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Abstract: To ensure scientific reproducibility of metabolomics data, alternative statistical methods
are needed. A paradigm shift away from the p-value toward an embracement of uncertainty and
interval estimation of a metabolite’s true effect size may lead to improved study design and greater
reproducibility. Multilevel Bayesian models are one approach that offer the added opportunity of
incorporating imputed value uncertainty when missing data are present. We designed simulations
of metabolomics data to compare multilevel Bayesian models to standard logistic regression with
corrections for multiple hypothesis testing. Our simulations altered the sample size and the fraction of
significant metabolites truly different between two outcome groups. We then introduced missingness
to further assess model performance. Across simulations, the multilevel Bayesian approach more
accurately estimated the effect size of metabolites that were significantly different between groups.
Bayesian models also had greater power and mitigated the false discovery rate. In the presence
of increased missing data, Bayesian models were able to accurately impute the true concentration
and incorporating the uncertainty of these estimates improved overall prediction. In summary,
our simulations demonstrate that a multilevel Bayesian approach accurately quantifies the estimated
effect size of metabolite predictors in regression modeling, particularly in the presence of missing data.
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1. Introduction

Challenges of scientific reproducibility have become increasingly prevalent due to selective
reporting, p-hacking, pressure to publish, and low statistical power [1,2]. Surveyed researchers report
a ‘better understanding of statistics’ as key to combatting the reproducibility crisis, and others have
been revolting against the use of the p-value as an indicator of significance [1,3]. Specifically, these
scientists argue against a null-hypothesis testing framework and that categorization of results as either
‘statistically significant’ or ‘non-significant’ based on a p-value often leads researchers to incorrect
conclusions [2]. ‘Statistically significant’ results also tend to be upwardly biased in magnitude, causing
replication or validation studies to be underpowered and fail a null-hypothesis testing framework [4].
Moreover, Gelman et al. have suggested that a focus on magnitude (Type M) and sign (Type S) errors of
estimated effect sizes may be more useful in regard to ensuring scientific reproducibility [5,6]. Avoiding
these aforementioned errors and producing robust effect size estimates that are of the same sign
(i.e., positive or negative) and close in magnitude to the true effect size, are critical for the replication of
a scientific finding. To fight the problems associated with reliable replication, the social sciences have
embraced the idea of the ‘New Statistics’ that emphasizes uncertainty and interval estimation over
frequentist null-hypothesis testing [7,8].

While the field of metabolomics has made important strides to ensure reproducibility,
the approaches have often focused on data generation and analytical reproducibility over new
statistical approaches [9–12]. As such, null-hypothesis testing remains prevalent, and scientific
reproducibility remains a challenge in metabolomics, in part, because of the need for multiple testing
of up to several thousands of metabolites. A common approach in the analysis of metabolomics studies
is univariate regression modeling of metabolites associated with a specified outcome [13]. A typical
approach to address the testing of multiple hypotheses involves correcting the p-value for the number
of statistical tests conducted, which limits the Type I error rate or the risk for false positives. Common
methods include the Bonferroni correction or the Benjamini–Hochberg (B–H) correction of a false
discovery rate (FDR) [14]. Importantly, since these approaches focus on the p-value, they do not address
upward bias of the magnitude of significant results or mitigate Type M and Type S errors. A shift away
from null-hypothesis testing toward the embracement of effect size estimation with uncertainty for the
statistical analysis of metabolomics data may result in enhanced reproducibility and more informed
study designs.

Widespread adoption of multilevel Bayesian statistics applied to metabolomics data represents an
opportunity to take the ideals of ‘New Statistics’ and apply a methodological framework in line with
how science has always been done—using prior knowledge to inform the generation of new evidence
in a way that iteratively improves our estimation of the truth. A primary advantage of Bayesian
methodology is that it allows for the incorporation of prior knowledge with the observed data to
make better predictions. Bayesian methodology, with its emphasis on incorporation of priors with the
observed data, results in cumulative knowledge improvement while also emphasizing precision of
a model’s estimates [15]. Multilevel modeling is a technique that improves effect size estimation by
performing partial pooling and shrinking point estimates toward each other. This inherently deflates
the risk for Type I error upon multiple testing and significantly reduces Type M and Type S errors in
effect size estimation [16]. Another benefit of multilevel Bayesian modeling is that it can be easily
extended to model challenges inherent to metabolomics data, for example the presence of missing data.
A common form of missing data in metabolomics is the occurrence of left-censored missing data, which
is typically caused by measurements made below the limit of detection of the assay or other specific
analytical platform limitations [13]. Common imputation strategies, such as assigning a minimum
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value, can lead to biased effect size estimation. Bayesian methods have been shown to improve
imputation of missing values and can account for uncertainty in the imputations [17,18]. Importantly,
the inherent uncertainty of those imputed values, which is typically ignored, may be accounted for in
regression analysis. This may provide further overall improvement in effect size estimation.

