ab+ NMOSD from RRMS. The essential amino acid lysine, a precursor
of glutamate in the CNS, is an interesting possibility that is supported by inconsistent published results
that may be resolved with future studies that account for the state of disease, i.e., relapse or remission,
at the time of sample collection.

2.2. NMOSD Metabolomics Profiling of SCFA in Fatty Acid Metabolism and Glycolysis

Four independent studies support SCFAs as candidate discriminatory NMOSD biomarkers.
The serum acetate levels were increased in NMOSD (22 AQP4-Ab+ and 22 AQP4-Ab− patients) as
compared to 47 RRMS and 42 healthy controls by 1.8- and 3.4-fold, respectively [85]. In agreement,
a second study reported increased serum acetate levels in 54 AQP4-Ab+ NMOSD and 20 MOG-Ab+

NMOSD patients compared to 34 RRMS patients (82). This same study also showed that increased
plasma formate levels discriminated the same 20 MOG-Ab+ NMOSD patients from the same
54 AQP4-Ab+ NMOSD and 34 RRMS patients. Further, increased urinary acetate, acetoacetate,
and oxaloacetate levels were reported in AQP4-Ab+ NMOSD patients (n = 9) compared to healthy
controls (n = 7) [86]. Increased plasma formate and leucine levels were shown to further discriminate
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20 MOG-Ab+ NMOSD patients from 54 AQP4-Ab+ NMOSD and 34 RRMS patients [82]. In comparison,
CSF acetate levels were decreased in 57 NMOSD patients, of unknown Ab serology, as compared to
17 healthy controls [74]. Discrimination between multiple sclerosis or NMOSD based on the 2010
McDonald and the 2015 International Panel for NMO diagnosis criteria leaves open the possibility that
inclusion of NMOSD seronegative patients in the latter study as a possible reason for the discrepancy
of NMOSD acetate compared to all other studies.

Mechanistically, within the CNS, acetate is preferentially metabolized by astrocytes [74,86,87,90–95],
and it plays a key role in energy bioavailability, production of myelin lipids [96,97], and lymphocyte
effector function [98–105]. Commensal bacteria also produce acetate. Glutamate, which is the principal
substrate for acetate synthesis, has also been implicated in NMOSD pathology [94]. AQP4-Ab internalizes
EAAT-2 on astrocytes [106–108], which may alter acetate production. Formate is a monocarboxylic acid
end product of choline and amino acid oxidation, and it is thought to be produced mostly within the
mitochondria and released into the cytosol, where it plays a key role in one-carbon metabolism for
purine synthesis, thymidylate synthesis, and methylation reactions. Formate is also a byproduct of
cholesterol synthesis, bacterial metabolism, and environmental exposure [109]. In NMOSD, increased
folate may contribute to glucose-independent one-carbon metabolism-mediated regulation of effector
T cells [110]. Perhaps an overabundance of folate is a key factor driving clonal T cell proliferation
in response to MOG-Ab? The role of leucine in NMOSD is also not clear; however, leucine is well
recognized as a key regulator of the activation of immune responses [111].

Overall, these data support SCFA as potential NMOSD biomarkers. Further, the study of a possible
gut-brain axis as a cause of NMOSD warrants further investigation given the recent observation of an
overabundance of C perfringens, a bacterium linked to SCFA metabolism, in the gastrointestinal tract of
NMOSD patients [112,113].

