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Abstract: The demand for vitamin D analysis in veterinary species is increasing with the growing
knowledge of the extra-skeletal role vitamin D plays in health and disease. The circulating
25-hydroxyvitamin-D (25(OH)D) metabolite is used to assess vitamin D status, and the benefits of
analysing other metabolites in the complex vitamin D pathway are being discovered in humans.
Profiling of the vitamin D pathway by liquid chromatography tandem mass spectrometry (LC-MS/MS)
facilitates simultaneous analysis of multiple metabolites in a single sample and over wide dynamic
ranges, and this method is now considered the gold-standard for quantifying vitamin D metabolites.
However, very few studies report using LC-MS/MS for the analysis of vitamin D metabolites in
veterinary species. Given the complexity of the vitamin D pathway and the similarities in the roles of
vitamin D in health and disease between humans and companion animals, there is a clear need to
establish a comprehensive, reliable method for veterinary analysis that is comparable to that used in
human clinical practice. In this review, we highlight the differences in vitamin D metabolism between
veterinary species and the benefits of measuring vitamin D metabolites beyond 25(OH)D. Finally,
we discuss the analytical challenges in profiling vitamin D in veterinary species with a focus on
LC-MS/MS methods.

Keywords: vitamin D; 25-hydroxyvitamin-D; 1,25-dihydroxyvitamin-D; 24,25-dihydroxyvitamin-D;
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1. Introduction

Vitamin D is well known to play an important role in skeletal health and disease. Vitamin D
deficiency, however, is prevalent worldwide [1,2] and is associated with a myriad of health disorders,
including many outwith its well-recognized role in the musculoskeletal system [2]. Nonetheless,
there remains controversy surrounding optimal levels of vitamin D for maintaining the health of human
and veterinary patients, and recommendations for daily vitamin D requirements [3–8]. Currently
vitamin D status is assessed by measuring the concentration of 25-hydroxyvitamin-D (25(OH)D), owing
to its relative abundance in the circulation, ease of analysis, stability, and half-life. Extensive reviews
on profiling vitamin D metabolites beyond 25(OH)D in humans have recently been published [9,10].
However, there is still limited knowledge of this extensive pathway in veterinary species [11–14], and
importantly, defined reference ranges for even the routinely measured 25(OH)D are lacking in most
veterinary species. Some differences in veterinary vitamin D metabolism are recognized; for example,
some carnivorous species including dogs and cats cannot produce vitamin D cutaneously [15–18].
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Numerous studies have shown that vitamin D deficiency is associated with skeletal and non-skeletal
disease in companion animals [19–29] and reproductive outcomes in farm animals [30].

An extensive network of vitamin D metabolites that contribute to the functional activity and
catabolism of vitamin D in a range of diseases and tissue types are now being identified [3,9,31,32].
With improving technology, namely liquid chromatography tandem mass spectrometry (LC-MS/MS),
that can facilitate the accurate identification and quantification of multiple highly similar metabolites in
a single sample, it is now possible to profile the vitamin D pathway more extensively than ever before in
veterinary patients [32–36]. Doing so in health and disease will enable us to further our understanding
of this pathway, identify new biomarkers which can improve clinical diagnostics and may enable
a treat-to-target approach of vitamin D supplementation. In this review, we will discuss vitamin D
metabolism and profiling in veterinary species, highlighting differences in vitamin D metabolism
between species and the benefits of profiling beyond 25(OH)D in veterinary clinical diagnostics and
therapeutics. Finally, we will discuss the analytical challenges of profiling vitamin D metabolites in
veterinary species with a focus on LC-MS/MS technology.

2. Fundamentals of Vitamin D Metabolism

Vitamin D is present in two main forms, D2 and D3. Vitamin D2 is synthesized by the action
of ultraviolet B (UVB) radiation on ergosterol in fungi and yeast (often found in small amounts on
plants) [37–39] and is consumed from a plant-based diet. Vitamin D3 is synthesized in the skin of
humans and some animals by the action of UVB radiation (280–320 nm) on 7-dehydrocholesterol
(7DHC) [40–42], or can be consumed from animal products. Upon exposure of the skin to UVB
radiation, a photochemical reaction occurs, resulting in the production of pre-vitamin D3 from 7DHC.
Subsequently, a reversible thermoisomerization reaction occurs, slowly converting pre-vitamin D3 into
vitamin D3 [40,43,44]. Alternatively, pre-vitamin D3 can be further photoisomerized into inert isomers
(lumisterol and tachysterol), or reversed back into 7DHC. Each reaction requires a different UV action
spectrum range [41,45] (Figure 1).

Both vitamin D2 and D3 enter the circulation and are predominately bound to the vitamin D
binding protein (VDBP) with a small percentage also bound to albumin, and less than 1% circulating
as free or unbound [46–48]; other vitamin D metabolites are also bound in this manner. Vitamin
D2/3 are prohormones that are subsequently activated by sequential hydroxylation at C25 in the
liver to 25-hydroxyvitamin-D2/3 (25(OH)D2/3), and then at C1α to the most hormonally active form
1α,25-dihydroxyvitamin-D2/3 (1,25(OH)2D2/3) (Figure 1). These hydroxylation steps occur by the
actions of the cytochrome P450 (CYP) enzyme family [49]. Hydroxylation at C25 is primarily catalyzed
by 25-hydroxylases, CYP2R1 in the endoplasmic reticulum of the liver and to a lesser extent by
CYP27A1 in the mitochondria of hepatocytes [50,51]. Hydroxylation at C1α occurs in the mitochondria
of proximal convoluted tubule cells of the kidney by the action of 1α-hydroxylase CYP27B1 [52].
This enzyme has been detected in other tissues and cell types and evidence of local production
of 1,25(OH)2D2/3 was a major contributor to identifying extraskeletal roles of vitamin D [53–55].
1,25(OH)2D exerts its actions on target cells and tissues by binding to the nuclear vitamin D receptor
(VDR) and heterodimerizing with retinoid X receptor (RXR). This complex exerts genomic actions
as a transcription factor to regulate target genes that contain a vitamin D response element in their
promoter. Alternatively, 1,25(OH)2D can bind to the plasma membrane VDR and induce non-genomic
actions, for example, the stimulation of intestinal calcium transport [40,56].
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Figure 1. The major classical vitamin D pathway, whereby vitamin D3 is either produced in the skin 
via photochemical (hν) conversion of 7-dehydrocholesterol (7DHC) to pre-vitamin D3 and 
subsequent thermoisomerization (ΔT) to vitamin D3, or consumed in the diet. Vitamin D3 is 
hydroxylated at C25 in the liver by CYP enzymes and then subsequently subject to further 
hydroxylation or C3-epimerization in the kidney. Note that vitamin D2 is activated by CYP2R1 and 
CYP27B1 and can undergo C24 hydroxylation and C3-epimerization as shown for vitamin D3, but is 
only consumed through the diet and not endogenously produced. 

The primary role of 1,25(OH)2D is the maintenance of calcium and phosphate homeostasis. 
Therefore, the regulation of CYP27B1 activity is tightly controlled via parathyroid hormone (PTH) 
[57–59] and fibroblast growth factor 23 (FGF23) [60], as well as a negative feedback loop whereby 
1,25(OH)2D acts on itself to suppress CYP27B1 and induce its own catabolism by promoting CYP24A1 
activity [58,61]. CYP24A1 can induce C23- and C24-hydroxylation of 1,25(OH)2D and 25(OH)D 
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Figure 1. The major classical vitamin D pathway, whereby vitamin D3 is either produced in the skin
via photochemical (hν) conversion of 7-dehydrocholesterol (7DHC) to pre-vitamin D3 and subsequent
thermoisomerization (∆T) to vitamin D3, or consumed in the diet. Vitamin D3 is hydroxylated at C25 in
the liver by CYP enzymes and then subsequently subject to further hydroxylation or C3-epimerization
in the kidney. Note that vitamin D2 is activated by CYP2R1 and CYP27B1 and can undergo C24
hydroxylation and C3-epimerization as shown for vitamin D3, but is only consumed through the diet
and not endogenously produced.

The primary role of 1,25(OH)2D is the maintenance of calcium and phosphate homeostasis.
Therefore, the regulation of CYP27B1 activity is tightly controlled via parathyroid hormone
(PTH) [57–59] and fibroblast growth factor 23 (FGF23) [60], as well as a negative feedback
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loop whereby 1,25(OH)2D acts on itself to suppress CYP27B1 and induce its own catabolism
by promoting CYP24A1 activity [58,61]. CYP24A1 can induce C23- and C24-hydroxylation of
1,25(OH)2D and 25(OH)D [49,62–64] (Figure 1). Whether the predominant hydroxylation step occurs
at the 23- or 24-carbon position is determined by the residue at position 326 of CYP24A1 [64].
When alanine at position 326 (favours C24-hydroxylation) is substituted for a glycine (favours
C23-hydroxylation), the side chain of the substrate can dock further into the binding pocket of the
enzyme, placing C23 rather than C24 into the optimal position for hydroxylation [64]. This change
gives rise to the C24-hydroxylation pathway being altered to favour the C23-hydroxylation pathway.
C24-hydroxylation of 1,25(OH)2D results in a five-step process that culminates with calcitroic acid; and
the C23-hydroxylation pathway involves conversion of 1,25(OH)2D3 to 1,25R(OH)2D3-26,23S-lactone
through sequential hydroxylation steps [65]. The end products are physiologically different;
calcitroic acid is rapidly excreted in the bile with no discernible biological activity, whereas
1,25R(OH)2D3-26,23S-lactone belongs to a family of known VDR antagonists with superior VDBP
binding and greater metabolic stability [64,66]. C23-hydroxylation of 25(OH)D3 forms 23,25(OH)2D3,
with subsequent steps forming the end product (23S,25R)25(OH)D3-(26,23)-lactone. C24-hydroxylation
of 25(OH)D3 forms 24,25-dihyroxyvitamin-D3 (24,25(OH)2D23). 24,25(OH)2D3 was thought to be an
inactive catabolic product of 25(OH)D3, however studies have now shown that it exerts biological
activity independent of the VDR [67–70]. Interestingly, the occurrence of C23 versus C24 hydroxylation
by CYP24A1 is species dependent [64,66,71–74]. Some species, such as humans, use both pathways;
others preferentially 23-hydroxylate (the opossum and the guinea pig) or 24-hydroxylate (the rat) [66].
The functional significance of the two distinct pathways in different species is unknown. However,
the metabolic products of the 1,25R(OH)2D3-26,23S-lactone pathway may provide a protective
mechanism to attenuate any vitamin D challenge as they are strong VDR antagonists, suggesting that
species with CYP24A1 containing Gly-326 that favours the C23-hydroxylation pathway may better
adapt to excessive 1,25(OH)2D3 activation or excessive dietary calcium or phosphorus [64,66,75,76].

3. Vitamin D Metabolism in Veterinary Species

The associations between vitamin D status and disease in animal species has been extensively
reviewed elsewhere [11–14], as have the comparative aspects of metabolic bone diseases related to
vitamin D in animal species [77]. This review section will therefore focus on highlighting differences
in vitamin D metabolism between animal species and the potential benefits of assessing vitamin D
metabolites beyond 25(OH)D in animal health and disease. For reference, Figure 2 displays vitamin D
metabolite concentration ranges across healthy adult animals of the species discussed below, compared
to human reference ranges or human data for those metabolites as a comparison. In order to enable
a direct comparison, this figure only includes data from studies outlined in Table 1 (see Section 4
introduction) in which vitamin D metabolites were measured by LC-MS/MS (studies discussed below
include other methods of measuring vitamin D metabolites, however they were not included in
Figure 2).