In our work reported here, our overarching aim was to test the ability of a Bayesian approach to
improve effect size estimation in metabolomics data compared with other multiple testing correction
approaches. To achieve our aim, we: (1) determined if a multilevel Bayesian modeling strategy can
adjust for multiple testing for metabolomics data by controlling power and FDR; (2) assessed if a
multilevel model improves the efficiency in the estimation of effect sizes for univariate variable ranking
situations; and (3) tested whether ‘soft’ imputation further improves effect size estimation in the presence
of missing data. We designed a simulation to model metabolomics data and assess the effectiveness
of different multiple testing correction approaches. We then implemented two multilevel Bayesian
logistic regression models. One model operated on a dataset that had no missing or imputed values.
The second model followed a novel two-stage imputation design. In stage one, our model estimated
the mean and variance of missing values using a multivariate Bayesian regression model within a
left-censoring framework. Subsequently, in stage two, we fitted our multilevel logistic regression
model using the estimated mean and variances of the missing values. We call this ‘soft’ imputation as
compared to ‘hard’ imputation, since we fit a distribution to each missing value instead of a single value.
We compared our multilevel models against standard logistic regression with appropriate methods for
correction of multiple testing in a simulation of nuclear magnetic resonance (NMR) metabolomics data.
Finally, we fit our two-stage Bayesian model using two existing metabolomics datasets: one generated
by NMR [19–21] and the other by gas chromatography (GC) mass spectrometry (MS) [22], in order to
assess model performance and determine the practical limitations of the work.

2. Results

2.1. A Multilevel Bayesian Approach Has Higher Power, Controls for False Discovery, and More Reliably
Estimates Metabolite Effect Size across a Variety of Simulated Scenarios

Our simulations are based on 1H-NMR metabolomics data from two outcome groups of patients
with septic shock (survivors and non-survivors). For both groups, we generated data from a multivariate
normal distribution with the same means and covariance as the original data. We altered the sample
size per group and the fraction of metabolites that are ‘truly’ different based on patient mortality.
Two hundred-simulations for unique combinations of sample size per group and fraction of truly
associated metabolites were completed (Figure 1).

The univariate association of individual metabolites and sepsis mortality in the simulated data
were conducted by standard logistic regression, logistic regression with a Bonferroni correction,
logistic regression with a B-H FDR correction, and by a multilevel Bayesian approach (Figure 1).
The power, FDR, and the average exaggeration ratio (AER) in estimated effect sizes for each model are
presented as a function of sample size in Figure 2. Here, the exaggeration ratio for a given metabolite
is a proxy for Type M error and is defined as the absolute value of the estimated effect size divided by
the true parameter value [5]. The AER is simply the mean value across true positive metabolites.
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to generate a simulated dataset corresponding to unique experimental conditions. We then ran a 
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to compare predicted results to the true results of the simulation. 
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Figure 1. Simulation and model workflow. We began with a metabolomics dataset from patients
with septic shock and prepared the data according to standard methods. We learned the mean and
covariance of two outcome groups: survivors and non-survivors. Various parameters were adjusted
to generate a simulated dataset corresponding to unique experimental conditions. We then ran a
Bayesian logistic regression model and standard logistic regression +/− corrections for multiple testing
to compare predicted results to the true results of the simulation.

The multilevel Bayesian model provides greater power for detecting significant metabolites
relative to the Bonferroni or B-H FDR correction (Figure 2A). While the Bonferroni correction limits FDR
to the greatest degree, the Bayesian model limits the FDR relative to an unadjusted logistic regression
(Figure 2B). Importantly, for metabolite compounds simulated to be associated with mortality, the AER
is considerably lower in the Bayesian model (Figure 2C). Similar patterns for power and FDR were
observed when the fraction of significant metabolites was increased to 0.7 (Supplementary Figure
S1 panels A and B), but the Bayesian approach offered superior effect size estimation with an AER
of approximately 1 across sample size (Supplementary Figure S1 panel C). As such, the multilevel
Bayesian approach more reliably estimates a metabolite’s effect size and limits the risk for Type M error.