2.3. NMOSD Metabolomics Profiling of Lactate/Lactic Acid in Fatty Acid Metabolism and Glycolysis

Each of the five untargeted metabolomics studies reviewed here report the differences of lactic
acid or its conjugate base, lactate, in NMOSD (Table 1). In particular, Moussallieh et al. reported that
increased serum lactate levels discriminated 22 AQP4-Ab+ and 22 AQP4-Ab− NMOSD patients from
47 RRMS and 22 healthy controls while using multivariate analysis [85]. Park et al. used univariate
analysis to report that increased CSF lactic acid levels discriminated 57 NMOSD patients, of unknown
Ab serology, from 50 RRMS patients and 17 healthy controls [74]. In support, Jurynczyk et al. 2017
further identified increased plasma lactate levels in a group of 54 AQP4-Ab+ NMOSD patients as
compared to 34 RRMS patients following one-way ANOVA univariate analysis in order to generate
a predictive OPLS-DA model that successfully discriminated AQP4-Ab+ NMOSD from RRMS with
92% accuracy [82]. Park et al. 2016 showed that increased CSF lactic acid and fumaric acid could
discriminate 49 NMOSD patients (32 relapse and 17 remission, unknown Ab serology) from 54 RRMS
patients, 30 idiopathic transverse myelitis (ITM) patients, and 12 healthy controls [87]. Park et al.
2016 further discriminated between NMOSD disease and relapse by the perturbation of a host of
metabolites, including cyano-L-alanine, lactic acid, citric acid, homoserine, phenylalanine, myristic
acid, and salicyladehyde. Lastly, Gebregiworgis et al. 2016 reported that reduced urinary lactate and
several other urinary metabolite perturbations differentiated nine AQP4-Ab+ NMOSD patients from
seven healthy controls.

Overall, increased levels of lactate are consistent with a role for dysregulated fatty acid metabolism
in NMOSD pathology. The uniformity of results between serum and CSF further increase the likelihood
of lactate as a candidate biomarker for NMOSD diagnosis as well as disease relapse. Mechanistically,
astrocytes, in comparison to neurons, preferentially use glycolysis and fermentation for energy
metabolism, leading to lactate accumulation, the formation of the astrocyte-neuron lactate shuttle
(ANLS), and enhanced neuroexcitation, and the activation of immune responses [114–120]. Remarkably,
prior in vitro studies have suggested that lactic acid upregulates AQP4 expression in astrocytes and
promotes the production pro-inflammatory cytokines IL-17 and IL-23 [121–124].
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2.4. NMOSD Metabolomics Profiling of Lipids and Lipoproteins in Energy Metabolism and Glycolysis

The CNS is highly cholesterol-rich. The majority of cholesterol is found in the myelin sheaths.
A lesser amount is present in glial and neuronal cell plasma membranes. Lipoproteins contain lipids
and proteins, and transport lipids. CNS cholesterol is mostly derived by de novo synthesis, as the BBB
prevents the uptake of lipoprotein cholesterol from the circulation. The lipoprotein composition in the
CNS differs from that in the circulation, and neurons and astrocytes coordinate lipoprotein metabolism
in the brain.

Plasma lipoproteins, along with perturbations of amino acids, scyllo-inositol, and myo-inositol, have
been shown to discriminate between AQP4-Ab+ NMOSD, AQP4-Ab− NMOSD, and multiple sclerosis.
Standard NMR is not equipped to categorize individual lipoprotein subpopulations or measure lipoprotein
particle number or size. Thus, Jurynczyk et al. first applied an NMR-based lipidomics platform to plasma
samples, and then applied OPLS-DA to discriminate 54 AQP4-Ab+ NMOSD from 20 AQP4-Ab− NMOSD
and 34 RRMS by increased levels of large HDL particles and glucose, and decreased levels of small
HDL particles, phosphocholine/lipoprotein, and scyllo-inositol [82]. Increased large LDL particles
levels discriminated AQP4-Ab+ NMOSD and RRMS patients from AQP4-Ab− NMOSD. Increased
plasma levels of formate and leucine, along with decreased plasma myo-inositol levels, discriminated
AQP4-Ab− NMOSD from AQP4-Ab+ NMOSD and RRMS patients. Additionally, RRMS differentiated
from AQP4-Ab+ NMOSD from AQP4-Ab− NMOSD by increased plasma levels of histidine, lysine,
creatinine, and creatine, but decreased large HDL particles, lactate, and alanine. The total number of
HDL particles, the total number of LDL particles, and the level of total HDL, LDL, and triglyceride
levels were not discriminatory between these three patient groups [82].