3.1. Comparative Differences in Vitamin D Metabolism

Evolutionary, genetic and environmental factors have influenced vitamin D metabolism across
animal species. Through adaptations to specific diets and environments, the source and specific
functions of vitamin D as mediators of calcium and phosphorus homeostasis differs across species.
Although deficiencies in vitamin D can result in diseases with very similar pathology, there are
clear differences in vitamin D metabolism and thus the specific factors inducing disease must not be
assumed to be the same across species [77,78]; therefore, this must be a key factor when considering
preventative and therapeutic methods. Here we will discuss key differences in vitamin D metabolism
between species.
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Figure 2. Vitamin D metabolite concentrations across species measured by LC-MS/MS (data from the
studies included in Table 1). Figure showing the range of (A) 25(OH)D, (B) 3-epi-25(OH)D3 and (C)
1,25(OH)2D3 concentrations measured in healthy adult controls of each species by LC-MS/MS. Where
available, reference ranges are highlighted by coloured bars. The human 25(OH)D and 1,25(OH)2D3
reference ranges are from the NHS website (accessed September 2020). No reference range exists for
3-epi-25(OH)D3 in humans, therefore data from a systemic review which reported ranges from several
studies was used (see Bailey et al. (2013) [79]). The number of studies included to provide data for each
of the veterinary species are as follows: (A) dogs n = 8 [80–87], cats n = 1 [85], horses n = 1 [88], sheep
n = 4 [30,89–91], cattle n = 2 [92,93], pigs n = 1 [94], poultry n = 2 [95,96] and nonhuman primates
n = 2 [97,98]; (B) dogs n = 2 [81,85] and cats n = 1 [85]; and C. dogs n = 1 [83]. nd = no data available
for the metabolites measured by LC-MS/MS in that species. In chart (A), data for nonhuman primates’
measures against the right-hand Y-axis.
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3.1.1. Dogs and Cats

Likely through evolutionary adaptation to a carnivorous, vitamin D rich diet, dogs and cats have
a reduced ability to synthesize vitamin D cutaneously via dermal photosynthesis in comparison to
herbivore species. The consumption of prey animals, particularly of fat, liver, and blood, which is
high in vitamin D, and of meat, which is very high in phosphorus, provided adequate nutritional
supply of vitamin D. The reduced ability to synthesize vitamin D in the skin of these animals is due to
high activity of the enzyme 7-dehydrocholesterol-reductase, which converts 7DHC into cholesterol,
reducing concentrations of the precursor for photochemical conversion into pre-vitamin D3 [16–18].
As such, pet dogs and cats now rely upon dietary vitamin D. As expected by the lack of cutaneous
vitamin D production, vitamin D status in dogs does not show seasonal variation in line with changes
in UVB exposure in temperate regions, as it does in species that do produce vitamin D cutaneously [80].
An initial study by Griffiths et al. in 1988 showed that husky dogs in the Antarctic actually demonstrated
an inverse relationship between UVB radiation and 25(OH)D concentration [99]; later, Laing et al. (1999)
studied greyhounds in Australia and demonstrated a lack of seasonal fluctuation [100]. More recently,
a longitudinal study that followed 18 dogs over a one-year period and were fed a standardized diet,
demonstrated that vitamin D status, as defined by measurement of both 25(OH)D2 and 25(OH)D3
concentration by LC-MS/MS, does not exhibit seasonal fluctuation [80]. To the authors knowledge, no
such longitudinal studies have been completed in cats.

Such reliance on dietary vitamin D makes it important that cats and dogs consume adequate
amounts of vitamin D in their diet. Feeding pets’ homemade diets that are not certified by a veterinary
professional, for example, may not be nutritionally adequate [101]. Although not common, there
have been instances of vitamin D toxicity in these species as a result of over supplementation of
commercial foodstuff [102,103]. Interestingly, carnivore species are considered more resistant to vitamin
D toxicity in comparison to omnivores due to their ingestion of large amounts [101], however numerous
cases of vitamin D toxicity in dogs and cats have resulted in many animals requiring veterinary
intervention [102–105]. The concentration of vitamin D required to induce toxicity in dogs is unknown.
In one study, a commercial dog food supplemented with over 100 times the recommended amount
resulted in severe vitamin D toxicity [104]; whereas another study demonstrated that supplementation
with five times the recommended dose did not significantly increase serum 25(OH)D concentrations of
the study population [106]. Other occasions of vitamin D over supplementation have not specified
vitamin D concentrations [102,105,107].

There are noteworthy differences in vitamin D metabolism that apply specifically to cats. It has
been demonstrated that cats cannot use vitamin D2 (the plant derived version) as efficiently as
vitamin D3, with vitamin D2 supplementation less able to elevate plasma vitamin D and 25(OH)D
concentrations compared to vitamin D3 supplementation [108]. This is thought to be due, in part, to a
lower binding affinity of VDBP to D2 metabolites in comparison to D3, perhaps as a consequence of a
strict carnivorous diet resulting in historical dietary intake of vitamin D2 being low [11]. Conversely,
dogs have been shown to use both D2 and D3 efficiently [12]. In dogs fed commercial dog food, levels
of serum 25(OH)D2 are rarely detectable due to predominant supplementation with vitamin D3.

Another unique difference in cats is that the C3-epimerization pathway is quantitatively
significant [85] (Figure 2B). The C3-epimer was detected in cats at much higher concentrations
than reported in other species, with the mean concentration reported as 58.7 nmol/L (23.5 ng/mL) in a
study by Sprinkle et al. (2018) which used high performance liquid chromatography (HPLC) to quantify
the vitamin D analytes. In the same study, rats had a mean 3-epi-25(OH)D3 concentration of 3.3 nmol/L
(1.3 ng/mL) and dogs had undetectable 3-epi-25(OH)D3, where the method had a limit of detection
(LOD) of 12.5 nmol/L (5 ng/mL) [85]. Interestingly, when the cats were switched to a different diet
that contained four times more vitamin D3 per kg of body weight compared to the initial diet, serum
25(OH)D3 concentrations were not significantly different but the concentration of 3-epi-25(OH)D3
increased significantly, as did the percentage contribution of the epimer to total 25(OH)D3 [85].
The author discusses the C3-epimerization pathway as a potential protective mechanism in cats,
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which may explain their theorized increased resistance to vitamin D toxicity. A previous study has
shown that cats supplemented with dietary vitamin D3 at 63 times the recommended amount did not
show clinical signs of vitamin D toxicosis despite serum levels of 25(OH)D3 reaching 1071.8 nmol/L
(429.4 ng/mL) [109]. Recently, a study investigating 3-epi-25(OH)D3 concentrations in dogs using
LC-MS/MS, demonstrated that 3-epi-25(OH)D3 could be detected in 87.2% of the 117 dogs tested,
with a mean concentration of 5.2 nmol/L (2.1 ng/mL) and a lower limit of quantitation (LLOQ) of
4 nmol/L (1.6 ng/mL) [81]. The concentration of 3-epi-25(OH)D3 in dogs detected in this study is
comparable to the low levels detected in other species and much lower than those detected in cats by
Sprinkle et al. (Figure 2B). This finding supports the argument that dogs may be more susceptible to
vitamin D toxicosis than cats due to the relative lack of activation of the C3-epimerization pathway.
Although the study by Sprinkle et al. measured only a small number of cats, the potential high
levels of 3-epi-25(OH)D3 in cats should be taken into consideration when analyzing cat samples for
25(OH)D3. Many methods do differentiate between 25(OH)D3 and 3-epi-25(OH)D3, therefore high
levels of 3-epi-25(OH)D may result in overestimation of 25(OH)D3 if they are not separated and
individually quantified.

3.1.2. Horses

Horses very rarely develop rickets [13,110] and this is likely due to them having evolved a
unique mechanism for calcium homeostasis that is quite different to other animals. Horses have
lower concentrations of circulating vitamin D (both 25(OH)D and 1,25(OH)2D) than other veterinary
species [111–114]; in fact, the concentrations are so low that in other species they would be considered
vitamin D deficient (Figure 2A). In comparison to other species, horses exhibit high intestinal calcium
absorption, high renal calcium excretion and high blood calcium levels, with low vitamin D metabolite
concentrations and a decreased sensitivity of the parathyroid gland to calcium [111,112,115–117].
Calcium homeostasis is less dependent on vitamin D in horses than in other species; low VDR
expression in the small intestine and kidney coupled with high intestinal absorption of calcium and low
vitamin D concentrations supports this conclusion [118]. Wilkens et al. (2017) have described novel
regulatory proteins for the regulation of transepithelial calcium transport in the small intestine of the
horse that are independent of vitamin D [114]. Azarpeykan et al. (2016) have, however, demonstrated
a statistically significant correlation between calcium transporting genes and expression of the VDR in
the equine kidney, suggesting that even low concentrations of 1,25(OH)2D may tightly regulate vitamin
D responsive calcium transport in horses [119]. Azarpeykan et al. (2016) also highlight differences
in CYP enzyme expression in the horse. CYP27B1 and CYP24A1 transcripts are expressed to similar
levels in the kidney of the horse, whereas in the dog and the sheep CYP24A1 expression was higher
than that of CYP27B1 [119].

Few studies have analyzed 25(OH)D2 and 25(OH)D3 in horse serum using a technique that
can differentiate the two metabolites [110,112,113,120,121]. A recent study that evaluated serum
25(OH)D levels in horses using LC-MS/MS (which does distinguish between 25(OH)D2 and 25(OH)D3)
demonstrated that 25(OH)D2 was the predominate 25(OH)D metabolite in horses [88]. 25(OH)D3
was undetectable above the lower limit of quantification (which was not specified) and there was no
difference between horses that were blanketed or unblanketed for the study period of 13 months [88].
This result was unexpected given that skin coverage has a direct impact on 25(OH)D3 synthesis in
other mammalian skin [122–124]. Interestingly however, serum 25(OH)D2 concentrations followed
a seasonal pattern, decreasing in the winter months with the highest concentrations detected in the
summer (again with no difference detected between blanketed and unblanketed animals) [88]. The same
seasonal pattern was also determined for 25(OH)D2 measured in the grazing pasture consumed by the
horses [88]. These results suggest that horses may rely on vitamin D2 from foodstuff to fulfill their
vitamin D requirements. The horses in the study discussed here all had dark skin [88], and given the
role of pigmentation in cutaneous vitamin D production [125] further investigation into the cutaneous
production of vitamin D3 in horses is warranted. Also of note, vitamin D metabolites have been
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shown to exhibit both seasonal (25(OH)D2) and circadian (25(OH)D3 and 1,25(OH)2D) fluctuations
in horses [88,121,126], as well as being influenced by exercise (vitamin D3 but specific metabolite
not specified) [127]. To the authors knowledge, C3-epimers of vitamin D metabolites have not been
measured in horses.

Although naturally occurring rickets is rare in horses, Shetland ponies deprived of sunlight and
dietary vitamin D can develop early signs of rickets [110]. Conversely, during vitamin D intoxication
the typical increase in serum calcium and 1,25(OH)2D concentrations is much reduced in comparison
with other species, yet there is a marked increase in response of inorganic phosphate [128]. This led
Harmeyer et al. (2004) to demonstrate that preventing the formation of a calcium-inorganic phosphate
product by reducing the content of these in food can reduce soft tissue calcification that occurs in
horses due to vitamin D intoxication [128].

Studies investigating the extraskeletal effects of vitamin D in the horse are still scarce; however, there
is evidence of a relationship between vitamin D status and equine perinatal diseases. The concentration
of vitamin D in healthy foals is lower than the already low concentrations detected in adult horses; and
in hospitalised foals (a mixture of sepsis and non-sepsis patients), low 25(OH)D3 and 1,25(OH)2D3
concentrations in comparison to healthy foals correlates with disease severity and mortality [129].
The authors observed that vitamin D deficiency combined with hypocalcemia, hyperphosphatemia,
and high PTH concentrations in septic foals may point to PTH resistance being associated with
the development of these abnormalities [129]. The group goes on further to identify FGF23/klotho
imbalances as contributors to disease progression in the equine neonate [130].

3.1.3. Sheep and Goats

There are mixed reports regarding the major form of vitamin D in sheep. Recent studies on
farmed flocks in Scotland and New Zealand have demonstrated significant contribution from both
D3 (cutaneous origin) and D2 (dietary origin) [90,91], however a study on an unmanaged population
of Soay sheep on the island of St Kilda reported D3 as the major contributor [30]. Given that D2 is
solely of dietary origin, this may be reflective of the quality of pasture available to intensively farmed
sheep in comparison to wild Soay sheep on the St Kilda islands. Growing lambs and kids have been
shown to be able to compensate for reduced dietary vitamin D intake by cutaneous production [131].
Interestingly, 25(OH)D3 concentrations were substantially greater in the New Zealand flock [90] in
comparison to both the Scottish Blackface [91] and Soay flocks [30]. This is likely the result of breed skin
pigmentation differences, with the Romney sheep of New Zealand having minimal skin pigmentation
in comparison to the Soay sheep and the Scottish Blackface sheep which both have dark skin and
significant pigmentation. Comparing the Scottish breeds in the study by Zhou et al., the concentration
of 25(OH)D3 and total 25(OH)D was significantly higher in Lleyn ewes, which have light pigmentation
and white faces and legs, in comparison with Scottish Blackface ewes which have dark pigmentation
and black faces and legs [91]. Combined, these results support the findings from Handel et al. (2016)
that sheep coat colour impacts vitamin D3 status [30]. It has been demonstrated that a heavy fleece and
pigmented skin reduce cutaneous vitamin D biosynthesis in comparison to shorn sheep with white face
and legs [132]. Combined with reduced UVB radiation in late winter, this leads to a seasonal trough
in serum 25(OH)D concentration in temperate regions which can be exacerbated by the demands of
pregnancy [133,134]. Generally, rickets due to vitamin D deficiency is uncommon in sheep; however,
UV radiation is only adequate for the synthesis of vitamin D between mid-March and mid-September
at latitudes greater than 55◦ N; regions at or above these latitudes have reported instances of rickets of
nutritional origin [13].

