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Abstract: Glycomics measurements, like all other high-throughput technologies, are subject to 

technical variation due to fluctuations in the experimental conditions. The removal of this non-

biological signal from the data is referred to as normalization. Contrary to other omics data types, a 

systematic evaluation of normalization options for glycomics data has not been published so far. In 

this paper, we assess the quality of different normalization strategies for glycomics data with an 

innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) 

inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways 

in a data-driven fashion. Based on this finding, here, we quantify the quality of a given 

normalization method according to how well a GGM inferred from the respective normalized data 

reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits 

a biological measure of goodness. We analyzed 23 different normalization combinations applied to 

six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography – 
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ElectroSpray Ionization - Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid 

Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser 

Desorption Ionization – Furier Transform Ion Cyclotron Resonance – Mass Spectrometry (MALDI-

FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic 

Quotient’ method followed by log-transformation, irrespective of the measurement platform. This 

recommendation is further supported by an additional analysis, where we ranked normalization 

methods based on their statistical associations with age, a factor known to associate with glycomics 

measurements. 

Keywords: glycomics; data normalization; gaussian graphical models 

 

1. Introduction 

Glycans have been recognized to contribute to the pathophysiology of every major disease [1]. 

To keep up with the increasing interest to better understand the involvement of glycans in biological 

processes at a molecular level, high-throughput platforms have been developed in the recent past. 

These platforms allow to profile glycans in large-scale datasets and from a wide variety of 

biospecimens.  

Similar to all other omics data types, glycomics samples need to be preprocessed prior to 

statistical analysis in order to minimize intrinsic, non-biological variation. This variation can arise, 

for example, from fluctuations in the instrument settings, sample preparation, or experimental 

conditions. The process that aims at reducing technical variations from the data is referred to as 

normalization. Different normalization procedures have substantially different assumptions 

regarding the nature of the non-biological variation, which, however, is unknown in most practical 

cases. Systematic comparisons of commonly implemented preprocessing strategies for various omics 

technologies have been published in recent years, including transcriptomics [2], proteomics [3], as 

well as metabolomics [4–6]. A recent study to guide the choice of normalization strategies for 

glycomics data has recently been published [7]; however, that study could not identify an optimal 

preprocessing strategy. Therefore, there is still no consensus on the appropriate normalization 

methods for glycomics data.  

This need for a glycomics-specific evaluation is further supported by the observation that the de 

facto standard for large-scale glycomics data preprocessing is Total Area (TA) normalization [8], 

which describes each glycan intensity in a sample as a percentage of the total. Following this 

transformation, the normalized intensities of a sample sum up to one (or 100%) by definition, leading 

to the loss of one degree of freedom. The division of each value by the sum of all values in a sample 

is referred to as a closure operation, and the resulting dataset is known as a compositional dataset 

[9]. Notably, these types of data normalization alter the structure of the covariance matrix, 

subsequently affecting any downstream correlation-based analysis (for details on this phenomenon, 

see the Methods Section). Compositional datasets are not unique to glycomics, but also widely occur 

in other fields, prominently in microbiome profiling [10], where percentages are used to describe the 

relative abundance of different microbial species. Notably, regular multivariate methods are not 

appropriate to treat these types of data, and specific statistical techniques need to be employed [11–

15]. Most of such techniques require the definition of new variables, typically defined as ratios 

between the original compositional values [16–18]. This makes interpretation of the results in terms 

of the original quantities challenging [19,20].  

In order to be able to infer biological interactions from the analysis of large-scale glycomics data, 

the selection of a more suitable alternative to TA normalization is therefore necessary. Given the 

variety of possible preprocessing strategies available, we need to define a criterion to quantitatively 

evaluate the performance of each method to select the most appropriate normalization method.  