A second, independent study used enzyme-linked immunosorbent assay (ELISA), 12-hour
fasting blood draws, clinical lipid tests, and covariance analysis with age and gender as covariants
in 56 NMOSD patients, 53 RRMS patients, and 54 healthy controls [125]. In this study, Li et al.
discriminated NMOSD (females combined with males) from RRMS (females combined with males) by
increased serum apolipoprotein B (ApoB) level and ratio of ApoB to ApoA1. The female NMOSD
patients differentiated from male NMOSD patients by decreased serum total cholesterol and LDL levels.
Serum total cholesterol, LDL, ApoA1, and total cholesterol/HDL-cholesterol did not differ between
NMOSD and RRMS patients.

A third report by Cha et al. highlighted a role for hydroxycholesterols in NMOSD pathology
and suggests oxysterols as candidate biomarkers for NMOSD diagnosis [89]. Serum and CSF samples
from 26 AQP4-Ab+ NMO patients and 23 patients with other non-inflammatory, non-degenerative
neurological disorders (ONND) by LC-MS/MS. AQP4-Ab+ NMO patients were differentiated from
ONND patients by increased CSF, as well as serum level of 25-hydroxycholesterol (OHC), 27-OHC,
and the ratio of CSF 27-OHC to 24S-OHC, which could be interpreted as either increased CNS synthesis
of 27-OHC or increased the permeability of the BBB. CSF 24-OHC did not associate with disease
activity; however, it did associate with the number of CNS inflammatory cells. Thus, CSF 24-OHC
levels may increase as a result of immune-mediated CNS injury. Further, the serum and CSF levels
of 24S-OHC, 245-OHC, and 27-OHC were correlated with NMOSD disease severity (EDSS) at acute
attack. Only CSF 27-OHC correlated with disability (r = 0.521, p = 0.009). It is not yet clear why CSF
27-OHC is increased and associated with disease disability in NMOSD. However, 27-OHC is mostly
synthesized from cholesterol by cholesterol 27-hydroxylase (CYP27), thus perhaps astrocyte and glial
cell damage alters de novo synthesis of cholesterol in the CNS in NMOSD. The levels of CSF 24S-OHC,
serum 24S-OHC, serum 25-OHC, and serum 27-OHC did not differ between NMOSD and ONND. It is
speculative that dietary intake contributes to the changes in serum total cholesterol and serum LDL
levels that are observed between female and male NMOSD patients, but more studies are needed to
explore this further.

Overall, these data collectively provide a strong foundation to implement CNS-restricted and
circulating levels of lipids and lipoproteins as strong candidate biomarkers to discriminate between
AQPA4-Ab+ NMOSD and AQP4-Ab− NMOSD, between NMOSD and related autoimmune diseases,
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and between NMOSD and other CNS disorders that are neither inflammatory nor neurogenerative,
such as polyneuropathy, cranial nerve palsy, radiculopathy, and spinal arteriovenous malformation.
It is likely that a more complete understanding of the role(s) of lipids and associated lipoproteins in
NMOSD pathology will enhance our knowledge of why females are more disease susceptible than are
males. Recently, 25-OHC has been shown to stimulate toll-like receptors on immune cells [126]. In this
regard, cholesterol and its metabolites join eicosanoids and sphingosine-1-phosphate as important
modulators of immune responses to environmental stimuli.

2.5. NMOSD Metabolomic Profiling of Amino Acids in NMOSD

Amino acids are well recognized as a key energy source, a substrate for protein synthesis, and a
regulator of rapamycin (mTOR), a central regulator of innate and adaptive immune cells responses
to the local environment. A select panel of amino acids have been shown to discriminate between
AQP4-Ab+ NMOSD, MOG-Ab disease, and RRMS, as diagrammed in Figure 2. These include increased
serum glutamate, lysine, N-acetylaspartate (NAA), and leucine, but decreased serum histidine and
glutamine. Increased circulating levels of glutamate discriminate AQP4-Ab+ NMOSD from MOG-Ab+