Model performance as a function of the fraction of significant metabolites (holding sample
size constant) is shown in Supplementary Figure S2. When a smaller fraction of metabolites is
different between survivors and non-survivors, the Bayesian approach offers less control over FDR
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(Supplementary Figure S2 Panel B). The average effect size estimates for standard logistic regression
methods are inflated (i.e., AER > 1) across fractions of significant metabolites, while the Bayes model
offers conservative estimates when the fraction is low and steadily approaches an AER ~ 1 as the
fraction increases (Supplementary Figure S2 Panel C). The model performance for all simulations
across sample sizes and fraction of significant metabolites are provided in Supplementary Table S1.
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presence of missing data as described in the methods. Model predictions are provided as: (A) Power 
or True positive rate (TPR); (B) False Discovery Rate (FDR); (C) Average exaggeration ratio (AER) in 
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Figure 2. A multilevel Bayesian approach offers increased power and controls for false discovery while
providing a more accurate estimation of metabolite effect size relative to other statistical correction
approaches. A multilevel Bayesian model (blue lines) and a standard logistic regression (labeled raw,
purple lines) were fit on a simulated metabolic dataset where 40% of metabolites were defined to be
significantly different between groups (survivors vs. non-survivors). Logistic regression models were
further adjusted for multiple testing according to Bonferroni (green lines) and Benjamini–Hochberg
(orange lines). Models were fit at different sample sizes per group without the presence of missing data
as described in the methods. Model predictions are provided as: (A) Power or True positive rate (TPR);
(B) False Discovery Rate (FDR); (C) Average exaggeration ratio (AER) in estimated effect size. This is
defined as the mean error over the set of metabolites that were significant and true (ST) for each model.
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2.2. Imputation Incorporating Uncertainty Improves Predicted Metabolite Concentration

We introduced missingness into our simulated NMR dataset using a left-censor mechanism
(Figure 1) with an average missing rate ranging from 0% to 30%. This parameter is the average
of a scaled beta distribution and is used to control the missing value rate among each metabolite.
A two-stage imputation strategy was utilized in the multilevel Bayesian model (Figure 3) and was
compared to the frequentist models with a naïve imputation for each metabolite computed as the
minimum concentration divided by two. The estimated metabolite concentration by Bayesian and
naïve imputation was compared to the true metabolite concentration in the simulated dataset (Figure 4).
The correlation between the mean Bayesian imputed and true metabolite concentrations was 0.61,
compared to a correlation of 0.45 for the naïve imputation. Imputed values further from the truth tend
to have a higher uncertainty. Importantly, the Bayesian regression model computes a mean (µ) and
standard deviation (σ) per missing metabolite observation, where the latter is used as a proxy for the
uncertainty of the models imputed prediction. Using a weighted linear regression that accounts for this
uncertainty improves the correlation between Bayesian imputed and true metabolite concentrations
to 0.65 (Figure 4A). Use of a multilevel Bayesian model thus allows for imputation of a missing
observation based on the variance/covariance relationship of metabolites in the dataset and can model
the uncertainty of the predicted value, both of which improve overall estimation of missing data.Metabolites 2020, 10, x FOR PEER REVIEW 7 of 19 

 

 
Figure 3. Two-stage ‘soft’ imputation methodology. We used Bayesian linear regression to impute 
missing metabolite observations, based on a censoring threshold and a user-defined number of 
correlated metabolites. The uncertainty in the imputed value, approximated by the standard 
deviation of the missing concentration, is accounted for upon fitting the subsequent multilevel 
Bayesian logistic regression. 

Figure 3. Two-stage ‘soft’ imputation methodology. We used Bayesian linear regression to impute
missing metabolite observations, based on a censoring threshold and a user-defined number of correlated
metabolites. The uncertainty in the imputed value, approximated by the standard deviation of the missing
concentration, is accounted for upon fitting the subsequent multilevel Bayesian logistic regression.
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Figure 4. A multilevel Bayesian approach can impute the value of missing metabolite observations and
capture the uncertainty of the prediction, which improves the estimation of missing data relative to
a standard metabolomics approach. Missing data were introduced into the simulated metabolomics
dataset at a rate of 30% and imputation was completed using a multilevel Bayesian approach (A)
or a naïve approach (B). In the Bayesian approach, the mean and standard deviation per missing
metabolite concentration were computed using a left-censored Bayesian regression model for each
metabolite based on the top eight most correlated metabolites and a pre-defined censoring threshold.
The correlation of predicted and true metabolite concentration was 0.61 but improved to 0.65 when
uncertainty in the prediction was accounted for using a weight function. In the naïve approach,
the missing metabolite observation was calculated as the minimum concentration for that metabolite
divided by two. The correlation of predicted vs. true metabolite concentrations using the naïve
approach was 0.45.

2.3. Multilevel Bayesian Models Incorporating Uncertainty into Imputation Leads to Improving Effect Size
Estimation in the Presence of Missing Data