Common evaluation schemes for the performance of preprocessing strategies are mostly based 

on two approaches: (1) Minimizing the variation between technical replicates [21,22], and (2) 
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maximizing the variation across groups [6]. Consistency across technical replicates is a desirable 

outcome, but alone is not sufficient to guarantee good data quality, and technical replicates might not 

always be available. The maximization of variation across groups, on the other hand, is a viable 

measure that provides insights into the recovery of true biological signals.  

In this paper, we address the question of evaluating normalization strategies for glycomics data 

with a different, innovative approach. We assess the quality of a normalized dataset by its ability to 

reconstruct a biochemically correct pathway using statistical network inference. One popular 

approach for the inference of biological interactions is based on Gaussian Graphical Models (GGMs) 

[23]. GGMs depict correlating variables in the form of a network, where nodes represent the 

measurements (e.g., glycans) and edges represent their statistical associations. Specifically, GGMs 

quantify pairwise associations via partial correlations, an extension of regular Pearson correlations 

that accounts for the presence of confounding factors. Molecular measurements are generally highly 

correlated and thus contain a large number of correlations that are indirect and mediated by one or 

more other variables. Partial correlations allow to remove these indirect correlations automatically. 

Due to this property, GGMs have been repeatedly shown to selectively identify single enzymatic 

steps in metabolic [24,25] and glycosylation pathways [26], hence providing a reliable data-driven 

approach to infer biochemical pathways. 

In this paper, we exploit the ability of GGMs to reconstruct biochemical reactions to define a 

biological measure of normalization quality. The idea is to compare the GGMs inferred from data 

normalized with different approaches to the known biochemical pathway of glycan synthesis and 

evaluate the quality of each normalization according to how well the corresponding GGM retrieves 

known synthesis reactions (Figure 1). By computing the overlap between estimated GGM and 

glycosylation pathway, we rely on a biological measure of quality, as a higher overlap indicates data 

whose correlations are able to better reflect known biochemical interactions. Hence, the 

normalization that produces the highest overlap is defined as the best. Glycomics data provide an 

ideal test case to demonstrate the validity of this approach, as the known biochemical pathway of 

synthesis is well characterized. 

We compared the performance of different variations of seven commonly implemented 

normalization methods on data from six cohorts across three different glycomics platforms, including 

measurements of the Fragment crystallizable (Fc) region of Immunoglobulin G (IgG), total IgG, or 

total plasma N-glycans. In order to assess how our approach compares to other common 

normalization evaluation strategies, we additionally investigated how the normalization methods 

affect the statistical associations of glycans with age. 
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Figure 1. Pipeline for the evaluation of different normalization methods for glycomics data. First, data 

are normalized with various approaches. From each processed dataset, a Gaussian Graphical Model 

(GGM) is inferred and compared to the known biochemical pathway of glycan synthesis. The result 

of this comparison is a quantitative overlap value that describes how well the estimated GGM 

represents known synthesis reactions. This overlap is then used to evaluate the normalization 

approach, where higher overlap corresponds to a better data normalization. 

2. Results 

2.1. Data 

We analyzed six large-scale glycomics datasets (Table 1), measured on three different platforms: 

(1) In four cohorts (Korčula 2013, Korčula 2010, Split, Vis) [27], N-glycans from the Fc region of IgG 

were measured via liquid chromatography– electroSpray ionization–mass spectrometry (LC-

ESI-MS). This platform allows to quantify glycopeptides, i.e., short amino acid sequences in 

proximity of the glycosylation site in combination with the attached glycans. Since IgG has four 

isoforms (also referred to as subclasses), which differ in their amino acid sequences [28,29], the 

LC-ESI-MS technology is able to distinguish among glycans bound to different IgG subclasses. 

In total, 50 N-glycopeptide structures were quantified: 20 for IgG1, 20 for IgG2 and IgG3 (which 

have the same glycopeptide composition and hence are not distinguishable by mass [28,29]), and 

10 for IgG4. In the main manuscript, we show results for the Korčula 2013 cohort, which included 

669 samples. 