Unlike monogastric animals, small ruminants do not modulate renal calcium excretion in response
to dietary calcium restriction. Goats have been shown to have a greater capacity to compensate for
challenges of calcium homeostasis compared to sheep [135]. In comparison to goats, sheep are more
dependent on dietary intake of vitamin D, with the concentration of 7DHC in the skin of sheep shown
to be less than 10 times that in the goat [136], potentially explaining the decreased incidence of rickets
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in goats [135]. Interestingly, a genetic mutation in Corriedale sheep in New Zealand has recently
been identified with similarities to autosomal recessive hypophosphatemic rickets (VDDR type 2) in
humans [137–139].

Of particular interest is the relationship between vitamin D status and reproductive fitness in sheep.
Gestation and lambing commonly coincide with an ewe’s seasonal decline in vitamin D status [140].
Supplementing pregnant ewes with vitamin D has shown to improve the vitamin D status of lambs,
however lamb vitamin D status still remains much lower than that of the ewe [134]. Recently, novel
associations between vitamin D status and reproductive fitness in sheep have been identified. In an
unmanaged wild population of Soay sheep on the island of St Kilda, vitamin D status was demonstrated
to be both heritable and under natural selection [30]. Total 25(OH)D serum concentration of the ewe
was positively associated with the number of lambs that survived for one-year [30]. Subsequently,
a study by Zhou et al. (2019) examined reproductive traits and vitamin D status in Scottish hill sheep.
This study observed no significant association between ewe vitamin D status and number of lambs
born or weaned, however concentrations of 25(OH)D3 and total 25(OH)D were positively associated
with birth weight of single and twin lambs [91]. Conversely, a recent study on a flock of Romney
sheep in New Zealand revealed a negative correlation between total 25(OH)D concentration and ewes
that were pregnant with triplets, with no association detected between vitamin D status and ewes
pregnant with single or twin lambs [90]. The mean total 25(OH)D concentrations of the Romney sheep
in New Zealand was substantially higher than that of the Scottish sheep reported by Zhou et al. (2019)
(97.91 nmol/L in Romney sheep versus 36–45 nmol/L in Scottish sheep), leading the author to postulate
that the positive effect of increasing serum 25(OH)D concentrations on fecundity may only occur when
vitamin D concentrations are marginal [90], as seen in both the Scottish sheep [91] and Soay sheep [30].
A recent preliminary study has also reported reduced instances of vaginal prolapse in pregnant ewes
administered with injectable vitamins A, D3 and E, which warrants further investigation [89].

Vitamin D has also been implicated in spermatogenesis and sperm maturation in sheep [141].
In the male sheep reproductive tract, the VDR, CYP24A1 and CYP27B1 have been shown to be
differentially expressed at different developmental stages and in different sources of spermatozoa [141].
The expression patterns of the VDR and vitamin D enzymes suggest potential for modulating a local
vitamin D response in the reproductive organs, and high VDR and CYP24A1 expression in high-motility
spermatozoa suggests that sperm activity may require vitamin D under tight regulation [141]. Given the
potential for using an ovine model of vitamin D metabolism in pregnancy [142], further investigation
surrounding the role of vitamin D and reproductive fitness in this species is warranted.

3.1.4. Cattle

Supplementation of both dairy and beef cows with vitamin D is recommended. The impact of
farming practices and potential limited sun exposure, combined with increased metabolic demands of
the periparturient period, advocates that cows should be supplemented with vitamin D to maintain
calcium homeostasis and immune system function. Seasonal variation in vitamin D status is well
accepted in cattle in temperate regions [143–145]. Investigations into the variation in vitamin D status
throughout different stages of lactation demonstrated a depletion of 25(OH)D in dairy cows postpartum
versus late prepartum [146] and it is known that calves, as with newborns of other species, have lower
serum 25(OH)D than adult cows.

There is interest in increasing the vitamin D content in both milk and meat in order to benefit
the consumer of beef and dairy products. As such, studies investigating the most efficient way to
supplement cattle with vitamin D have been conducted, comparing whether vitamin D or 25(OH)D
supplementation is most effective. Supplementation with 25(OH)D3 over vitamin D3 has been
demonstrated to improve plasma concentrations of 25(OH)D more effectively [92,93]; there was no
difference between the two metabolites ability to improve milk 25(OH)D concentrations [93] but
25(OH)D supplementation increased 25(OH)D3 levels in tissues greater than supplementation with
vitamin D3 [92]. Weir et al. (2017) have reviewed environmental and genetic factors that influence
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the vitamin D content of cow’s milk [145]. Factors such as UVB exposure, diet, farming practices
(in particular the impact of year-round housing), breed, hair colour, age and stage of lactation were
identified, warranting further investigation to fully elucidate how farmers could manipulate these
factors to increase vitamin D content of milk [145].

As with other species, the skeletal benefits of maintaining sufficient vitamin D status are well
accepted. Although the extra-skeletal effects of vitamin D are less well studied in ruminants, vitamin
D metabolites have been shown to modulate bovine immune cells both in vitro and in vivo [147–152].
Studies investigating associations between vitamin D status and infectious disease in cattle have,
however, produced conflicting results [153,154].

3.1.5. Pigs

Pigs are particularly sensitive to developing conditions related to vitamin D deficiency, such as
rickets and fibrous osteodystrophy, as a result of rapid growth rates and early weaning. Rapid growth
and early weaning, combined with the controlled indoor environment in many modern intensive pig
farming facilities that often have restricted sunlight, mean that adequate supplies of dietary vitamin D
are a necessity [155]. Recent studies have demonstrated that outdoor sun exposure does increase serum
25(OH)D concentrations in growing pigs and this can be more effective at increasing serum 25(OH)D
than dietary supplementation [94,156]. Flohr et al. (2016) demonstrated that dietary supplementation
with 25(OH)D3 was more efficient than vitamin D3 supplementation at increasing serum 25(OH)D
concentrations in sows, and resulted in faster growing piglets [157,158].

A genetic form of rickets, pseudo-vitamin D dependent rickets type 1 (PDDR1) has been
characterized in Hannover pigs and was utilized as a model for vitamin D dependent rickets type 1
(VDDR1) in humans. The condition is a result of coding-region deletions in CYP27B1 which renders
the enzyme ineffective, meaning that these animals have an inability to maintain ambient levels of
1,25(OH)2D [159–161].

3.1.6. Poultry

Vitamin D deficiency in chickens can result in economic loss due to its dual actions in calcium
absorption and bone mineralization in fast growing birds raised for meat [162,163] and in its essential
role in egg shell calcification and decalcification (for embryonic bone formation and hatching) in laying
hens [78,164,165]. Birds, such as chickens, that lay hard-shelled eggs require rapid calcium supply
to the uterus for calcium deposition. Vitamin D is highly involved in both intestinal and uterine
calcium transport, therefore 1,25(OH)2D markedly fluctuates with the ovulatory cycle of birds [166,167].
Consequently, dietary supplementation of vitamin D is vital and supplementation with 25(OH)D3
has shown some benefits over supplementation with vitamin D3 [168], including increased cellular
immune response, improved mineral deposition in bones of broilers [169] and improved sternum
structure and mineral accretion [170]. Hutton et al. (2014) have demonstrated that supplementation
with 25(OH)D3 improves breast meat yield in broilers by stimulating skeletal muscle satellite cells [171].
Supplementation with both vitamin D3 and 25(OH)D3 has been shown to increase the vitamin D
content of egg yolks, a potential fortification method for human consumption [172]. Supplementation
with D3 metabolites rather than D2 is more effective in increasing vitamin D content of egg yolks [173],
possibly due to 25(OH)D2 being less well bound to the VDBP than 25(OH)D3 in chickens, rendering it
less effective [174].

Vitamin D3 can be cutaneously produced in chickens, however the anatomical location and
the presence of feathers can impact this process [95,96]. The concentration of 7DHC in the skin of
chickens (the limiting factor in the cutaneous production of vitamin D3) is variable across anatomical
locations [95,96]. Schutkowski et al. (2013) demonstrated that the highest concentration of 7DHC is
found in the skin of unfeathered legs of chickens, with the comb and wattle containing significantly
(190-fold) lower concentrations; feathered legs and wings had the lowest concentrations of 7DHC [96].
Kuhn et al. (2015) later demonstrated similar results, showing that feathered leg skin contains lower
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concentrations of 7DHC than unfeathered leg skin; and exposure of the skin to UVB radiation resulted
in a significant increase in the concentration of vitamin D3 and 25(OH)D3 in unfeathered skin only [95].
These results had important implications on future studies that investigated the exposure of chickens
to UVB radiation (in an attempt to increase vitamin D status and content of egg yolks), as they revealed
the importance of UVB lamp placement. Subsequently, exposure of birds to UVB has been shown to be
effective at increasing vitamin D content in eggs in a non-linear fashion [95], with both exposure to
natural sunlight via free range farming practices [175] and artificial light regimes for indoor caged
birds being effective [176]. Interestingly, an older study by Lietzow et al. (2012) conversely reported no
benefit of short-term UVB exposure of laying hens to improve vitamin D content of egg yolks [177].
However, in the study by Lietzow et al., the UVB lamps were placed above the hen’s heads, which is
now known to not be the optimal position due to the highest concentration of 7DHC being present in
the unfeathered legs.

Some avian species have a uropygial gland (often referred to as the oil or preen gland), cranial
to the implanting tail feathers, that can be involved in vitamin D synthesis [178–182]. The gland
secretes oil that contains a complex mixture of ester waxes, fatty acids, lipids and wax alcohols, and
its composition is species dependent [179–182]. The oil is spread among the plumage at preening,
with some of the main functions including antimicrobial activity, anti-abrasive effects, hydrophobic
properties (for water-proofing), production of pheromones and sex linked changes [179]. In some
species, the oil contains 7DHC which, after spreading over the feathers, can be exposed to UVB
radiation. This results in vitamin D3 synthesis that can subsequently taken up by the bird during
further preening [178,179]. There is currently limited research into whether this vitamin D intake occurs
in chickens and if so, the contribution of this vitamin D3 synthesis to vitamin D status is still unknown.

3.1.7. Llamas and Alpacas

Llamas and alpacas are evolutionarily adapted to high altitude environments with high levels
of solar radiation, and rely heavily on cutaneous production of vitamin D. When moved to other
climates, particularly to temperate regions, these species become more susceptible to rickets [77,183].
Seasonal variation in vitamin D status has been demonstrated in both of these species [184] and it is
recognized that crias born in the autumn and winter months have lower vitamin D status and therefore
higher risk of developing rickets than those born in the summer [185]. Interestingly, like sheep, alpacas
with dark coats have a lower vitamin D status than those with light coats in late winter [186]; however,
alpacas seem to be more susceptible to rickets than sheep, with alpacas becoming hypophosphatemic
and developing rickets during winter months in New Zealand whereas lambs grazing on the same
pasture showed no signs of deficiency [187]. This is likely reflective of the high reliance of alpacas on
cutaneous vitamin D production.