The power, FDR, and AER are plotted as a function of the missing rate for each model in Figure 5.
As is the case for a ‘perfect’ dataset with 0% missingness, the multilevel Bayesian model has greater
power relative to traditional corrections for multiple hypothesis testing (Figure 5A). The FDR is also
lower in the Bayesian methodology relative to unadjusted logistic regression, and the Bonferroni
correction limits FDR to the greatest degree (Figure 5B). Unsurprisingly, the AER increases as a function
of increased missing rate for all models (Figure 5C). However, our Bayesian model has lower AER across
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all scenarios. In aggregate, the Bayesian approach limits the risk for Type M error, while maintaining
a balance of power and FDR. The model performance with increasing missingness and across all
simulations of sample size and fraction of significant metabolites are provided in Supplementary
Table S2.
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Figure 5. In the presence of increasing missingness in metabolomics data, a multilevel Bayesian approach
offers consistent model performance while providing a more accurate estimation of metabolite effect
size relative to other statistical approaches. A multilevel Bayesian model (blue lines) and a standard
logistic regression (labeled raw, purple lines) were fit on a simulated metabolic dataset where 40% of
metabolites were defined to be significantly different between groups (survivors vs. non-survivors).
Logistic regression models were further adjusted for multiple testing according to Bonferroni (green
line) and Benjamini–Hochberg (orange line). Models were fit in the presence of increasing missing data
as described in the methods. Model predictions are provided as: (A) Power or True positive rate (TPR);
(B) False Discovery Rate (FDR); (C) Average exaggeration ratio (AER) in estimated effect size. This is
defined as the mean error over the set of metabolites that were significant and true (ST) for each model.
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2.4. Application of Bayesian Models to Metabolomics Data

The multilevel Bayesian model and standard logistic regression models with or without corrections
for multiple testing were fit on the original, unchanged NMR metabolomics data from patients with
septic shock [19,20]. In our Bayesian model, 17/27 (63%) of the metabolites were significantly related to
sepsis mortality. In the unadjusted logistic regression and logistic regression with B-H correction for
FDR models, 17 (63%) were significantly related to the outcome, while only 11 (41%) were significantly
related after applying a Bonferroni correction. The effect size estimates for the Bayesian approach and
the standard approach (which remains constant regardless of the correction for multiple hypothesis
testing) are plotted in Supplementary Figure S3. We also fit a Bayesian linear regression with rstanarm
with a uniform prior to determine the relationship between the metabolite effect size estimated by
multilevel Bayesian versus standard logistic regression. The mean of the posterior distribution for the
slope estimate was 0.90, with a 95% credible interval ranging from 0.85 to 0.95. In addition, given the
assumptions of the model, the probability that the slope coefficient is less than 1 is 0.9999. Since we can
confidently say the slope is less than one, we can see our Bayesian model’s shrinkage of effect size
estimates. All models were then applied to the original, unchanged GC-MS metabolomics dataset
from exhaled breath of patients with and without acute respiratory distress syndrome (ARDS) [22].
In our multilevel Bayesian model, zero metabolites were found to be associated with a diagnosis of
ARDS, while 4/42 (10%) of metabolites were associated in the unadjusted logistic regression. Upon
correction for multiple testing by either Bonferroni or B-H FDR correction, a single metabolite (2%)
was associated with a diagnosis of ARDS. The shrinkage of the effect size estimates in the Bayesian
model relative to the frequentist models is clear with a slope estimate upon Bayesian linear regression
equal to 0.34 (95% credible interval [0.32, 0.37]).

2.5. Prior Probability Distribution Sensitivity Analysis

Our multilevel model links logistic regression model parameters (βxj) using a hierarchical prior
via the parameters νβx (degrees freedom) and σβx (scale parameter) of the t-distribution, where 0 is the
mean (see methods Section 4.2). Both νβx and σβx are learned from the data and inferred within a fully
Bayesian framework. Thus, our model adapts the prior to the data and different levels of shrinkage
will occur depending on the regression parameter distribution.

To determine the effect of different prior probability distributions, we compared our multilevel
model with learned values for νβx and σβx with two additional scenarios: one where νβx is fixed at 1 and
only σβx is learned, and another where νβx is fixed at 100 and σβx is fixed at 5. When νβx is fixed at 1,
then the tails of this distribution are thicker. This places greater probability around larger parameter
estimates and encourages less shrinkage. When νβx is fixed at a large number such as 100 with a
fixed σβx at 5, the multilevel nature of our model is lost due to no shared parameters across regression
models. The Bayesian model reduces to fitting separate regression models to each metabolite with the
same, approximately normal prior. This normal prior with a large standard deviation encourages less
shrinkage than the hierarchical shared prior model.

Supplementary Figure S4 shows the results of simulations under the three scenarios listed above
with standard logistic regression. Relative to the fully learned multilevel model, when νβx is fixed
at 1 and only σβx is learned, the model has a lower FDR and a slightly improved AER. This comes at
the expense of reduced power. In this situation ( νβx fixed at 1), the model learned a smaller posterior
value for σβx with a mean (across all simulation scenarios) of 0.14 as compared to 0.29 when νβx is a
free parameter. This encourages more shrinkage for smaller regression parameters and less shrinkage
for large parameter values, since the tails of the t-distribution are thicker. When both νβx and σβx are
fixed to create a weakly informed prior (to encourage less shrinkage), the model performance is quite
similar to standard frequentist logistic regression; this is consistent with the findings of others [23].
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3. Discussion

In response to threats of scientific reproducibility and challenges to traditional statistical
methodology for effect size estimation, we implemented a simulation of NMR metabolomics data
(Figure 1) to evaluate the effectiveness of multilevel Bayesian models compared to standard logistic
regression in a univariate variable ranking situation. We found that our Bayesian models lead to a more
accurate estimation of a metabolite’s effect size and that our estimation improves upon incorporating
the uncertainty of imputed missing values. These findings suggest our Bayesian methodology for
metabolomics can provide more reliable results in line with the ideals of ‘New Statistics’, which supports
a shift away from null hypothesis testing toward effect size estimation with uncertainty.