(2) In one cohort (Study of Colorectal Cancer in Scotland; SOCCS) [30], IgG N-glycans were 

measured via ultra-high-performance liquid chromatography with fluorescence detection 

(UHPLC-FLD). In this case, all glycans bound to the IgG protein are first released and then 

measured, including the ones in the Fab region (see the Methods Section), but no information 

about the IgG subclass of origin is retained. Peaks in the chromatogram reflect chemical–physical 

properties of the measured molecules and not necessarily single glycan structures. In the specific 

case of IgG N-glycans, however, each UHPLC peak typically includes one highly predominant 

structure [31]. For the purpose of the analyses presented in this paper, we only considered the 

most abundant structure within each peak. The final UHPLC cohort consisted of 24 glycan peaks 

quantified in 535 samples. 

(3) In the last cohort (Leiden Longevity Study; LLS) [32], N-glycans from the whole set of human 

plasma proteins were measured via matrix-assisted laser desorption/ionization–Fourier-

transform ion cyclotron resonance–mass spectrometry (MALDI-FTICR-MS). In this setting, 

glycans from all plasma proteins are released and measured together. Therefore, glycans 

originating from highly abundant and highly glycosylated proteins will be predominant. 

Notably, this platform only identifies molecular masses, so structural information is not directly 

available from the data. Therefore, within each mass, multiple glycan structures can be present, 

and this has to be taken into account. In the analyzed cohort, 61 distinct masses were quantified 

in 2056 samples. 

Table 1. Summary of datasets. 

 LC-ESI-MS UHPLC-FLD MALDI-FTICR-MS 

Dataset Name Korčula 2013 Korčula 2010 Split Vis CRC Controls LLS 

Glycans measured IgG Fc IgG Fc IgG Fc IgG Fc IgG total Total plasma 

Number of peaks 50 50 50 50 24 61 

Number of samples 

for analysis 
669 504 980 395 535 2056 

Age range 

(mean ± SD) 

18–88 

(53.2 ± 16.3) 

18–98 

(56.4 ± 13.6) 

18–85 

(50.3 ± 14.3) 

18–91 

(55.8 ± 15.2) 

21–74 

(51.6 ± 5.9) 

30–80 

(59.2 ± 6.7) 

LC-ESI-MS: Liquid Chromatography – ElectroSpray Ionization – Mass Spectrometry; UHPLC-FLD: 

Ultra High Performance Liquid Chromatography with Fluorescence Detection; MALDI-FTICR-MS: 

Matrix Assisted Laser Desorption Ionization – Fourier Transform Ion Cyclotron Resonance – Mass 
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Spectrometry; CRC: Colorectal cancer; LLS: Leiden Longevity Study; IgG: Immunoglobulin G; Fc: 

Fragment crystallizable; SD: standard deviation. 

2.2. Overview of Normalization Methods 

Seven basic preprocessing approaches were considered, all of which are commonly used in 

omics data analysis (Table 2): (1) Raw (unprocessed) data were included for comparison, (2) quantile 

[33] and (3) rank [34] normalization are widely used in microarray data analysis, (4) Total Area (TA) 

is often used to preprocess large-scale glycomics [35] and microbiomics data [10], (5) median 

centering [4], and (6) Probabilistic Quotient normalization applied to raw and (7) to TA-normalized 

data are popular methods for the preprocessing of metabolomics data [36,37]. 

Since omics data have frequently been reported to follow an approximately log-normal 

distribution [38,39], and since GGMs assume normally distributed data, log-transformation of 

normalized data was also included in the analysis when applicable (indicated by a check mark in the 

second column of Table 2). This resulted in a total of 13 different preprocessing strategies. For LC-

ESI-MS IgG data, 10 additional variations were included, as in this case, data normalization can be 

performed over the full dataset or per IgG subclass separately (third column in Table 2). A detailed 

description of each normalization procedure can be found in the Methods Section. 

Table 2. Evaluated normalization methods. 