3.1.8. Nonhuman Primates

Nonhuman primates have been shown to exhibit much higher serum 25(OH)D3 and
1,25(OH)2D3 concentrations than humans [97] (Figure 2A). Marmosets in particular have very
high 25(OH)D and 1,25(OH)2D3 levels [97,188,189]. These high levels of 1,25(OH)2D3 are
suggestive of end-organ resistance [189,190] and have been demonstrated to be caused by the
overexpression of a VDR-independent VDRE-binding protein which interferes with vitamin D-regulated
transactivation [191], making this species a useful model for hereditary vitamin D resistant rickets
(HVDRR). Interestingly, striking levels of variation in vitamin D status within species was detected
even in laboratory primates that were subject to controlled diet and UV exposure [97]. Additionally,
vitamin D status has been demonstrated to be lower in darker skinned baboons than in those with
lighter skin, however there were no differences in downstream metabolites suggesting that downstream
conversion is under strong regulatory control [98].
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3.2. Profiling Vitamin D beyond 25-Hydoxyvitamin-D in Veterinary Species

3.2.1. Measuring 1α,25-Dihydroxyvitamin-D

As in humans, the clinical value of directly measuring 1,25(OH)2D in specific disease groups is being
realised in veterinary medicine. Although uncommon, there are several disorders of disturbed vitamin
D metabolism in which 1,25(OH)2D concentrations may be increased or decreased to undesirable levels
and may not always be reflected by altered 25(OH)D levels [192]. These conditions can be grouped
into distinct origins of 1,25(OH)2D disturbance; 1α-hydroxylase deficiencies, mutations of the VDR,
and excessive extrarenal production.

1α-hydroxylase deficiencies include vitamin D dependent rickets type 1, an autosomal recessive
disorder causing an inactivating mutation in CYP27B1, the 1,25(OH)2D producing enzyme. This is a rare
disease that causes abnormally low concentrations of 1,25(OH)2D and the early onset of rickets [193].
Congenital disorders of vitamin D metabolism are rare in animals, but several cases have been reported
in a range of species. Vitamin D dependent rickets (VDDR) type 1A, in which CYP27B1 contains an
inactivating mutation resulting in reduced conversion of 25(OH)D to 1,25(OH)2D, has been reported in
cats [194,195], an unconfirmed case in a dog [196] and in Hannover pigs [159,161]. In the case of the
cats and the pigs, serum 25(OH)D were normal to high, however 1,25(OH)2D concentration was low;
vitamin D metabolites were not measured in the case of the dog. More recently, a case of VDDR type
1B was described in a cat for the first time [197]. Here, a frameshift mutation at exon 5 in CYP2R1 was
identified, resulting in an inability to convert vitamin D into 25(OH)D [197]. Both disorders can be
managed by supplementation with 1,25(OH)2D, with varying degrees of success.

The second origin of 1,25(OH)2D unbalance are those disorders exhibiting mutations of the VDR.
Mutations resulting in the VDR becoming unresponsive or less responsive to its substrate include
hereditary vitamin D resistant rickets (vitamin D dependent rickets type 2) and result in hypocalcaemia
and early onset rickets. In these patients, very high circulating concentrations of 1,25(OH)2D are
recorded [198]. A few cases of VDDR type 2, involving mutations of the VDR gene, have been reported
in animals. In the case of two cats [199,200] and a dog [201], the animals presented with clinical signs
of early onset rickets, hypocalcaemia, secondary hyperparathyroidism and increased concentration
of 1,25(OH)2D. Treatment of this condition is challenging and consists of high doses of calcium
and 1,25(OH)2D. Corriedale sheep with features of VDDR type 2 have also been reported [137,138].
These animals presented clinical signs of rickets, significant hypocalcaemia and hypophosphatemia,
normal serum 25(OH)D but high serum 1,25(OH)2D concentrations, suggesting end organ resistance
to 1,25(OH)2D typical of VDDR type 2 [137]. However, subsequent in vitro studies revealed that
cultured skin fibroblasts from affected animals exhibited normal VDR function and demonstrated
an increase in CYP24 mRNA expression, suggesting that 24-hydroxylase may be involved in the
pathogenesis [202]. Furthermore, mutations in the dentin matrix protein 1 gene (DMP1) were identified
in affected animals, and are known to be involved in autosomal recessive hypophosphatemic rickets
humans [139]. These results suggest that the genetic defect in the Corriedale sheep may be different to
the genetic defects described in other species with VDDR type 2 to date. A DMP1-knockout mouse
model of autosomal recessive hypophosphatemic rickets exists and exhibits inappropriately normal
serum 1,25(OH)2D in response to elevated FGF23 [203,204], and there are four strains of VDR null mice
which are phenotypically similar to VDDR type 2 in humans [205].

Excessive extra renal production of 1,25(OH)2D can also occur in animals. Typically, this occurs
in patients with granulomatous diseases, where a dysregulated immune response results in the
excessive production of 1,25(OH)2D, typically by macrophages. This syndrome has been reported
in dogs with sterile granulomatous lymphadenitis [206], granulomatous inflammation following
placement of a biological implant [207], Angiostrongylus vasorum infections [208], Mycobacterium avium
subspecies hominissuis infection [209], and blastomycosis infection in a cat [210]. Excessive production
of 1,25(OH)2D has also been postulated to be important in driving hypercalcaemia in dogs with
autoimmune diseases such as immune mediated polyarthritis [211]. Successful treatment of the
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underlying condition typically resolves the increase in systemic 1,25(OH)2D concentrations and
associated hypercalcaemic state.

Low concentrations of 1,25(OH)2D have been reported in numerous health conditions in
companion animals. In cats and dogs with chronic kidney disease, low 25(OH)D concentration and
reduced CYP27B1 activity due to elevated levels of FGF23, contribute to low circulating 1,25(OH)2D
concentrations [25,212]. The decline in 1,25(OH)2D concentrations is considered important in the
development of secondary hyperparathyroidism in chronic renal disease, leading to interest in
the potential therapeutic merits of 1,25(OH)2D supplementation in companion animals with renal
failure [212–214]. In canine cancer patients, measuring serum 1,25(OH)2D concentrations in dogs with
lymphoma with and without hypercalcaemia has produced variable results [12,215,216]. Dogs with
protein losing enteropathy have significantly lower serum concentrations of 1,25(OH)2D compared to
dogs with a chronic enteropathy and normal albumin concentrations or healthy dogs [22,23]. In cases
of canine primary hyperparathyroidism, 1,25(OH)2D is significantly increased in comparison to healthy
dogs due to upregulation of 1α-hydroxylase by the action of PTH [216].

3.2.2. 24,25-Dihydroxyvitamin D and Vitamin D Metabolite Ratios

The assessment of 24,25(OH)2D is reported infrequently in the veterinary literature. Although
mutations in CYP24A1 have not been reported in animals, studies are beginning to reveal potential
associations between 24,25(OH)2D concentration and health and disease, particularly in dogs.
Tryfonidou et al. (2002) described 24-hydroxylase as a key regulator in hypervitaminosis D in
growing dogs [217] and subsequently observed differences in vitamin D metabolite concentrations
between large and small breed dogs; 1,25(OH)2D was increased and both 25(OH)D and 24,25(OH)2D
concentrations decreased in Great Danes in comparison to Miniature Poodles [218].

A study investigating the relationship between exercise and vitamin D metabolism in racing sled
dogs demonstrated that, contrary to human athletes, 25(OH)D concentration increased by day 2 of
exercise and a subsequent significant increase in 24,25(OH)2D concentration by day 8 was detected.
This led the author to postulate a possible homeostatic mechanism whereby 24-hydroxylase activity
was increased in order to decrease 25(OH)D concentration [87].

In dogs with stage 3 and 4 CKD, 24,25(OH)2D concentrations were significantly lower than in
control dogs or those with stage 1 and 2 disease [25]. Both of these studies reported higher concentrations
of 24,25(OH)2D in dogs in comparison to other species, suggesting enhanced 24-hydroxylase activity
as a result of higher vitamin D intake [25,87]. Dogs fed AAFCO or FEDIAF approved diets tend
to have higher serum concentrations of 25(OH)D than humans which supports the hypothesis
that dogs may have increased 24-hydroxyalse activity and therefore 24,25(OH)2D concentrations to
regulate this increased intake. Young et al. (2017) have also demonstrated that supplementation with
25(OH)D3 significantly increases 24,25(OH)2D concentration, further supporting this hypothesis [219].
These studies highlight the need for further investigation into the relationship between vitamin D
intake and status in dogs, particularly as there appears to be some metabolic variation in this species.
Given that genome wide studies have identified CYP24A1 as a genetic determinant of 25(OH)D
status [220], understanding vitamin D catabolic activity may also reveal insights into why 25(OH)D
status may differ in otherwise similar populations. For example, in a longitudinal study of 18 dogs on
a standardized diet, variation was detected between individual animals [80] suggesting host factors
play a major role in regulating and maintaining vitamin D status, of which CYP24A1 activity may be
one. In a study investigating vitamin D in an unmanaged Soay sheep population, some animals have
consistently higher concentrations of 25(OH)D in comparison to others [30]. Although coat colour was
identified as a determinant of vitamin D status in these animals, it did not explain all the variation and
further profiling of the vitamin D metabolites and their enzymes could provide key information as to
why this variation exists.

The assessment of vitamin D metabolite ratios (VMRs) in animals was described as early as 1982
by Horst et al. in a study comparing vitamin D metabolites in domestic species [221]. They describe
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sheep and pigs to have a higher ratio of 24,25(OH)2D:25(OH)D than turkeys and chickens; and in cows,
although inorganic phosphate was high and calcium was normal as in sheep and pigs, they had a similar
24,25(OH)2D:25(OH)D ratio to turkeys and chickens, suggesting reduced efficiency of conversion
of 25(OH)D to 24,25(OH)2D [221]. However, the assessment of VMR remains less commonplace in
animals than in humans. Recently, Groth et al. (2019) examined both the 25(OH)D:24,25(OH)2D
and 1,25(OH)2D:25(OH)D ratios, as well as individual metabolite concentrations in dogs with and
without hypercalciuric calcium oxalate urolithiasis [82]. Interestingly, none of the individual metabolite
measurements (25(OH)D, 1,25(OH)2D and 24,25(OH)2D) yielded significant differences between cases
and the control group, neither did the 1,25(OH)2D:25(OH)D ratio; however, the 25(OH)D;24,25(OH)2D
ratio was significantly higher in cases versus controls [82]. Although ranges overlapped, 6 out of 19
cases had ratios higher than the highest ratio observed in the control group, with the author postulating
that decreased 24-hydroxylase activity on 25(OH)D might contribute to calcium oxalate urolithiasis
in some but not all dogs. Further investigation is necessary to determine whether this change is
representative of disease in the case group or a preventative mechanism in the control group [82].
Additionally, of note, was the variability in the 25(OH)D;24,25(OH)2D ratio, not only between breeds
but within breeds [204]. Once again, this highlights the need to further understand the role of host
factors in vitamin D metabolism.

Assessing VMR’s in the study by Groth et al. (2019) increased the power of detection of differences
in vitamin D status between populations in comparison to comparing individual metabolites [82].
Considering the narrow range of 24,25(OH)2D:25(OH)D ratio in vitamin D sufficient people, assessing
VMR’s in animals could provide useful information to further clarify vitamin D status and improve the
power of detecting differences between populations. Given the evidence regarding increased activity
of CYP24A1 in dogs, measuring VMR’s could also impact the way in which vitamin D metabolites are
used as treatments in animals. The 24-hydroxylase enzyme can also act upon 1,25(OH)2D, meaning
conditions in which 1,25(OH)2D is used as treatment (such as 1α-hydroxylase deficiencies) could also
benefit from this information and begin to address the variability in response to treatment. In humans,
a significant increase in 1,25(OH)2D:24,25(OH)2D VMR was detected during vitamin D insufficiency,
suggesting 24-hydroxyalse activity is partially inactivated in order to maintain adequate substrate for
1α-hydroxylation, and implying that 24-hydroxylase activity may be increased in order to convert
excess 25(OH)D into 24,25(OH)2D in cases of hypervitaminosis D [222]. Again, given the potential
variation in vitamin D metabolism regarding CYP24A1 activity in dogs, and the potential differences
in tolerance of high levels of vitamin D in cats, it would be of benefit to examine these metabolites in
these species.

3.2.3. C3-Epimers

The 3-epi-25(OH)D metabolite has now been detected in both cats [85] and dogs [81] with
mean concentrations reported as 58.7 nmol/L (23.5 ng/mL) and 5.2 nmol/L (2.1 ng/mL) respectively
(Figure 2B). There have not been any studies investigating the relationship between the C3-epimers
and health and disease in animals. In humans, concentrations of the C3-epimers are increased during
pregnancy [223] and concentrations are higher in babies than in adults (Figure 2B). It would be of
interest to determine whether the same pattern is detected in animals by measuring 3-epi-25(OH)D in
newborns. Of particular interest would be the change in C3-epimer concentrations in both the mother
and young before, during and after weaning onto a commercial diet with known amounts of vitamin
D; as in human premature babies, 3-epi-25(OH)D increased significantly with supplementation in
comparison to cord blood measurements [224].