In the presence of complete metabolomics data (i.e., no missingness), a multilevel Bayesian model
showed more accurate effect size estimation for significant metabolites (Figure 2C and Supplementary
Figure S1 panel C). We then developed a two-stage imputation model (Figure 3) that appropriately
models left-censored missing metabolomics data. Our imputation method provided accurate estimation
of the simulated metabolite concentrations (Figure 4A) and further enhanced the accuracy of metabolite
effect size estimation in regression analysis (Figure 5C). As such, our models handle missing data
issues inherent to metabolomics data like other Bayesian approaches such as BayesMetab and GGSim,
but further demonstrates our Bayesian models’ ability to control for Type M error as measured by the
AER. This improvement is due to the multilevel model’s shrinkage and to the more accurate ‘soft’
imputation. With our 2-stage approach, researchers are not limited to our imputation method, and
could use other existing methods to handle missing data [18,24–27]. However, to fully take advantage
of our model, some measure of uncertainty per imputed metabolite concentration should be included.

Moreover, if a hypothesis testing framework with a null assumption of true zero effect is
considered, we have shown that multilevel Bayesian modeling can control FDR and has increased
power to detect true effects, regardless of the level of missing data (Figure 2A,B and Figure 5A,B).
Importantly, Gelman et al. has noted that an FDR correction is most logical and useful in a scenario
where there are likely to be effect sizes that are truly or nearly zero. Such an approach may be
ideal in genetics and genome wide association studies, where several features are likely to have
close to zero effect on a phenotype of interest. However, in targeted metabolomic investigations of
highly abundant compounds, testing the null hypothesis of an effect size equal to zero may be less
appropriate. Metabolites, as the end-product of biological reactions in health and disease, provide
a functional, molecular phenotype of the body, which sits downstream of genetic, transcriptomic,
and proteomic influence [28]. With most metabolites involved in multiple, complicated biochemical
pathways, the plausibility of a truly zero effect size for a given metabolite may be quite low. Therefore,
in metabolomics analysis, effect size estimation may be more useful and informative than controlling
for FDR since most effect sizes may not be truly zero. Since our multilevel Bayesian model works
better than standard logistic regression for controlling for Type M error, it may be more appropriate for
these types of studies.

Application of our models to existing metabolomics data offers a unique opportunity to explore
the benefits and limitations of the different analysis methodologies. In the NMR dataset, a multilevel
Bayesian approach identified additional ‘significant’ metabolites related to the outcome of interest
(sepsis mortality) compared to the conservative Bonferroni correction for multiple testing. It is therefore
possible that traditional analyses of metabolomics data may be focusing on a limited pool of metabolic
signatures due to the reduced power of classical methods. The relationship between multilevel
Bayesian effect size estimates compared to estimates by standard logistic regression (Supplementary
Figure S3) showed overall shrinkage in the Bayesian framework, as evidenced by a slope less than 1.
This shrinkage may be providing more accurate estimates of significant metabolite’s true effect size
based on the results of our simulations and prior research [16]. Nonetheless, there was overall
agreement between effect size estimates in the two methodologies, indicating that common statistical
workflows of metabolomics data analyses (e.g., removing metabolites with excessive missingness) can
help guard against bias in effect size estimation.
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In the GC-MS dataset, the multilevel Bayesian model did not identify any metabolites significantly
related to ARDS diagnosis and produced considerable shrinkage in effect size estimation. This may
represent a scenario when the fraction of significant metabolite predictors is small (e.g., less than
10%), and the multilevel Bayesian method overcorrects by estimating the σβx regularization term to be
too small. Indeed, we see similar trends and overly conservative estimation in Bayesian estimated
effect size in our simulations at low values for the fraction of significant metabolites (Supplementary
Figure S2). However, our simulations also show that standard regression methods tend to inflate the
AER, which agrees with previous reports that ‘statistically significant’ results tend to be upwardly
biased in nature [3,4]. In this instance, alternative priors such as fixing νβx at a small value or introducing
a lower bound for σβx can help combat over shrinkage (Supplementary Figure S4). In the real GC-MS
data, introducing a lower bound of 0.1 for σβx identified a single metabolite related to ARDS, which is
consistent with the Bonferroni or B-H FDR correction upon standard regression. More research will be
needed to develop more effective prior distributions to prevent overcorrection and to assess model
performance on untargeted metabolomic platforms.