Normalization Label Group 

Raw Raw 

Basic 

Normalization

s 

Quantile per glycan Quantile 

Rank per glycan Rank 

Total Area TA 

Median Centering Median 

Probabilistic Quotient Quotient 

Total Area + Probabilistic Quotient TAQuotient 

log(Raw) Raw log 

Logarithm 

log(Quantile per glycan) Quantile log 

log(Rank per glycan) Rank log 

log(Total Area) TA log 

log(Probabilistic Quotient) Quotient log 

log(Total Area + Probabilistic Quotient) TAQuotient log 

(Quantile per glycan) per IgG subclass Quantile subclass 

Per Subclass 

(Rank per glycan) per IgG subclass Rank subclass 

(Total Area) per IgG subclass TA subclass 

(Probabilistic Quotient) per IgG subclass Quotient subclass 

(Total Area + Probabilistic Quotient) per IgG subclass TAQuotient subclass 

(log(Quantile per glycan)) per IgG subclass Quantile log subclass 

(log(Rank per glycan) per IgG subclass Rank log subclass 

(log(Total Area)) per IgG subclass TA log subclass 

(log(Probabilistic Quotient)) per IgG subclass Quotient log subclass 

(log(Total Area + Probabilistic Quotient)) per IgG 

subclass 

TAQuotient log 

subclass 

IgG: Immunoglobulin G; log: logarithm. 

2.3. Prior Knowledge-Based Evaluation 

Once all normalizations were applied to the data, partial correlation coefficients were computed 

with the GeneNet algorithm, which has been proven to give more reliable and stable estimates of 

partial correlation coefficients than the analytical method [40]. Statistical significance of coefficients 

was determined by applying a False Discovery Rate (FDR) of 0.01. The resulting partial correlation 
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network, or Gaussian Graphical Model (GGM), was then compared to the respective biochemical 

pathway of glycan synthesis. As a quantitative measure of overlap between the calculated GGM and 

the pathway, we chose the Fisher test p-value (see the Methods Section), where lower p-values 

correspond to a higher overlap between inferred network and prior knowledge, thus corresponding 

to a better normalization. The biochemical pathway for IgG was taken from Benedetti et al. [26] 

(Figure 2), while the reference pathway for the total-plasma N-glycome was based on the measured 

glycan masses (see the Methods Section). Schematics of the pathways used for the evaluation can be 

found in Supplementary Figures S1–S4. 

 

Figure 2. Reference pathway for Immunoglobulin G (IgG) Liquid Chromatography – ElectroSpray 

Ionization – Mass Spectrometry (LC-ESI-MS) data. IgG glycans include monosaccharides such as 

mannose, N-acetylglucosamine, galactose, fucose, and sialic acid, and are synthesized by the 

incremental addition of single monosaccharides. 

2.4. LC-ESI-MS—IgG Fc N-Glycopeptides 

For the LC-ESI-MS platform, most methods produced networks with high overlap to the 

biochemical pathway of synthesis, indicated by low Fisher’s test p-values (Figure 3 and 

Supplementary Figures S5–S7, left). 

Interestingly, the unprocessed data (Raw) were among the best-performing methods, which 

might be related to the fact that, with this platform, the ionization is dominated by the peptide, which 

might serve as an internal standard for the glycan quantification. As expected, TA-based 

normalizations performed significantly worse than all other considered strategies, probably due to 

the alteration of the covariance matrix induced by closure operation. Moreover, we observed that in 

most cases, log-transformation did not improve performance (Figure 3 and Supplementary Figures 

S5–S7, center), with the exception of the Vis cohort, where log-transformed data seemed to perform 

marginally better overall (Supplementary Figure S7, center). Given the assumption of normality of 

the Gaussian graphical models, we expected log-transformed data, which are more normally 

distributed, to perform better than their non-transformed counterparts. This might indicate that 

GGMs, although formally only suitable for normally distributed data, are also effective for non-

Gaussian data. An exception to this observation was the TA-log normalization, for which log-

transformation appears to neutralize the constraints imposed by TA and hence, improves 
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performance. Normalizing per total IgG or per IgG subclass did not result in substantial differences 

in performance, except for TA (Figure 3, right). 