In dogs, variation in 3-epi-25(OH)D was detected between animals [81] and factors contributing
to this variation should be investigated. Given that dogs demonstrate similar levels of 3-epi-25(OH)D
relative to their total 25(OH)D concentration as humans, combined with the ease of controlling vitamin
D intake through consumption, it would be useful to model the C3-epimerization pathway during
pregnancy in this species. Ultimately, given the potential for C3-epimers to interfere with other vitamin
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D metabolite analysis, the biological activity and role of the C3-epimers needs to be well defined in
animals and the concentrations of these metabolites in various healthy and disease groups should
be determined.

3.2.4. Free Vitamin D and the Vitamin D Binding Protein

The recent interest in analyzing free 25(OH)D has yet to be reflected in the veterinary field.
The free hormone theory states that only the free (unbound) molecules can passively diffuse across
cell membranes and therefore be biologically available [225–227]; however, several target organs
of 25(OH)D express the transmembrane protein megalin, which can mediate internalization of
VDBP-bound metabolites [227–229]. The importance of free 25(OH)D for biological functions and the
role of VDBP as a reservoir has been demonstrated by mice lacking the VDBP. These animals presented
with markedly reduced circulating levels of 25(OH)D, however did not develop rickets until placed
on a low vitamin D diet [230]. Current interest surrounding the measurement of free 25(OH)D stems
from the consideration that free 25(OH)D may better represent vitamin D status in some populations;
in particular those with physiological or pathological conditions in which VDBP is altered [227].
The utility of free 25(OH)D as a biomarker will, however, be dependent upon concentrations or
correlations of free 25(OH)D and total 25(OH)D being divergent, in order to provide information
not already provided by measuring total 25(OH)D [231]. In healthy human populations, significant
correlations between free 25(OH)D and total 25(OH)D have been demonstrated [3,227,232]. However,
free 25(OH)D concentrations or the relationship between free and total 25(OH)D may be altered in
clinical conditions in which VDBP is altered (a number of medications, hormones and smoking have
been shown to affect VDBP levels [233]), the affinity of vitamin D metabolites to VDBP or albumin is
altered (for example, different VDBP haplotypes), or the disposition of vitamin D itself is disturbed.

Very limited studies (especially in recent times) have examined species-based differences in VDBP
levels, or primary protein sequences of the VDBP (as they relate to affinity of vitamin D metabolites)
between species [234–240]. Circulating vitamin D metabolite concentrations are dependent on affinity
to the VDBP, as well as metabolism and dietary intake [241–243]. Therefore, species differences in the
VDBP may rationalize species-based differences in circulating vitamin D metabolite levels. Studies are
also limited in the analysis of free 25(OH)D in animal species, with only one study to date reporting
directly measured concentrations of this vitamin D metabolite in animals. Hurst et al. (2020) reported
for the first time that free 25(OH)D can be measured in canine serum, with a median concentration of
15.2 nmol/L (6.1 ng/mL) in a group of 117 healthy dogs [81]. In this study, free 25(OH)D was measured
by the Free 25(OH)D ELISA (FutureDiagnostics) and was positively correlated to both 25(OH)D3
and 3-epi-25(OH)D3 concentrations [81]. The concentrations reported in dogs are comparable to free
25(OH)D concentrations reported in humans [244], and importantly, the relative percentage of free
25(OH)D to total 25(OH)D is also comparable (0.02% in dogs and 0.03% in healthy humans as reported
by Bikle et al. [244]). Hurst et al. (2020) reported that no correlation was detected between either free
25(OH)D or total 25(OH)D with PTH in dogs.

4. Analytical Challenges in Profiling Vitamin D Metabolites in Veterinary Species

The long-established importance of maintaining vitamin D sufficiency has been further
corroborated given the discovery of extra-skeletal effects of vitamin D, and this has led to an increase
in studies investigating vitamin D levels and disease in both humans and veterinary species. This is
reflected in the growing number of publications on the subject, with a rapid increase in the number of
search results on PubMed® for vitamin D and humans in the last 20 years (Figure 3A). In contrast,
there was a delay in the veterinary field with an increase in publications only occurring within the
last 10 years (Figure 3B); and significantly, the number of search results for “vitamin D veterinary”
is approximately only 2.5% of that of the human search results at the peak of publications in 2017
(searched on pubmed.ncbi.nih.gov in July 2020).
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(searched on pubmed.ncbi.nih.gov in July 2020). 
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Figure 3. Number of search results in PubMed® for searches on (A) vitamin D human and (B) vitamin
D veterinary, over time.

Nonetheless, the increased interest in vitamin D in human medicine has led to increasing demand
for the measurement of vitamin D metabolites in veterinary species, both as a clinical diagnostic and
research tool. There are a number of analytical techniques for the quantification of vitamin D metabolites,
including enzyme-linked immunoassays (ELISA), radioimmunoassay (RIAs), chemiluminescence
assays, HPLC, HPLC combined with UV detection and uHPLC or HPLC combined with tandem mass
spectrometry (LC-MS/MS) [245]. Quantification of vitamin D metabolites, even the main circulating
metabolite 25(OH)D that is used routinely to determine vitamin D status, is challenging. The vitamin
D metabolism pathway is a highly complex and dynamic system involving a number of structurally
similar compounds that can cause interference with analysis; not only that, the metabolites circulate
predominantly bound to the VDBP and at low concentrations. All of these factors mean that vitamin D
metabolite measurement is particularly challenging. Discussed in detail below is how LC-MS/MS is
well suited to address many of these issues and, just as in analysis of sex steroids [246], is considered
the gold-standard analytical technique for vitamin D measurement [245,247].

Although there is increased demand for vitamin D testing in veterinary patients, the field is still
behind human vitamin D clinical and research studies in terms of the application of the gold-standard
method for assessing vitamin D. This was highlighted after a search of the cited literature in this
review, combined with searching PubMed® for keywords “vitamin D veterinary LC-MS/MS”. Table 1
shows the results of these searches and is a non-exhaustive list of publications which have measured
vitamin D metabolites in veterinary species by LC-MS/MS in the past 10 years, comparing method
details when available. Of the searched literature, there were fewer than 30 publications noted to use
LC-MS/MS for vitamin D analysis, or that acknowledge LC-MS/MS in the publication’s keywords.
Notably, of the few publications outlined in Table 1 that did use LC-MS/MS for veterinary vitamin
D analysis, more than half failed to provide details for 2 or more LC-MS/MS method parameters
listed in the table; with many simply stating that samples were analysed by an external laboratory
without providing any details of the method. These method details are important for analytical
comparisons. Many published veterinary case studies in which vitamin D measurements have been
used for diagnostic purposes do not specify how vitamin D metabolites were measured. Research
publications in veterinary species typically use either immunoassay-based techniques, HPLC alone or
coupled with UV detection. The lack of reporting of methods and the various techniques used for
vitamin D analysis, combined with the lack of transparency of analytical method details, certainly
emphasizes that caution must be used when comparing study results due to lack of standardization.
Figure 2 displays data for the vitamin D metabolite concentration ranges measured by LC-MS/MS in
healthy adult populations of species from the studies outlined in Table 1.

There are many extensive reviews comparing and discussing the different methods for the
quantification of vitamin D metabolites, with many focusing particularly on LC-MS/MS methods
(in humans) and the particular challenges of quantifying each metabolite in detail [33,248–253].
The author directs the reader to this referenced literature for detailed comparisons of reported vitamin
D LC-MS/MS methods. The next section of this review will focus on the analytical challenges of
quantifying vitamin D metabolites in veterinary species.
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Table 1. Details of reported LC-MS/MS assays for the analysis of veterinary samples.

Citation Species Metabolites
Measured LOQ m/z Transitions Sample Type/Vol Sample Prep

Method Derivatization LC Column Ionization
Source LC-MS System

Hurst
(2020) [80] Dog 25(OH)D2

25(OH)D3
0.5 nmol/L
4.0 nmol/L

758.4 -> 740.2
747.3 -> 729.3 Serum/200 µL SLE Yes—DMEQ-TAD Raptor FP

(2.7 µm, 100 × 2.1 mm) ESI
Shimadzu Nexera
X2 UHPLC—Sciex

QTrap 6500+

Hurst
(2020) [81] Dog

25(OH)D2
C3-epi-25(OH)D2

25(OH)D3
C3-epi-25(OH)D3

7.8 nmol/L
7.8 nmol/L
4.0 nmol/L
4.0 nmol/L

413.3 -> 395.3
413.3 -> 395.3
401.3 -> 383.3
401.3 -> 383.3

Serum/200 µL SLE No Raptor FP
(2.7 µm, 100 × 2.1 mm) ESI

Shimadzu Nexera
X2 UHPLC—Sciex

QTrap 6500+

Groth
(2019) b

[82]
Dog 25(OH)D3

24,25(OH)2D3 Not specified Not specified Serum/vol not
specified Not specified Not specified Not specified Not specified

Agilent 1290
HPLC—Agilent

6460 triple
quadrupole

Mick (2019) b

[83]
Dog

25(OH)D3
24,25(OH)2D3
1,25(OH)2D3

Not specified Not specified Serum/vol not
specified Not specified Not specified Not specified Not specified

Agilent 1290
HPLC—Agilent

6460 triple
quadrupole

Fritz (2017)
[84]

Rat
Dog

Mouse
Monkey

25(OH)D3
25(OH)D2 5.0 nmol/L 383.3 -> 229.2

395.3 -> 269.3 Serum/50 µL SLE No Phenomenex Luna C8 (3
µm, 5 0 × 2.0 mm) APCI

Agilent
HPLC—Sciex 4000

QTrap

Sprinkle (2017) d

[85]

Cat
Dog
Rat

25(OH)D3
C3-epi-25(OH)D3 Not specified 401.4 -> 383.3

401.4 -> 383.3 Serum/200 µL PPT + online
extraction No Chirex-PGLY and DNB (250

× 4.6 mm) APCI
TX4 Turbo

Flow—Sciex API
4000

Weidner (2017) b

[28]
Dog 24,25(OH)2D3 Not specified Not specified Serum/vol not

specified Not specified Not specified Not specified Not specified

Agilent 1290
HPLC—Agilent

6460 triple
quadrupole

Willcox (2016) c

[86] Dog 25(OH)D2
25(OH)D3 12.5 nmol/L 413 -> 395

401 -> 383 Serum/100 µL SPE No Not specified Not specified Not specified

Spoo
(2015) a

[87]
Dog 25(OH)D3

24,25(OH)2D3 Not specified Not specified

Serum/plasma
100 µL for
25(OH)D3
200 µL for

24,25(OH)2D3

PPT + LLE No Not specified Not specified

Agilent 1290
HPLC—Agilent

6460 triple
quadrupole

Azarpeykan (2016) e

[88,126] Horse 25(OH)D2
25(OH)D3 <4 nmol/L 413.3 -> 355.4

401.3 -> 383.4 Serum/60 µL PPT + LLE No ACE C8 (3 µm, 50 × 2.1
mm) ESI Shimadzu

HPLC—Sciex 4000

Allott (2020) e [89] Sheep 25(OH)D3
25(OH)D2 Not specified Not specified Plasma/vol not

specified Not specified Not specified Not specified Not specified Not specified

Dittmer (2020) e [90] Sheep 25(OH)D3
25(OH)D2 Not specified Not specified Serum/vol not

specified Not specified Not specified Not specified Not specified Not specified

Zhou (2019)
[91] Sheep 25(OH)D2

25(OH)D3
7.2 nmol/L
5.6 nmol/L

758.5 -> 740.0
746.5 -> 728.4 Serum/100 µL PPT + SPE Yes—DMEQ-TAD

ACE UltraCore 2.5
SuperC18 (2.5 µm, 75 × 2.1

mm)
ESI

Ultimate 3000
HPLC—Bruker
amaZon ETD
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Table 1. Cont.