Although our methods can be easily scaled up to include multivariate modeling, our initial focus
is on the univariate metabolite ranking situation and we cannot yet speak to model performance in
more complex modeling scenarios. We also did not directly compare the benefit of our approach, which
incorporates the uncertainty of missing values, versus a multilevel model with strict hard imputation.
Nonetheless, our ability to predict the true metabolite concentration of missing data incorporated
into our simulation did improve with a weight function modeling the uncertainty in the estimate
(Figure 4A). Moreover, in the simulations with increasing missing data, our models did effectively limit
the increase in AER (Figure 5C); however, it did help considerably. Other important limitations include
that, in situations where the researcher does not have a prior belief about the fraction of truly associated
metabolites, this method may lead to overcorrection if the fraction is small (<20%). In addition, for very
large datasets, with high missing rates, the Markov Chain Monte Carlo simulation approach may be
time and computationally expensive.

4. Materials and Methods

4.1. Simulation Approach

To evaluate the benefit of multilevel modeling and incorporating uncertainty of imputation into
downstream regression, we developed a simulation which generates data similar to real metabolomics
data. We required a simulation so that we could generate a ground truth and compare how well our
model works under a variety of settings. Figures 1 and 3 show a schematic of our simulation approach
and imputation methods, respectively. We first learned the mean and covariance parameters of a real
metabolomics dataset and used this as our starting point for generating data. We then implemented a
simulation that can vary the sample size per group, the fraction of significant metabolites, and the
missing rate. We varied these parameters and assessed our Bayesian model and its correction mechanism
with standard logistic regression using common multiple testing correction schemes. We compared the
performance of these models using a variety of criteria including power, false discovery rate, and AER.

4.1.1. Parameter Learning from Experimental Data

The basis for the simulation was an NMR dataset from a recent septic shock trial. In this dataset,
baseline serum samples from 228 septic shock patients were quantified by 1H-NMR as previously
described [19–21]. All cause 90-day mortality was 122/228 (53.5%) and 106/228 (46.5%) survived
beyond 90 days. After filtering metabolites with a missing rate less than 30%, there were 27 metabolites
remaining. Concentrations were log transformed and each metabolite was scaled to have a mean of
zero and a standard deviation of one.

We then looked at the 90-day mark after enrollment into the trial and dichotomized patients into
two groups. Those who survived and those who did not. To generate synthetic data, we modeled
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these data using a multivariate normal distribution where we computed a class-specific mean and
covariance matrix:

Xi ∼

{
normal(µD, ΣD), class(i) = non-survivors
normal(µS, ΣS), class(i) = survivors

(1)

Here, µD is the mean of each metabolite’s concentration and ΣD is the covariance matrix for
patients who died at or before 90 days, while µS and ΣS are the mean and covariance matrix for the
metabolite concentrations for patients who survived.

4.1.2. Simulation Parameters

The Number of Simulations parameter is the number of synthetic dataset replications to generate based
on the following parameters. For our analyses, we did 200 replications for each parameter combination.

The Sample Size per Group parameter controls the number of patients whose metabolomic profiles
are simulated for survivors and non-survivors.

The Fraction of Significant Metabolites parameter controls the number of metabolites that are ‘truly’
different between patients who survived and those who did not. We did this by constructing a discrete
probability distribution that assigns the probability that a metabolite is non-zero to be proportional
to absolute difference in magnitude between survivors and non-survivors. Specifically, we assigned
probabilities as follows:

TS j =

∣∣∣∣ µD j − µS j

∣∣∣∣√
σ2

Dj
nD
−

σ2
Sj

nS

(2)

p j =
TS j∑

TSk
(3)

The variable TS j is the absolute magnitude of the t-statistic between the patients who survived
and those that did not for metabolite j, and p j is the probability that metabolite j is truly different
between survivors and non-survivors. The sample sizes nD and nS are the number of samples per
group for patients who are survivors and non-survivors. If Fraction of Significant Metabolites is equal to
0.5, we would have a sample without replacement using the p j probabilities until we have at least 0.5
metabolites selected. The remaining metabolites are assigned to have no true difference. We did this
by creating two new mean vector variables (µ̂D and µ̂S), where ˆµD j = µ̂S j = 0 for all j not selected to
be truly different.

The Average Missing Rate (r) parameter controls the missing rate per metabolite within the simulation.
To make the distribution of missingness look similar to the real metabolomics dataset, we first fit a beta
distribution to missing rate distribution of our real dataset and computed the mean µβ and variance
σ2
β

. Second, we scaled the mean and variance to have the target Average Missing Rate as follows:

µ̂β = r (4)

σ̂2
β
=

r
µβ
σ2
β (5)

We then sampled a missing rate from this resulting beta distribution m j for metabolite j. This
missing rate was then used to left censor the generated data. We did this by assigning all values within
a quantile less than m j to be missing.