NMOSD and RRMS. Glutamate is the most abundant amino acid in the CNS and the major CNS
excitatory neurotransmitter. When in excess, it also contributes to neuronal dysfunction and destruction.
Excess CNS glutamate is consistent with a loss of both astrocytes and neurons, the two major cell
types that express high-affinity glutamate uptake transporters. Neuronal mitochondria synthesize
NAA. Dysregulated NAA is suggestive of mitochondrial dysfunction and often results in cell death.
Neither the source nor the consequence of decreased histamine in NMOSD compared to RRMS is well
understood. Taken together, the amino acid profile that discriminate between AQP4-Ab+ NMOSD,
MOG-Ab+ NMOSD, and RRMS appears to have promise for promise for new discriminatory biomarker
discovery. Yet, further investigations are needed for the validation and consideration of other related
overlapping neurological and autoimmune disorders.
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Figure 2. A role for metabolism in NMOSD. The role of astrocytes in neuronal-glial energy metabolism
(red), the astrocyte-neuron lactate shuttle (ANLS) (blue), and the glutamate/glutamine shuttle system
(green). The pathology of NMOSD, at least in most patients, has been traced to AQP4-Ab, which leads to
complement- and antibody-mediated injury and death of astrocytes and neurons. This antigen-specific
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humoral response has direct implications on astrocyte-regulated neuron-glial energy metabolism and the
neurotransmitter production as the glutamate/glutamine shuttle is dependent on the astrocyte-specific
glutamine synthetase. These metabolic changes further impact the production of lactate by astrocytes.
Abbreviations: AKG, alpha-ketoglutarate; acetyl-CoA; AQP4-Ab, aquaporin-4 autoantibody; GABA,
gamma-aminobutyric acid; GABA-T, GABA-transaminase; GDH, glutamate dehydrogenase; LDH, lactate
dehydrogenase; MAC, membrane attack complex; OAA, oxaloacetate; PDH, pyruvate dehydrogenase;
SSADH, succinic semialdehyde dehydrogenase. * Astrocyte-compartmentalized enzyme.

2.6. Magnetic Resonance Spectroscopy (MRS) in NMOSD Metabolomic Studies

Magnetic Resonance Spectroscopy (MRS) is a platform that enables noninvasive evaluation of
metabolites in vivo, and MRS Imaging (MRSI) further adds a dimension of spatial localization to
this technology. MRS and MRSI have both demonstrated feasibility of quantifying lipids, amino
acids, lactate, choline, NAA, creatine, and myo-inositol in CNS tissues of patients with neurological
disorders [127]. At least five MRS studies have investigated in vivo metabolite alterations in NMOSD,
and only one reported significant metabolite perturbations [128–132]. This single study showed
increased choline and NAA in the normal appearing white matter (NAWM) and normal appearing gray
matter (NAGM) of NMOSD patient’s brains compared to RRMS patients and healthy controls [129].
This finding is in agreement with a separate study showing equivalent or reduced serum or CSF levels
of NAA in NMOSD as compared to RRMS and healthy controls [88]. New technological innovations
continue to emerge. For instance, high spatial resolution matrix-assisted laser desorption ionization
(MALDI) imaging MS evaluates optic nerve anatomy as well as lipid and protein profiles [133]. These
new developments further promote advances in a precision medicine approach to treat NMOSD.