Citation Species Metabolites
Measured LOQ m/z Transitions Sample Type/Vol Sample Prep

Method Derivatization LC Column Ionization
Source LC-MS System

Handel (2016) f

[30]
Sheep 25(OH)D2

25(OH)D3 Not specified Not specified Serum/vol not
specified Not specified Not specified Not specified Not specified

LC system not
specified—Sciex

QTrap 5500

Dittmer (2011) e

[202] Sheep 25(OH)D3 Not specified Not specified Serum/vol not
specified Not specified Not specified Not specified Not specified Not specified

Celi (2018) h

[92]
Cattle

Vitamin D2
Vitamin D3
25(OH)D3

Not specified Not specified

Serum
tissues (fat, muscle,

kidney, liver)
Feedstuff

Not specified Not specified Not specified Not specified Not specified

Guo
(2018) g

[93]
Cattle Vitamin D3

25(OH)D3 Not specified Not specified

Plasma/100 µL
Milk/3 g for vitamin

D3 and 8 g for
25(OH)D3

PPT + LLE for
plasma

Saponification +
LLE for milk
vitamin D3

Saponification +
LLE + SPE for milk

25(OH)D3

No Not specified APCI Agilent 1290
HPLC—Sciex 4000

Alexander (2017) b

[94]
Pig Vitamin D3 Not specified Not specified Serum/vol not

specified Not specified Not specified Not specified Not specified

Agilent 1290
HPLC—Agilent

6460 triple
quadrupole

Flohr (2016) i

[157,158]
Pig

Vitamin D3
25(OH)D3

Vitamin D3 (feed)

2.5 nmol/L
12.5 nmol/L

1.6 µg/kg

Not specified
383 -> 159

Not specified

Serum/vol not
specified

Foodstuff/amount
not specified

LLE for serum
Saponification +

LLE for foodstuff
No

Serum—Zorbax Eclipse
XDB-C18 (5 µm, 150 ×

4.6mm)
Foodstuff—2D LC with

Ascentis Express octylsilyl
(C8) (2.7 µm, 150 × 3 mm)
and Ascentis Express C18

(2.7 µm, 150 × 3mm)

Serum—ESI
Foodstuff—ESI

(Turbo Ion
Spray)

Serum—Agilent
1200

HPLC—Agilent
6410 triple

quadrupole
Foodstuff—Agilent
1200 HPLC—Sciex

API 4000

Kuhn (2015 + 2014 +
2019)

[95,175,176]
Poultry

25(OH)D3
Vitamin D3
25(OH)D3

3.7 nmol/L
0.17 µg/100g
0.1 µg/100g

576 -> 298
560 -> 298

Plasma/vol not
specified

Egg yolk + skin

LLE
Saponification +

LLE + HPLC
Yes—PTAD Hypersil ODS (5 µm, 100 ×

2 mm) ESI
Agilent 1100—API

2000 (Applied
Biosystems)

Browning (2014) j

[172]
Poultry Vitamin D3

25(OH)D3 0.1 µg/kg Not specified Egg yolk/7.5 g Saponification +
SPE Not specified Not specified Not specified Not specified

Schutkowski (2013)
[96] Poultry

25(OH)D3
Vitamin D3
25(OH)D3

7-DHC

3.7 nmol/L
0.17 µg/100g
0.1 µg/100g

Not specified

Not specified

Plasma/vol not
specified

Egg yolk + meat/vol
or weight not

specified

LLE
Homogenization

and LLE
Yes—PTAD Hypersil ODS (5 µm, 100 ×

2 mm) Not specified
Agilent 1100—API

2000 (Applied
Biosystems)

Ziegler (2018)
[98] Baboon

Vitamin D3
25(OH)D2
25(OH)D3

24,25(OH)2D3

Not specified
2.19 nmol/L
2.52 nmol/L
1.15 nmol/L

Not specified
413.3 -> 355.3
401.3 -> 159.0
417.3 -> 121.0

Serum/100 µL PPT + SPE Yes—PTAD Phenomenex Kinetex C18
(2.6 µm, 100 × 2.1 mm) ESI

Shimadzu
Prominence

HPLC—Sciex QTrap
5500
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Table 1. Cont.

Citation Species Metabolites
Measured LOQ m/z Transitions Sample Type/Vol Sample Prep

Method Derivatization LC Column Ionization
Source LC-MS System

Ziegler (2015)
[97]

Marmosets
Rhesus

macaques

25(OH)D2
25(OH)D3

1,25(OH)2D3

1.3 nmol/L
37.5 pmol/L

Not specified
748.6 -> 689.5

Serum/50 µL for
rhesus macaques

and 10 µL for
marmosets

Serum/200 µL

PPT
Dual column SPE

No
Yes—Amplifex

Phenomenex Luna C8 (3
µm, 50 × 2 mm)

Phenomenex Kinetex C18
(2.4 µm, 150 × 3 mm)

APCI
ESI (Turbo
Spray Ion)

Shimadzu
Prominence

HPLC—Sciex QTrap
5500

Shimadzu
Prominence

HPLC—Sciex QTrap
5500

Kale (2018) e

[254]

Brown kiwi,
Tuatara,

New
Zealand Sea

Lion

25(OH)D2
25(OH)D3 Not specified Not specified Plasma + serum/vol

not specified Not specified Not specified Not specified Not specified Not specified

LC-MS/MS (liquid chromatography tandem mass spectrometry); LOQ (limit of quantification); m/z (mass-to-charge) transition; PPT (protein precipitation); LLE (liquid–liquid extraction);
SLE (supported liquid extraction); SPE (solid phase extraction); ESI (electrospray ionization): APCI (atmospheric pressure chemical ionization); LC column dimensions (particle size, length
× I.D.). Where details are not specified a superscript letter denotes that samples were sent to external laboratory for analysis and details were not provided: a states that method outlined by
Agilent, b Heartland Assays (Ames, IA, USA), c McClendon Clinical Laboratories, UNC Hospitals (details from referenced [255]), d Mayo Laboratories (details from referenced [256]),
e Endolab (Canterbury Health Laboratories, Christchurch, New Zealand) (details from referenced [257] and [258]), f Supraregional Assay Service Laboratory, g plasma analysis was
conducted by DSM Nutritional Products Ltd. (Kaiseraugst, Switzerland) and milk analysis was conducted by RTC (Pomezia, Italy), h states only that analysis was done by LC-MS/MS but
provides no further information, i analysis was conducted by DSM Nutritional Products Ltd. (Kaiseraugst, Switzerland) following methods outlined by [259] for foodstuff analysis and
[260] for serum analysis, and j Australian Government National Measurement Institute. Where the LOQ was provided in mass units, it was converted to molar mass by the following
conversion factors: 2.496 for monohydroxy metabolites (25(OH)D) and 2.4 for dihydroxy metabolites (1,25(OH)2D), and listed to one decimal place.
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4.1. Analytical Challenges of Vitamin D Analysis

Many clinical laboratories and research studies use immunoassay-based techniques, at least for
the initial assessment of 25(OH)D and 1,25(OH)2D3. These assays are provided in kits and are easily
integrated into fully-automated laboratory systems allowing for rapid analysis in a high-throughput
clinical chemistry laboratory setting. They offer good sensitivity and require minimal sample volume.
However, they are restricted in the analytes they can measure, not only requiring different methods
or kits for 25(OH)D and 1,25(OH)2D, but other metabolites which may be of interest (for example,
the C3-epimers and 24,25(OH)2D3) are not available. Lack of specificity for the analytes they can
measure continues to be one of their major limitations [251–253]. Cross reactivity with different vitamin
D metabolites occurs in many of the immunoassays. Lack of selectivity between 25(OH)D2 and
25(OH)D3, and unequal cross reactivity of the two metabolites can cause bias and have a significant
impact depending on the sample being analyzed. Other metabolites such as 24,25(OH)2D have been
demonstrated to cross react to varying degrees in immunoassays from different vendors [251]. Although
24,25(OH)2D3 generally circulates at a lower concentration than 25(OH)D3 in humans, clinical situations
in which 24,25(OH)2D is increased, or in species with higher baseline concentrations of 24,25(OH)2D, this
interference could overestimate 25(OH)D quantification and result in miss-classification. Furthermore,
vitamin D metabolites must be released from the VDBP in order to be measured, which is difficult
to achieve in automated immunoassays in which strong organic solvents cannot be used [251,252].
Therefore, samples in which variation in the VDBP levels exists (during pregnancy or cases of renal
disease for example) are known to impact on the performance of these assays.

LC-MS/MS is considered the gold-standard technique for analyzing vitamin D metabolites [245,247].
This method addresses the limitations outlined above for immunoassays. There are a number of
steps involved in LC-MS/MS methods (a typical workflow is outlined in Figure 4), all of which play
an important role in the accurate and precise quantitation of vitamin D metabolites. Samples are
initially prepared in order to clean up and eliminate any potential interfering compounds from the
biological matrix, and to concentrate the molecules of interest. Analytes are then chromatographically
separated based on physical and chemical interactions with a LC column and mobile phase, before
ionization, mass analysis and detection by the mass spectrometer. LC-MS/MS has the added capability
of simultaneous analysis of multiple compounds in a single sample and over wide dynamic ranges,
which enables profiling of many metabolites of the vitamin D pathway; and importantly is the only
method for vitamin D quantification with the capability to do so.

LC-MS/MS facilitates the measurement of “total” vitamin D metabolites, meaning both the
metabolites bound to the VDBP and albumin, and those circulating freely. By measuring both the free
and bound vitamin D metabolites, a more accurate assessment of vitamin D status can be acquired.
Sample preparation methods used for LC-MS/MS analysis enable the effective release of vitamin D
metabolites from the VDBP by the use of strong organic solvents and so LC-MS/MS methods measure
total vitamin D metabolite concentrations.

Reliable and efficient recovery of the analyte during sample preparation is crucial as many vitamin
D metabolites circulate in the low nmol/L or pmol/L range. Several sample preparation methods have
been used for the extraction of vitamin D metabolites from serum and plasma, and are now being
developed for other biological matrices (reviewed in [33]). With the availability of automated sample
processing systems, such as the Biotage Extrahera and the Tecan Liquid Handler, sample preparation
methods such as supported liquid extraction (SLE) and solid phase extraction (SPE) can be automated
and are becoming more robust and reproducible, with reduced intra- and inter-batch variation in analyte
recovery [261]. For the analysis of 1,25(OH)2D3, the use of immunoextraction prior to LC-MS/MS is
becoming routine for human clinical samples [262–264]. Immunoextraction uses anti-1,25(OH)2D3
antibodies to enrich and extract this metabolite, which enhances analyte recovery from the matrix.
This is beneficial due to the low circulating concentrations of 1,25(OH)2D3. The Vitamin D Combi
ImmuTube LC-MS/MS assay (Immundiagnostik AG) kit uses this immunoextraction procedure and is
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discussed in Section 2 below. To the authors knowledge, there have been no reports of immunoextraction
used with LC-MS/MS for the analysis of 1,25(OH)2D3 in veterinary species.
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Figure 4. Workflow of LC-MS/MS method for vitamin D metabolite quantification. Samples (usually serum)
are prepared by an extraction method (such as protein precipitation (PPT), liquid-liquid extraction
(LLE), supported liquid extraction (SLE), solid phase extraction (SPE) or immunoextraction (IE)) and
then injected into the liquid chromatography system. Metabolites are chromatographically separated
based on physical and chemical interactions (represented by the different shapes) with the LC column
and are introduced to the ionization source of the mass spectrometer. Metabolites are ionized by
either electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or atmospheric
pressure photoionization (APPI). During tandem mass spectrometry, when multiple reaction monitoring
(MRM, which is the same as selected reaction monitoring but more than one reaction is monitored) is
used, a predefined parent ion is identified based on its m/z transition (the full red circles, with other
colours representing different parent ions) in the first quadrupole (Q1) and is selected to enter the
collision cell. In the collision cell, the parent ion is fragmented into defined product ions, which are then
passed through into the third quadrupole (Q3). In Q3, defined quantitative and qualitative product ions
(the red pie and open circle, respectively) are detected and used for identification and quantification.
The peak response of the quantitative and qualitative product ions is converted into a ratio which
should be consistent across samples and standards. Deviation from this ratio of more than 15% to 20%
can indicate potential interference.

LC-MS/MS uses stable isotope labelled internal standards (IS) for quantitative analysis. Carbon-13
and deuterium labelled internal standards are available for most of the major vitamin D metabolites.
Their equal addition to both samples, calibrators, and quality control samples (QCs) prior to sample
preparation enables the use of the ratio of the response of the analyte and IS in samples for quantitation.
This facilitates correction of the variation in recovery and instrument response, thereby improving the
precision and accuracy of results.