The final parameter was the Maximum Missing Rate. This parameter was set to be 0.4 in our simulation
study. This parameter truncates the missing rate to be no more than the Maximum Missing Rate.
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4.2. Multilevel Bayesian Logistic Regression Model

We modeled each metabolite with the outcome of interest using logistic regression with an added
assumption that the regression coefficients come from a common distribution:

logit
(
pi j

)
= α j + βxjXi j (6)

The probability that patient i will experience the event under study for metabolite j is modeled by
a bias parameter αxj and the log odds ratio (βxj) for metabolite j:

logit(x) =
x

1− x
(7)

where we assume the regression coefficients for metabolites come from a common distribution centered
at zero, with degrees freedom νx, and a standard deviation of σβx:

βxj ∼ t-distribution
(
νβx, 0, σβx

)
. (8)

The parameter νβx is the degrees freedom of the t-distribution and it controls the thickness of the tails.
The parameter σβx is the scale of the t-distribution and it controls the overall spread of the distribution of
effect sizes. A smaller σβx means the model will increase the shrinkage of coefficients toward zero and a
smaller νβx will allow the potential of larger effect sizes. We assume the following distributions:

σβx ∼ cauchy(0, 1)+, (9)

νβx ∼ gamma(2, 0 .1), (10)

αxj ∼ normal(0, 5). (11)

Here, we assume αxj is normally distributed with a mean of zero and a standard deviation of 5.
We did not perform pooling on these parameters because the primary parameters of interest are the βxj
parameters. We constrained the domain of νβx to be at least 1.

We used Stan’s Hamiltonian Monte Carlo Markov Chain engine for parameter inference [29].
The prior parameter settings and domain for these variables follow the guidelines for weakly informed
priors from the Stan user guide [30].

4.3. Two-Stage Imputation Model

Our two-stage imputation model that improves parameter estimation first performs a multivariate
imputation within a left-censored framework to estimate the posterior distribution of missing metabolite
values. This method has similarities to BayesMetab [17] and GSimp [18]; however, our purpose is
to utilize the posterior of the missing values in regression analysis rather than to make a specific
imputation. We then estimated the mean and the standard deviation of the missing values and fed these
into a logistic regression model that operates using this uncertainty information. The result is a model
that performs soft imputation and subsequently estimates parameters yielding more accurate estimates.

4.3.1. Imputation Model

The input into our imputation model is a matrix of metabolite concentrations X ∈ Rn×m, an indicator
matrix Z ∈ {0, 1}n×m, a threshold vector t ∈ Rm, and a constant c, where n is the number of patients
and m is the number of observations. The matrix X has a naïve imputation strategy applied to it for
initiation, where we took the minimum observed value per metabolite divided by two. The entry
Zi j = 0 when Xi j is observed and Zi j = 1 when Xi j is missing. For each metabolite, we build a
regression model within a left-censored framework. The constant c sets the number of metabolites to
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use for imputing. For each metabolite, we find the c metabolites with the highest Pearson correlation.
Specifically, we compute the likelihood l

(
Xi j

)
as follows:

l
(
Xi j

)
=


normal

(
Xi j, βT

− jXi,− j + α j, σ j
)
,Zi j = 0∫ t j

−∞

normal
(
a , βT

− jXi,− j + α j, σ j
)

da,Zi j = 1
(12)

Here, the notation normal(x,µ, σ) is the normal probability density function at point x, with mean
µ, and standard deviation σ. The vector βT

− j ∈ R
c×1 is a vector of regression coefficients for metabolite

j. The − j notation indicates that the metabolite j is not used in for imputing itself. The vector
Xi,− j ∈ Rc×1 is the vector of metabolite concentrations for the c metabolites most correlated with
metabolite j. The parameter α j is the intercept parameter for the imputation equation for metabolite j.
In words, the likelihood of Xi j is computed using a normal probability density function when Xi j is
observed. However, when Xi j is missing, we compute the normal cumulative distribution function
which averages the normal probability density function from −∞ to left-censoring threshold t j for
metabolite j. By using the normal cumulative distribution function, we are not biasing the regression
coefficient estimates as we would by making a hard imputation using a less informed method.

The priors for the parameters of this model are as follows:

βT
− j ∼ normal

(
0, σβ− j

)
(13)

σβ− j ∼ normal(0, 1) (14)

α j ∼ uniform(−∞,∞) (15)

σ j ∼ uniform(0,∞) (16)

The parameters βT
− j come from a shared prior distribution with standard deviation σβ− j . This

provides a pooled shrinkage across all metabolites and will have a similar effect as ridge regression.
After fitting this model, we computed the uncensored mean Ei j and standard deviation Si j using

the posterior of each missing metabolite value.