3. Proteomics in NMOSD

3.1. Proteomic Studies to Discriminate NMOSD

Supplementary Table S1 presents a summary of these data. Beyond metabolomic evaluations of
small metabolites, at least eight studies have used MS or NMR platforms to evaluate proteomics in
NMOSD [134–141] Of these, six studies quantified and compared NMOSD spectral profiles to reference
groups [134–139]. Lee et al. 2016 used high resolution hybrid LTQ-orbitrap MS to profile 442 CSF
exosome proteins from 10 NMOSD, 12 LETM, and 10 RMMS patients. This study identified significant
perturbation of 123 proteins in NMOSD with respect to LETM and RMMS patients, most notably
increased levels of glial fibrillary acidic protein (GFAP) [134]. Jiang et al. used HD-MS/MS or 2-DE
and HD-MS/MS to profile CSF or serum protein perturbations in six NMOSD patients compared with
six RRMS patients and six healthy controls [135,136]. Bai et al. utilized 2-DE and MALDI-TOF-MS to
profile CSF proteomics of NMOSD patients and patients other neurological disorders (OND), including
tension-type headaches, drug-induced delirium, normal pressure hydrocephalus, and trigeminal
neuralgia [137,138]. Lastly, Nielsen et al. used LC-MS/MS to quantify urinary protein concentrations
from 32 AQP4-Ab+ NMOSD patients, 46 RMSS patients, and 31 healthy controls [139]. Overall, these
six studies identified the concentrations of 162 protein perturbations in NMOSD with respect to RRMS,
LETM, OND, and/or healthy controls [134–139]. Two additional studies did not focus on protein
identification, but rather used MALDI-TOF-MS to discriminate CSF spectral peaks between NMOSD
and RRMS [140] or LC-ESI/MS/MS to combine CSF transcriptome and proteome profiling in NMOSD
patients [141].

Collectively, of the 162 protein perturbations that were identified in NMOSD, haptoglobin (Hp),
immunoglobulin kappa (Igκ) and Ig lambda-2 chain C regions (IGLC2), neurofilament, apolipoproteins,
collagen alpha-1 chains, contactin-1, keratin proteins, pigment-epithelium derived factor (PEDF),
and transthyretin (TTR) differed (p < 0.05) in two or more independent studies and, with the exception
of neurofilament, by two independent laboratories [134,135,137,138]. In addition, haptoglobin, IGLC2,
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collagen alpha-1 chains, contactin-1, and keratin protein perturbations were detected in more than one
biofluid from NMOSD patients [134,135,137,138].

3.2. Proteomic-Based Acute Phase Protein Perturbations

Supplementary Table S1 presents a summary of these data. Haptoglobin (Hp) is a standout
endpoint in NMOSD proteomics, as it has the highest number of studies supporting its increase
in NMOSD with respect to control cohorts and has a high magnitude of increase [134,135,137,138].
Most notably, a two- to three-fold increase in serum haptoglobin allelic subtype two (Hp2) has been
reported in NMOSD with respect to RRMS and healthy controls [135]. Conversely, ELISA-based
studies reported equivocal levels of serum Hp amongst NMOSD, RRMS, Alzheimer’s disease (AD),
and healthy controls [135,142]. The rationale underlying increased levels of Hp in NMOSD is not clear.
However, Hp, which is best known for its antioxidant activity [143–147], is produced in abundance
by oligodendrocytes and astrocytes, and it is known to modulate monocyte, granulocyte, neutrophil,
and lymphocyte cell activity [148–154]. As such, the role of Hp and Hp2 in AQP4-reactive B and T cells
is of particular interest due to their ability to affect neuron function and immune responses. A number
of other acute phase proteins also follow a trend of predicted inflammation in NMOSD [155]. For
example, CSF levels of ceruloplasmin, alpha-2-macroglobulin, and fibrinogen are increased in NMOSD
compared to LETM. The CSF levels of retinol-binding protein 4 and TTR are decreased in NMOSD
compared to LETM. TTR, a marker of impaired BBB integrity, in combination with Hp, is a promising
biomarker for diagnosis Parkinson’s Disease [156,157]. Future studies are needed in order to evaluate
a causal role for Hp and/or TTR in NMOSD disease and the potential of these two acute phase proteins
for disease discrimination of NMOSD patients.