In summary, we showed that for LC-ESI-MS IgG Fc glycomics data, all considered preprocessing 

performed comparably except TA, which was significantly worse than the rest. Moreover, non-log-

transformed data did not perform worse than the transformed data, and normalizing per total IgG 

or per IgG subclass did not make a significant difference. 

 

Figure 3. LC-ESI-MS normalization analysis results (Korčula 2013 cohort). Results in the panels are 

colored according to type of normalization (left), log-transformation (center), or normalization per 

IgG subclass or total IgG (right). Bars represent the median of the Fisher’s exact test p-values over 

1000 bootstrap samples, and error bars indicate the corresponding 95% confidence intervals. 

2.5. UHPLC-FLD—Total IgG N-Glycans 

For the UHPLC-FLD dataset, contrary to the previous case, the performance was highly affected 

by the chosen normalization method (Figure 4, left), with TA Probabilistic Quotient and Probabilistic 

Quotient ranking at the top. In this case, the unprocessed data performed poorly. Moreover, in 

contrast to what we observed in the LC-ESI-MS case, for UHPLC-FLD data, the log-transformation 

had a significant impact on the performance of normalizations, although with opposite effects 

depending on the methodology: for some it substantially enhanced performance (Quantile, Total 

Area), while for others it was detrimental (Rank, Raw data) (Figure 4, right). 
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Figure 4. Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-

FLD) normalization analysis results (Colorectal cancer controls cohort). Results in the panels are 

colored according to type of normalization (left), or log-transformation (right). Bars represent the 

median of the Fisher’s exact test p-values over 1000 bootstrapping, and error bars indicate the 

corresponding 95% confidence intervals. 

2.6. MALDI-FTICR-MS—Total Plasma N-Glycans 

The MALDI dataset included 61 glycan peaks. Similar to the LC-ESI-MS case, most methods 

performed comparably (Figure 5, left). Log-transformed unprocessed data yielded the worst 

performance, although in all other cases, log-transformation did not significantly affect the 

normalization performance (Figure 5, right). 

In conclusion, for MALDI data, most normalization methods performed comparably. Log-

transformation did not significantly alter performance, except when considering log-transformed 

unprocessed data, which was the worst performing approach. 

 

Figure 5. Matrix Assisted Laser Desorption Ionization – Furier Transform Ion Cyclotron Resonance 

(MALDI-FTICR-MS) normalization analysis results (Leiden Longevity Study cohort). Results in the 

panels are colored according to type of normalization (left), or log-transformation (right). Bars 
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represent the median of the Fisher’s exact test p-values over 1000 bootstrapping, and error bars 

indicate the corresponding 95% confidence intervals. 

2.7. Comparison with Phenotype Association Analysis 

As a final step, we investigated how our method relates to a more common normalization 

evaluation strategy: The maximization of the statistical association between normalized values and a 

given phenotype. We chose age as the phenotype for association, since age has been repeatedly 

shown to strongly correlate with glycan abundances in blood [41–45]. 

For each of the six analyzed datasets and for each normalization strategy, we computed the p-

values of the statistical associations between glycan abundances and age and subsequently corrected 

for multiple testing (Supplementary Figure S8, Table S1). To summarize the results, we calculated the 

fraction of significant associations (False Discovery Rate 0.01) per normalization strategy and 

averaged across datasets (Table 3). Similar to our network-based analysis, most normalization 

performed comparably in the LC-ESI-MS datasets, displaying a large number of significant 

associations. In contrast, in the other two datasets, the fraction of significant associations was heavily 

dependent on the normalization method. On average, the preprocessing strategies based on 

Probabilistic Quotient produced the highest number of significant associations, substantially 

outperforming all other approaches. These findings are consistent with our network-based approach, 

corroborating our results. 

Table 3. Fraction of glycans significantly associated with age (False Discovery Rate 0.01). 