Many vitamin D molecules are very similar in chemical formulation, with similar and sometimes
identical structures and weights (Figure 5). For example, only the presence of one extra carbon
that forms a methyl group differentiates the D2 and D3 analytes; 1,25(OH)2D3 and 24,25(OH)2D3
have identical molecular formulas and mass but differ in structure (isomers); and the C3-epimers
are identical in formula, mass and structure to the non-epimer counterpart (i.e., 25(OH)D3 and
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C3-epi-25(OH)D3) but differ in the orientation of the hydroxyl group at position C3, making them
stereoisomers. Mass spectrometry analysis using a triple quadrupole mass spectrometer of vitamin D
molecules involves ionization (usually protonation as vitamin D is ionized in positive ion mode) of the
parent analyte of interest and then detection based on specific mass-to-charge (m/z) ratios. Quantitative
analysis by tandem mass spectrometry uses multiple reaction monitoring (MRM), whereby the isolated
parent ions are fragmented under specific collision energy settings into defined product ions—it is
these product ions that are detected, identified, and used for quantification (Figure 4). As multiple
vitamin D molecules are isobaric and have the same parent and product m/z ratios, they will not
be differentiated by the mass spectrometer [265,266]. However, the chromatographic separation of
analytes enables separation of molecules in time based on their physical and chemical interactions
with the LC column and mobile phase, rather than mass and structural differences. This occurs prior
to detection in the mass spectrometer and enables not only D3 and D2 metabolites to be distinguished
and quantified individually, but isomers and stereoisomers such as 1,25(OH)2D3 and 24,25(OH)2D3,
and the C3-epimers can be confidently distinguished given sufficient resolving power from the LC
column. This resolution is critical for accurate identification and quantification, and is now possible
using specialist LC columns (column chemistry, length, diameter and particle size all impact resolution
capacity) and optimizing other LC parameters such as mobile phase (as well as any additives or
buffers), gradient elution, flow rate, and temperature.

After chromatographic separation, the sample must be ionized and then passed into a mass
spectrometer which is a highly sensitive and selective analytical detector. Electrospray Ionization
(ESI) is the main ionization technique used in vitamin D LC-MS/MS methods, however some methods
do report using Atmospheric Pressure Chemical Ionization (APCI) and there is at least one report of
the use of Atmospheric Pressure Photoionization (APPI) [267] (see extensive review [253] regarding
method details). Vitamin D metabolites do not ionize efficiently in the mass spectrometer source; they
are lipophilic in nature and lack chemical functionalities with sufficient liquid phase basicity to retain
a proton [253]. This lack of ionization efficiency, combined with their low abundance, means that
analytical method development for vitamin D metabolites is challenging.

Many reported LC-MS/MS methods for vitamin D quantification utilize derivatization to
enhance ionization efficiency and therefore, sensitivity, particularly for 1,25(OH)2D and 24,25(OH)2D
metabolites [253]. Furthermore, derivatization also reduces isobaric interferences in the mass spectra
by shifting the m/z range of the derivatized parent ions to a higher m/z; and depending on the
derivatization reagent label, this can simplify the product ion spectra by producing products that
predominately retain the label [253]. Some derivatization reagents produce 6R- and 6S- isomers, as the
reagent reacts at the s-cis-diene of the compound from both the α- and β- orientations, respectively.
This can result in two chromatographic peaks for every metabolite, which in multi-metabolite assays,
can result in undesirably complex chromatography. It can be difficult to chromatographically resolve
all the derivatized isomers whilst maintaining reasonable analysis times, meaning that there may be a
compromise between sensitivity and chromatographic resolution.

Vitamin D LC-MS/MS methods are not without their analytical challenges and limitations. LC-MS
instrumentation is complex, expensive to purchase and maintain, and requires technically skilled staff to
operate. Workflows are not automated to the extent that immunoassays are, and method development
and validation can be extensive and time consuming. Vitamin D metabolites are analytically challenging
due to the presence of many highly similar compounds, low concentrations and inefficient ionization.
However, it is a result of this fine tuning of the method details that provides LC-MS/MS the advantage
over other methods in terms of selectivity and sensitivity.
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4.2. Standardization of Vitamin D Analysis

One of the main challenges regarding vitamin D analysis is the lack of standardization between
laboratories [268]. Harmonization of 25(OH)D testing has been challenging, with comparison studies
by External Quality Assurance (EQA) programs having demonstrated substantial variability between
laboratories—even between LC-MS/MS methods [269,270]. It is evident even from the non-exhaustive
list of various vitamin D LC-MS/MS methods reviewed by Volmer et al. (2015) [253] just how variable
vitamin D LC-MS/MS assays can be. This variability has undoubtedly impacted the ability to clarify
and define reference ranges and may contribute to the conflicting results often found in research
studies; as without proper standardization and calibration, comparable results between laboratories
and techniques is hardly achievable.

In particular for LC-MS/MS, there is no one-size-fits-all method; laboratories use a range of different
LC-MS instrumentation with differing specificities, and set up their own in-house method including
sample preparation. They may use the limited available commercial assay kits (discussed below)
but they are not guaranteed or dependent on certain instruments and rely upon the expertise of the
analyst and laboratory to produce reliable data. However, things have improved considerably in
recent years with the development of standard reference materials (SRM) [271] and reference method
procedures (RMPs) [272–274] by the Vitamin D Standardization Program (VDSP) and EQAs such
as the Vitamin D External Quality Assessment Scheme (DEQAS). The National Institute of Health
(NIH) Office of Dietary Supplements established the VDSP in 2010, with the aim of standardizing
the measurement of vitamin D by providing SRMs with certified reference values assigned using the
NIST RMP. These are used by clinical laboratories for method validation. The main SRM currently in
use for vitamin D metabolites is SRM 972a, which includes four human serum samples containing
different concentrations of the following metabolites: 25(OH)D2, 25(OH)D3, 3-epi-25(OH)D3, and
24,25(OH)2D3. More recently, SRM 2973 has been developed, which contains higher concentrations of
25(OH)D3 and additional concentrations of 24,25(OH)2D3 [271]. There are currently no SRMs for the
validation of other vitamin D metabolites, most notably 1,25(OH)2D3.

RMPs may not necessarily be suited to high-throughput clinical diagnostic or research laboratories
for routine 25(OH)D analysis due to expense and time constraints. However, RMPs are invaluable
to EQAs with regards to assigning reference values to serum samples for the assessment of assay
performance. For example, DEQAS assigns vitamin D metabolite concentrations to human serum
samples using NIST RMPs that are then dispatched to participating laboratories quarterly (five samples
per quarter; four for method assessment and the fifth for DEQAS research use) and analyzed by
their chosen methods [275]. Returned results of calculated metabolite concentrations are compared
to the NIST RMP assigned value and also the all-laboratory trimmed mean for that method and
others. This enables the participating laboratories to validate and continuously monitor their assay
performance in comparison to NIST RMPs, other laboratories using the same method technique, and
other methods such as immunoassays. These programs have considerably reduced the variability
between laboratories [247,268] but there are still improvements to be made. SRMs will be required for
other vitamin D metabolites as we discover the benefits of profiling more of the vitamin D pathway.

As the demand for vitamin D analysis by LC-MS/MS is increasing, there are now a
small number of commercial assay kits available. These kits include the ClinMass LC-MS/MS
Complete Kit for 25-(OH)-Vitamin D2/D3 (Recipe) and the MassChrom 25-(OH)-VitaminD3/D2
(Chromsystems). These kits typically contain sample preparation materials (plates, precipitation
reagents, SPE-buffers), internal standards, QC samples, serum calibrators, and mobile phases.
The MassChrom 25-(OH)-VitaminD3/D2 kit also contains a trap and an analytical LC column, but
these are additional accessories for the ClinMass LC-MS/MS Complete Kit for 25-(OH)-Vitamin D2/D3.
Both kits only quantify 25(OH)D metabolites (no C3-epimers, 24,25(OH)2D and 1,25(OH)2D) and
they lack an internal standard for 25(OH)D2. A multiplex method kit, Vitamin D Combi ImmuTube
LC-MS/MS assay (Immundiagnostik AG), is available and utilizes immunoextraction as the sample
preparation method prior to LC-MS/MS. This kit can be used for the quantification of multiple
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metabolites including 24,25(OH)2D3 and 1,25(OH)2D3 alongside 25(OH)D2/3, and if validated would
be a substantial step forward for laboratories aiming to profile vitamin D metabolites in clinical
samples. The kit includes the ImmuTube -columns (which contain beads coated in the anti-vitamin D
metabolite antibodies), elution and wash reagents, calibrators and control samples, internal standards,
derivatization solution and mobile phases, with tuning solutions and a UPLC column available to
purchase separately. There are drawbacks to using commercial assays of course. Often, they have to
be used in one batch, which may not be suitable for laboratories that process low sample numbers.
Even with a commercial kit, the assay still requires validation in each individual laboratory which
can be time consuming to set up and troubleshoot. Although some kits can provide everything
required for the assay from mobile phase to the LC column, many laboratories may prefer to use
some their own consumables for laboratory consistency and for economic reasons. This could
introduce unknown factors into the assay and may impact kit performance. Given the range of
LC-MS instrumentation available, it is also likely that a laboratory may have a different LC-MS
instrumentation set up compared to the kit manufacturer, which again could impact kit performance
and validation requirements. The nature of LC-MS/MS methods means that even with commercial kits,
standardization is not fully achieved.

There are currently no kits or EQAs for the comprehensive analysis of vitamin D specific for
veterinary species. With the current veterinary research literature demonstrating a similar association
between vitamin D status in health and disease as in humans, there is increasing demand for the
assessment of vitamin D metabolites in veterinary species, both for research purposes and in the
clinics. There is a real need for a comprehensive, reliable method that is comparable to that used in
human clinical practice for the assessment of vitamin D metabolites in veterinary species, and critically
to enable the establishment of reference ranges. Limited studies have begun to develop and apply
LC-MS/MS methods specifically to the species of interest in the study (Table 1) [80,81,84].

4.3. Challenges in Veterinary Vitamin D Analysis

4.3.1. Sample Acquisition and Preparation

There are particular challenges for the bioanalysis of vitamin D metabolites in clinical samples
from veterinary species. In human clinical laboratories and research trials with more standardized
procedures, there are set requirements for sample type, volume, and other preanalytical requirements
including storage temperatures; however, this can be more variable in the veterinary field, especially
outside of clinical practice (samples from zoo animals, for example). This is due to samples being more
challenging to acquire, and they are subject to more extensive ethical consideration. Sample volume
can vary greatly between species, with very small volumes from rodents to larger volumes available
from large animals such as cows and horses. This can impact sample preparation methods which
are generally optimized for a set volume. If the required volume is not available and samples have
to be diluted, dilution integrity should be demonstrated by accuracy and precision parameters of
QCs during validation [276,277]. Most vitamin D LC-MS/MS methods require serum samples for
analysis, but due to constraints on blood sampling plasma may be the only available matrix in some
veterinary cases. Anticoagulants commonly used in blood collection tubes for plasma samples include
ethylenediaminetetraacetic acid (EDTA), heparin and citrate, and these preanalytical factors can impact
analyte recovery [278]. This impact is analyte dependent, and although few studies investigating
25(OH)D concentrations in human plasma suggest that the effect of anticoagulants on this metabolite
is minimal [279,280], the impact of various anticoagulants on analyte recovery should be validated for
veterinary species and for other vitamin D metabolites.

The matrix used for calibration standards for the assay should also be carefully considered.
Recommended guidelines state this should be the same matrix as the sample being analyzed, but
stripped of the analyte of interest. However, vitamin D stripped serum is not available for many
species. Surrogate matrices such as bovine serum albumin (BSA) may be used, and if so it is important
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to consider the concentration used. Human serum contains higher concentrations of albumin in
comparison to cats and dogs, with a reference range between 35 to 55 g/L for humans; whereas the
reference range for canine serum albumin is approximately 27 to 38.8 g/L and feline serum albumin is
28 to 39 g/L [281]. The concentration of BSA used in calibrators should therefore be optimized for each
species in terms of analyte recovery and matrix effects, with the aim that the calibration solution should
closely represent the real sample matrix. Commercially available surrogate matrices are becoming
available for human samples, for example SigMatrix Serum Diluent (Sigma-Aldrich). Currently, there
are no commercially available alternatives for veterinary species. Furthermore, differences in the
matrix components between species must be considered [282–284]. Endogenous compounds such as
proteins and phospholipids, and exogenous compounds such as veterinary drugs and medications can
produce matrix effects which differ between species.