3.3. Proteomic-Based Perturbations in Humoral Immunity

Supplementary Table S1 present a summary of these data. Deposits of anti-AQP4-Ab,
anti-MOG-Ab, and complement components are characteristic of active NMO lesions [158]. Increased
AQP1-IgG, Ig gamma–3 (IgG3), Igκ, and Ig lamda (Igλ) levels are also observed in NMOSD as
compared to LETM, RRMS, OND, and healthy controls [43,134,137,139,159,160]. These increased
Ab-related proteins may correlate with circulating targeted Abs against AQP4, MOG, and perhaps
other protein epitopes, such as glucose-regulated protein 78, Kir 4.1 K+ channel, and C1q [161–167].
The concentrations of at least 15 different complement-related components, including C4b-binding
and Hp-related proteins, are reported increased in NMOSD compared to LETM. The classical
complement pathway has been identified as the third-most significant proteomic pathway associated
with NMOSD [134]. ELISA platforms further corroborate complement components as possible
biomarkers to discriminate NMOSD from multiple sclerosis [166,168–172].

3.4. Targeted Immunoassay-Based Studies to Discriminate NMOSD

Supplementary Table S2 presents a summary of these data. In contrast to metabolomics and
proteomics, targeted immunoassays have been used for decades and remain, in some cases, a preferred
platform for quantifying targeted proteins. More than 55 different bead-based, ELISA, or other targeted
immunoassay platforms have been applied to quantify circulating levels of cytokines, chemokines,
inflammatory mediators, complement, cell damage products, or other proteins in NMOSD. A total of
119 serum protein changes have been reported to differentiate between NMOSD and RRMS, OND,
or healthy controls. As many of these perturbations have previously reviewed [173–175], here our
discussion will focus on the perturbations that have not previously been reviewed.

A minimum of36 independent studies have quantified the concentrations of 86 unique
CSF analytes from NMOSD patients [134,137,142,164,170,172,176–205]. Several of these studies
corroborate the metabolomic and proteomic observations discussed above. For example, targeted
immunoassays support increased levels of Hp [137,142] and GFAP [179,186,188,196,199,200] in
NMOSD with respect to all comparison cohorts studied, with the exception of acute disseminated
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encephalomyelitis (ADEM), by as much as 1000-fold. In addition, targeted immunoassays have been
used to recognize lactate as a candidate biomarker to discriminate between NMOSD relapse and
NMOSD remission [43]. Moreover, ELISA is a gold standard for measuring secreted protein and
has been successful in confirming increased levels of proinflammatory IL-17, a potent neutrophil
chemotactic cytokine, in NMOSD pathology [181,184,201]. Likewise, ELISA assays have substantiated
increased levels of IL-6, a cytokine that suppresses TREG differentiation and induces B cell
differentiation, in NMOSD [137,164,176,177,179–181,184,188–190,195,200,201,204]. The CSF levels of
IL-2 and interferon-γ (IFN-γ), cytokines associated lymphocyte effector function, appear to remain
unchanged in NMOSD when compared to controls [134,176,179,181,184,190,195]. Fewer studies have
investigated the CSF levels of TGF-β in NMOSD, and the results collected to date are inconclusive [179].

Regarding serum, at least 28 independent targeted immunoassay-based studies analyzed serum
from NMOSD patients [142,164,169–171,179,183,185,187,190–192,194,200,203,205–217]. These results
of these studies are summarized in Supplementary Table S3. Overall, these results showed increased
levels of IL-17A and IL-17F in NMOSD compared to RRMS, [190,206–208,212,214]. However, the levels
of IL-6 [179,190,207,208,213,214] and IFN-γ [210,211,213,214] in NMOSD compared to RRMS patients
are somewhat controversial.

In regards to plasma, at least six independent studies have used targeted immunoassay platforms
to evaluate the levels of a combination of 24 proteins in NMOSD patients when compared to RRMS
patients and healthy controls [166,168,206,218–220]. Supplementary Table S4 summarizes the cytokine
e.g., IL-1β, IL-6, IL-17, and TNF-α, and complement components, e.g., C1s, C3a, C4a, C4d, and C5,
which are consistently elevated in NMOSD as compared to RRMS and healthy controls.

Whole blood sample investigations have identified at least 12 proteins that differ between NMOSD
patients as compared other overlapping related disorders and healthy controls (Supplementary
Table S5). Collectively, these studies have identified that increased levels of BAFF receptor, C-X-C motif
chemokine receptor 5 (CXCR5), IFN-γ, IL-6, and IL-12, but decreased levels of IL-10 levels in NMOSD
when compared to RRMS, SPMS, other inflammatory neurological disorders (OIND), and healthy
controls [164,177,202]. It remains to be determined why the particular profile of inflammatory markers
differs between NMOSD and other inflammatory diseases.