Normalization approaches are sorted by decreasing average fraction of significant associations. 

Platform LC-ESI-MS  
UHPLC-

FLD 

MALDI-

FTICR 
 

Dataset 

Normalization 

Korčula 

2013 

Korčula 

2010 
Split Vis 

LC-ESI-

MS 

Average 

CRC 

controls 
LLS 

Weighted 

Average 

across 

Platforms 

TAQuotient 

log 
0.340 0.680 0.700 0.740 0.615 0.625 0.590 0.610 

Quotient log 0.340 0.660 0.700 0.740 0.610 0.625 0.590 0.608 

Quotient 0.320 0.660 0.740 0.680 0.600 0.583 0.574 0.586 

TAQuotient 0.320 0.660 0.740 0.660 0.595 0.583 0.574 0.584 

TA log 0.360 0.700 0.760 0.700 0.630 0.542 0.475 0.549 

TA 0.300 0.720 0.780 0.720 0.630 0.500 0.475 0.535 

Quantile 0.220 0.600 0.700 0.640 0.540 0.000 0.279 0.273 

Raw 0.180 0.560 0.700 0.620 0.515 0.000 0.279 0.265 

Rank 0.220 0.520 0.700 0.580 0.505 0.000 0.262 0.256 

Quantile log 0.220 0.560 0.700 0.580 0.515 0.000 0.246 0.254 

Median 0.220 0.520 0.560 0.640 0.485 0.000 0.246 0.244 

Raw log 0.220 0.560 0.680 0.540 0.500 0.000 0.213 0.238 

Rank log 0.140 0.400 0.620 0.540 0.425 0.000 0.115 0.180 

3. Discussion 

Several systematic evaluations of preprocessing methodologies have been recently published for 

different omics data types, but glycomics has received little attention so far in this regard. In order to 

address this gap, we developed an innovative approach to assess the quality of different 

normalization strategies applied to glycomics data. The main feature of our procedure lies in the 

definition of a biological measure of quality. More specifically, we quantify how well significant 

correlations in the data normalized with a given technique represent known biochemical reactions in 

the pathway of glycan synthesis. Our quantitative measure of choice for this evaluation was the p-

value of a Fisher’s exact test, which allows for an intuitive interpretation of overlap between 

correlations and biochemical pathway. 
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We performed a systematic analysis of 23 preprocessing strategies applied to six large-scale 

glycomics cohorts across three platforms, with measurements ranging from a single protein and 

single glycosylation site (LC-ESI-MS), to total plasma N-glycome (MALDI-FTICR-MS). The observed 

normalization ranking was consistent across platforms; overall, the Probabilistic Quotient appeared 

to be the most reliable method, as all variations of this procedure ranked consistently in the top 

performers in all cohorts and across platforms. Log-transformation and normalization per IgG 

subclass or per total IgG did not seem to significantly affect the ability of this method to correctly 

retrieve the glycan synthesis pathway. Interestingly, while Total Area normalization did not rank 

high in comparison to other methods (as expected), the log-transformed Total Area preprocessing 

was a well-performing method. In fact, TA Probabilistic Quotient was among the best performing 

approaches overall, suggesting that additional transformations on TA normalized data can neutralize 

the constraints imposed on the data correlation structure, as shown in Dieterle et al. [36]. 

One interesting finding was the substantial difference of the evaluation results between MS- and 

UHPLC-based platforms: While for MS, most normalization approaches performed comparably, the 

variance among the considered strategies was considerable for UHPLC. The origin of this 

discrepancy is not easy to trace, but it could be due to the fact that UHPLC does not separate glycans 

according to their mass, like MS-based techniques do, but according to their chemical and physical 

properties. This leads most chromatographic peaks to represent a mixture of glycan structures. 

Although it has been shown that there is a predominant structure in the vast majority of IgG 

chromatographic peaks [31], this contamination is likely to make the data correlation structure noisier 

and thus more sensitive to different normalizations. Moreover, it is expected to affect the comparison 

to the biological reference, which does not account for any structure mixture. 