4.3.2. Assay Modification and Validation for Use in Veterinary Species

Differences in vitamin D metabolite profiles can impact the applicability of an assay.
Animals exhibit different baseline concentrations of vitamin D metabolites in comparison to humans
and each other, for example: dogs have high 25(OH)D3 concentrations, horses generally have very
low vitamin D status, and cats have high levels of C3-epimers which need to be chromatographically
separated. If the concentration range of vitamin D metabolites in a particular species sample is
unknown (which is likely due to the lack of reference ranges for many species) broad calibration ranges
will be required for initial testing in order to determine what concentration the various metabolites are
measuring at. For subsequent analysis, the calibration range may be narrowed to improve accuracy
and precision.

Guidelines for the validation of bioanalytical assays for endogenous compounds are somewhat
limited [285]. Those developing LC-MS/MS or ligand-binding assays for endogenous biomarkers
are generally guided by recommendations for the analysis of exogenous compounds, such as those
from the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) [276,277].
In drug discovery, bioanalytical methods by design must switch between species matrices; most studies
begin in rodents, then transfer to dogs and then onto humans for clinical trials. The guidelines for
transferring a bioanalytical method for exogenous compounds from one species to another recommend
that partial validations are conducted to validate the modifications of the previously fully validated
method [286,287]. Partial validations are performed to assess the validity of the modification of
the method; the modification in this case would be a change of species in the matrix. Parameters
to be evaluated in the partial validation should be selected considering the potential impact of the
modifications on the method, and can range from one intra-assay accuracy and precision determination
to a nearly full validation [277,286]. Unfortunately, no specific guidance is provided for each type of
modification. However, given the potential variability of the matrix between species, and therefore
differences in matrix effects, this type of modification is considered significant [287].

The potential significance of the impact of differing matrix effects suggests that it would be
reasonable to include such parameters (matrix effects, recovery, etc.) during partial validation for
a change in species matrix. Matrix effects occur when ionization of the desired ion is perturbed
by undetectable components in the sample matrix that coelute with the analyte(s) of interest [286].
This results in reduction (ion suppression) or enhancement (ion enhancement) of the ion intensity
of the analyte of interest, and ultimately significantly reduces the accuracy and precision of the
assay [286,288]. The impact of matrix effects on LC-MS/MS methods and how to reduce them have
been well reviewed [289–293]. To determine the selectivity of the current assay for the new species
matrix (i.e., the ability of the analytical method to differentiate and quantify the analytes of interest in
the presence of interfering matrix components), it is recommended to analyze blank sources of the
appropriate matrix for interferences and ensure selectivity is assured at the lower limit of quantitation
(LLOQ), using matrix from at least six sources [286]. The FDA guidelines define interference as a
peak response in blanks or zero standards at or equal to 20% of the LLOQ response [277,286]. One of
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the challenges for veterinary species is that there is often a limited amount of matrix available for
assay testing.

The matrix factor (MF) can be utilized to ascertain matrix effects. MF is defined as the ratio
of the analyte response in the presence of matrix ions to analyte response in the absence of matrix
ions [286,294]. The MF in the absence of matrix ions should be 1, and in the presence of matrix a value
above or below 1 indicates ion suppression or enhancement, respectively. It is the variability of the
MF within a species that is often of most concern, and it is suggested that variability in MF should
be determined in six different matrix lots, with an acceptable variability of <15% [294]. The EMA
guidance recommends that the variability of the IS-normalized MF (analyte to IS ratio in the matrix
extracts divided by the analyte to IS ratio in the absence of matrix extract) from six lots of matrix should
not be greater than 15% at low and high QC concentrations [276].

Recovery of the analyte during sample preparation can also be affected by matrix components
and as mentioned above this is an important aspect to consider for vitamin D metabolite analysis.
Recovery should be assessed in the new species matrix by comparing analyte extracted from samples
at three concentrations (low, medium, and high) with unextracted standards at the same concentrations
representing 100% recovery. Although recovery does not need to be 100%, the recovery of the analyte
and internal standard must be consistent and reproducible [286]. If low recovery is impacting on assay
sensitivity for a particular species matrix, sample preparation should be optimized.

Using stable isotopically-labelled internal standards (Sil-IS) can compensate for differences
between calibrator and sample matrices [295] and moderate matrix effects. SIL-ISs are available for
the major vitamin D metabolites (25(OH)D2/3, C3-epi-25(OH)D2/3, 24,25(OH)2D3, and 1,25(OH)2D3).
Equal amounts of the SIL-IS is added to both samples and calibrators before sample preparation,
thereby undergoing the same extraction and analytical pressures. A good SIL-IS is required to show
almost identical behaviour to the analyte of interest during chromatography and ionization, with the
same retention time, therefore undergoing the same matrix effects. Using the response ratio of the
analyte: SIL-IS in both the calibrators and samples will compensate for differences between matrices,
matrix effects and variations in recovery during sample preparation.

The use of ion ratios as part of the result assessment can aid in the identification of potential
interferences from the matrix. For each parent ion (i.e., each vitamin D metabolite of interest) at least
two product ions are assigned; one quantitative product ion which will be used for quantification
purposes, and at least one qualitative product ion which is used to confirm the identity of the analyte
(Figure 4). The peak response of the quantitative and qualitative product ions are calculated as a ratio
that is monitored for each transition. This ratio should be consistent for every sample and standard,
with an acceptable error of 15% to 20%. If the ratio of the quantitative:qualitative peak response differs
above this threshold it suggests potential interference from the matrix. Consistent monitoring of
quantitative:qualitative ratios will therefore help to identify any matrix interferences when a new type
or species of matrix is assessed.

For the optimal assessment of vitamin D in veterinary species, a vitamin D LC-MS/MS method
would be initially validated for one species and then further partially validated for all other species it is
to be utilized for. If fortunate, the assay may be suitable to use in multiple species without adaptation;
however, if the partial validation reveals that some method parameters do not meet requirements it
may be necessary to amend parts of the method and essentially have different methods for different
species. Realistically, it is unlikely to be feasible to obtain enough samples of each veterinary species
requiring analysis that would allow for extensive validation. If it is not possible to validate methods
for all species, a one-size-fits-all approach may be the next best option. If the assay is validated for
one or even two species that samples are available for, would it be sufficient to apply this method to
other species and monitor performance via the use of a good SIL-IS and ion ratios? Would a simple
sample preparation method be all that is necessary if a good SIL-IS and ion ratios are utilized or
should sample extraction be extensive to remove as many interferences from the matrix as possible?
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Studies investigating the performance of different validation methods across species are needed to
fully understand how LC-MS/MS methods can be feasibly adapted to multiple species.

4.4. Analysis of Vitamin D from Non-Invasive Biological Matrices

The development of non-invasive tests for animal species is highly beneficial, particularly for
wild or endangered species, but also in a clinical setting to reduce stress and risk to the animal.
The development of non-invasive endocrine tests has been of particular interest in terms of assessing
stress in animals, and is of relevance to vitamin D as the assessment of steroid hormones such as
glucocorticoids is analytically very similar [296–298]. Although vitamin D metabolites are routinely
assessed from serum and plasma, there have been a few publications investigating the feasibility of
assessing vitamin D metabolites in non-invasive biological matrices, for example urine [299–301],
saliva [302–304], and hair [305], but currently no studies have been conducted in veterinary species.

In humans, a method described by Carlow et al. (2016) for the assessment of 25(OH)D2 and
25(OH)D3 in urine was unable to detect the metabolites in healthy adult urine with a LOQ of
50 pmol/L (20 pg/mL), but detected higher concentrations of the metabolites in urine from patients
with nephrotic syndrome [299]. Higashi et al. (2002) and Ogawa et al. (2014) report a more
sensitive method and were able to detect 23,25(OH)2D3 and 24,25(OH)2D3, and 25(OH)D3 and
24,25(OH)2D3, respectively, with lower LOQs when utilizing derivatization and pre-treating the urine
with β-glucuronidase [300,301]. Glucuronidation occurs in vitamin D metabolites across the CYP24A1
pathway, and glucuronide conjugated metabolites have been demonstrated to be excreted in the
bile of dogs and rats [9]. Glucuronide metabolites are highly polar and cannot be easily retained in
reverse phase chromatography separation, hindering the quantitative ability of the analytical method.
Pre-treatment of the urine samples with β-glucuronidase hydrolyses the glucuronide conjugated
metabolites back to the native parent compound, allowing for the accurate assessment by LC-MS/MS.
By doing so, Ogawa et al. (2014) were able to detect and quantify 25(OH)D3 and 24,25(OH)2D3
in human adult urine relative to creatinine concentration [301]. Further investigation is needed to
determine how the vitamin D metabolite concentrations in urine correlate to those in circulation as
both Ogawa et al. and Higashi et al. noted differences in the ratios of measured metabolites in urine in
comparison to what is normal in serum. Higashi et al. reported approximately equal concentrations of
23,25(OH)2D3 and 24,25(OH)2D3 in urine, whereas in human serum, C24 hydroxylation is much more
common and 24,25(OH)2D is detected at higher levels than 23,25(OH)2D3 [300]. Ogawa et al. reported
much higher concentrations of 24,25(OH)2D3 in urine than 25(OH)D3, highlighting the catabolic
pathway of vitamin D, whereas in serum 25(OH)D3 circulates at much higher concentrations than
24,25(OH)2D3 in humans [301]. The metabolite profiles would need to be elucidated in both serum
and urine for many species to allow comparisons to be made. Urine would be a much easier sample
to obtain from animal species, and at greater volumes. On the contrary, a more sensitive LC-MS/MS
method will likely be required due to the anticipated much lower concentrations of metabolites in urine.

Methods have been described for the LC-MS/MS analysis of 25(OH)D from saliva which would
be useful for patients in which it is difficult to obtain a blood sample, for example young children and
animals. Although vitamin D metabolites were detectable in saliva samples by LC-MS/MS, there are
many factors which appear to influence the concentration of 25(OH)D in saliva, including saliva flow
rate, how the sample is collected (passively via drooling versus stimulated by a swab or chewing gum),
the VDBP presence and contaminants such as mucin. Clarke et al. (2019) reported that the best results
were achieved when daily measurements were obtained across three consecutive days. Although it may
provide painless assessment of vitamin D status, multiple steps are required for sample preparation
and until the confounding factors can easily be corrected for, this method in its current state would not
be suitable for cohort studies and could be challenging to apply in the field [302].

A proof-of-concept study by Zgaga et al. (2019) is the first to demonstrate the ability to quantify
25(OH)D3 in human hair samples. Results were compared to those from serum samples obtained at
the same time, and show that 25(OH)D3 concentration was much more variable from hair samples
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than from serum [305]. The relationship between serum and hair concentrations will have to be
determined, as will factors which influence the deposition of 25(OH)D3 in hair and factors which may
impact its extraction. The author stipulates that as hair provides a period measurement with lag time
in comparison to blood sampling, which provides a point-measurement of vitamin D status, there
may not be a significant correlation and recommends hair measurement not to be a replacement for
blood measurement, but a useful adjunct to provide long-term information on vitamin D status [305].
This temporal assessment of vitamin D could be useful in longitudinal studies and in epidemiological
research, and may be particularly useful for long-term vitamin D assessment of farmed animals.

5. Conclusions

The demand for vitamin D analysis in veterinary species is increasing as our knowledge of its
extra-skeletal roles in health and disease continues to grow. However, the veterinary field is clearly
behind in its approach to vitamin D metabolite assessment, with few studies using the gold-standard
method of LC-MS/MS for measurement. In this review, we have highlighted the current known
differences in vitamin D metabolism between veterinary species, and discussed cases in which profiling
vitamin D metabolites beyond the standard assessment of 25(OH)D has already benefitted veterinary
patients. The adoption of the only multi-metabolite analytical approach, LC-MS/MS, for the analysis of
vitamin D will provide a more informative profile of this complex and dynamic pathway; this will
not only provide further insight into species differences in vitamin D metabolism, but will highlight
differences in metabolic profiles between patient/disease groups, which ultimately may be used as
complex biomarkers in prognostic and diagnostic applications. Better study designs and more robust
analytical methods will be required with specific validation for veterinary species, especially as we
become more aware of species differences in vitamin D metabolic profiles. The establishment of
reference ranges in veterinary species using a single multi-metabolite method, along with increased
transparency when documenting methods, is critical in order to make studies more comparable
between laboratories. This will be required in order to bridge the gap in knowledge between vitamin
D intake and status in veterinary patients. Ultimately, the aim is to further our understanding of
this complex pathway in both health and disease, in order to manipulate it more efficiently using a
treat-to-target approach. Profiling the vitamin D pathway will enable a more efficient investigation
into the effectiveness of vitamin D supplementation, and will hopefully begin to clarify some of the
conflicting results reported in both human and veterinary literature.
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