Taken together, gold standard targeted immunoassays support the observation that NMOSD
discriminates from other related overlapping inflammatory disorder with respect to CNS-restricted
and circulating levels of cytokines, chemokines, and other soluble mediators that relate to innate and
adaptive immune responses, demyelination, astrocyte destruction, neuronal dysfunction, and myelin
and plasma membrane repair.

4. Conclusions and Future Perspectives

The undertaking of metabolomic investigations to establish discriminative biomarkers for NMOSD
has begun and initial studies show great promise, as they associate a battery of metabolites that link
cells, proteins, metabolic pathways, and soluble mediators that may facilitate the pathophysiology of
NMOSD. A select group of SCFAs, lipids, lipoproteins, and amino acids that are associated with energy
metabolism and glycolysis appears to be particularly promising as candidate biomarkers for disease
diagnosis, progression, and response to treatment. Yet, several limitations are apparent, and they
identify the need for additional studies to advance NMOSD biomarker discovery. These include,
but are not restricted to, the standardization of biofluids and sample preparation for analyses. There is
no doubt that the biology underlying NMOSD has rapidly advanced over the past decade. Given the
importance of early disease detection and the adverse effects to treatment in response of misdiagnosis,
there is a great need to classify NMOSD subtypes, at minimum, AQP4- and MOG-Ab serology, prior to
sample analyses. There is also a tremendous need to predict NMOSD relapse, thus also highlighting the
need to discriminate between samples collecting from patients during disease onset, disease remission,
and disease relapse. One of the most puzzling unanswered questions is why is the intendent of
NMOSD greater in females as compared to males. The ratio worldwide is currently estimated at
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8–10 females to one male. A better understanding of this sex dimorphism is likely to add tremendous
value in only novel biomarker discovery, but the likelihood of finding a cure as well. The identification
for a role in disease pathology by environmental factors is now emerging. Thus, a possible role of a
gut-brain axis should not be ignored in future study designs. In summary, metabolomic profiling of
NMOSD has successfully identified a host of candidate biomarkers for NMOSD diagnosis, but more
research is needed.
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(IL), liquid chromatography (LC), liquid chromatography-nanoelectrospray ionization tandem LTQ-orbitrap mass
spectrometry (LC-ESI/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry with
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(ANOVA), optic neuritis (ON), one-dimensional proton nuclear overhauser effect spectroscopy (1D 1H-NOESY),
orthogonal arrays of particles (OAP), orthogonal projections to latent structure-discriminant analyses (OPLS-DA),
other inflammatory neurological disorders (OIND), other neurological disorders (OND), other non-inflammatory
and non-degenerative neurological disorders (ONND), oxidative phosphorylation (OXPHOS), partial least
square-discriminant analyses (PLS-DA), pigment-epithelium derived factor (PEDF), power law global error model
(PLGEM), primary progressive multiple sclerosis (PPMS), proton high resolution magic angle spinning nuclear
magnetic resonance spectroscopy (1H HRMAS NMR), receiver operating characteristic (ROC) curve analysis,
relapsing-remitting multiple sclerosis (RRMS), secondary progressive multiple sclerosis (SPMS), shared and unique
structures (SUS) plot analysis, short-chain fatty acid (SCFA), systemic lupus erythematosus (SLE), T follicular
helper (TFH), T helper 17 cell (TH17), transforming growth factor-β (TGF-β), transthyretin (TTR), T regulatory
cells (TREG), tricarboxylic acid (TCA), tumor necrosis factor alpha (TNF-α), two-dimensional electrophoresis
(2-DE), two-dimensional proton total correlated spectroscopy (2D 1H-TOCSY), and ultra-high-performance liquid
chromatography coupled with high-resolution mass spectrometry (UPLC-HRMS).
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