4.3.2. Logistic Regression with Uncertainty

This model is very similar to the model in Section 4.3 with the added ability to sample from right
truncated normal distributions with mean Ei j and standard deviation Si j, when Zi j = 1:

X̂i j =


Xi j,Zi j = 0

Xi j ∼ normal
(
Ei j, Si j

)∣∣∣∣t j

−∞
,Zi j = 1

(17)

In other words, we defined a variable X̂i j which is equal to Xi j when Xi j is observed and X̂i j is
equal to a sample from the right truncated distribution centered at Ei j with standard deviation Si j.
These parameters were computed using the model presented in 4.3.1 and represent the mean and
standard deviation of the posterior distribution for the missing metabolite value in metabolite j for

sample i. The notation Xi j ∼ normal
(
Ei j, Si j

)∣∣∣∣t j

−∞
states that Xi j is sampled from the right truncated

normal distribution whose domain is
(
−∞, t j

]
.

We then modify the regression equation as follows:

logit
(
pi j

)
= α j + βxjX̂i j. (18)

The result is a logistic regression model that operates on samples from the missing values
posterior distribution. This adds uncertainty to the model and leads to more accurate parameter
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estimates provided the imputed posterior distribution is closer to the truth unobserved value than a
naïve imputation.

4.3.3. Method Comparison

We compared our Bayesian hierarchical model to standard logistic regression in the following
ways. First, we applied three forms of correction to standard logistic regression: No corrections,
Bonferroni correction, and B-H FDR correction. We applied these p-value correction approaches and
required the adjusted p-value to be less than 0.05 to be declared significant. For our Bayesian model,
we declared a metabolite j to be significant if the probability that βxj < 0 is greater than 0.975 or the
probability that βxj > 0 is greater than 0.975. In other words, the tail probability of either tail of the
posterior of βxj must be at least 0.975.

We then used the following metrics to compare these multiple testing correction strategies: false
discovery rate

(
FP

TP+FP

)
, power

(
TP

TP+FN

)
, and the AER in estimated effect size. Here, TP is the number of

true positives (those declared to be significant and were significant), FP is the number of false positives
(those declared to be positive but were negative), and FN is the number of false negatives (those
declared to be negative but were actually positive). The AER in estimated effect size was computed as
follows over the set of metabolites that were significant and true (ST) for each model, where |ST| is the
cardinality of (or the number of elements in) ST) [5]:

AER =
1
|ST|

∑
j∈ST

∣∣∣∣∣∣∣β
∗

xj

βxj

∣∣∣∣∣∣∣ (19)

The parameter β∗xj corresponds to estimated effect size for metabolite j and βxj was the true effect
size. For our Bayesian Models, we took β∗xj as the mean of the posterior distribution. All of these
criteria were averaged over the number of Number of Simulations.

4.4. Imputation Quality Evaluation

To evaluate the quality of our imputation model worked and the benefit of including uncertainty
into the logistic regression, we did the following: first, we plotted the uncensored values using the
simulated data against the imputed dataset when the Average Missing Rate was 0.3. We colored the
points using a weight (wi j) for patient i for metabolite j using the posterior standard deviation of the
missing metabolite concentrations (σi j):

wi j = 1−
σi j

max
(
σi j

) . (20)

This function gives higher weight to metabolites with less uncertainty and less weight to samples
with higher uncertainty. We also applied this weight function to a simple linear regression function
and computed the correlation between the true missing concentrations and the imputed missing
concentrations with and without the weight function.

4.5. Real Data Comparison

We then applied the standard regression approach and our Bayesian model to the real NMR
dataset of septic shock with 228 samples and 27 metabolites after filtering [19,20] a GC-MS dataset
from patients with and without ARDS with 85 samples and 79 metabolites [22]. For these datasets,
we compared the number of significant metabolites predicted by each model and we compared the
estimated effect size of metabolites. We did this comparison by correlating the effect sizes estimated
from our Bayesian model with the effect sizes using standard logistic regression. Using rstanarm
version 2.19.3 [31], we constructed a linear model with the Bayesian model’s effect size as the dependent
variable and the standard logistic regression as the independent variable. If there were no difference in
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effect sizes, then the slope of this model would be one. We computed the 95% credible interval from
the posterior from this linear model and compared this to the expected value under the null.

5. Conclusions

In conclusion, we assessed if a multilevel model could simultaneously adjust for multiple testing
and offer improved effect size estimation. Our simulations of NMR metabolomics data showed that a
multilevel Bayesian model offers greater power and mitigates the risk of false discovery compared to
standard regression methods. In addition, our Bayesian method more accurately estimated the effect
size of significant metabolites, limiting Type M error. We then asked the novel question as to whether
incorporating imputation uncertainty would further improve effect size estimation. Our multilevel
Bayesian model easily allows us to not only estimate the concentration of missing values, but also
incorporate the uncertainty of this estimate, which further improved effect size estimation. Therefore,
analysts should consider multilevel Bayesian models for more accurate effect size estimation for
metabolomics data.
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simulation parameters in the presence of missing data.
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