While our results seem to suggest that log-transformation does not significantly affect 

performance, it should be considered that data normality is an assumption for many other statistical 

tests and approaches, and thus we still recommend to always log-transform omics data after 

normalization. 

To assess how our approach compares to a more common normalization evaluation strategy, we 

ranked the preprocessing methods based on how strongly the normalized abundances associated 

with age. Consistent with our network-based results, Probabilistic Quotient-based approaches clearly 

outperformed all other methods. 

The network approach described in this paper could be employed to evaluate normalization 

strategies in other types of mass-flow data, e.g., metabolomics data. Moreover, we could extend this 

approach to evaluate other preprocessing steps. For example, it has already been shown that, for 

untargeted metabolomics data, different missing value imputation strategies have a prominent 

impact on the results of the downstream analysis [46]. We could investigate whether the same holds 

for glycomics data and quantitatively evaluate the performance of each strategy. Similarly, our 

framework could be applied to the evaluation of batch correction approaches, which aim at reducing 

the technical variation due to samples being measured at different times. 

In conclusion, we recommend normalizing glycan data with the Probabilistic Quotient 

normalization followed by log-transformation. This technique was robust and reliable regardless of 

the measurement platform. 

4. Materials and Methods 

4.1. Datasets 

4.1.1. LC-ESI-MS 

Samples were collected from the Croatian islands of Vis and Korčula, and were obtained from 

the “10,001 Dalmatians” biobank [27], while samples for a second cohort from Korčula and a cohort 

from Split were collected separately a few years later. For this paper, we only considered unrelated 

individuals, as described previously [26]. Samples with missing values were excluded from this 

analysis. The final datasets included 669 (Korčula2013), 504 (Korčula 2010), 980 (Split), and 395 (Vis) 
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samples. The Croatian cohorts received ethical approval of the ethics committee of the University of 

Split School of Medicine, as well as the South East Scotland Research. Written informed consent was 

obtained from each participant. A detailed description of the experimental procedure can be found 

in Selman et al. [47] and Huffman et al. [48]. 

4.1.2. UHPLC-FLD 

The Study of Colorectal Cancer in Scotland (SOCCS) (1999–2006) is a case–control study 

designed to identify genetic and environmental factors associated with nonhereditary colorectal 

cancer risk and survival outcomes [49]. Only the control samples with no missing values were 

considered for this analysis, for a total of 535 samples. Approval for the study was obtained from the 

MultiCentre Research Ethics Committee for Scotland and Local Research Ethics committee, and all 

participants gave written informed consent. A detailed description of the experimental procedure 

can be found in Vučković et al. [30]. 

4.1.3. MALDI-FTICR-MS 

The Leiden Longevity Study (LLS) is a family-based study comprising 1671 offspring of 421 

nonagenarians sibling pairs of Dutch descent, and the 744 partners of these offspring [50]. After 

removal of samples with missing values, a total of 2056 individuals were included in the current 

analysis. The study protocol was approved by the Leiden University Medical Center ethical 

committee and an informed consent was signed by all participants prior to participation in the study. 

A detailed description of the experimental procedure can be found in Reiding et al. [32]. 

4.2. Normalization Methods 

Prior to normalization, samples containing missing values were excluded from all cohorts. 

Raw: These are the unprocessed, raw peak intensities. 

Median Centering: The median value over all samples is subtracted from each glycan value in 

the dataset. The underlying assumption is that the samples have a constant offset. 

Total Area: The intensity of each glycan is normalized to the total area of the spectrum. This 

preserves the relative intensities of each peak within the sample, at the cost of losing one degree of 

freedom due to the constant sum constraint and giving rise to a so-called “compositional dataset” 

[51]. The underlying assumption here is that only relative intensities are biologically relevant. This 

transformation, however, introduces artifacts in the covariance matrix, which, just because of the 

constraint introduced by the normalization, results with at least one negative value per each row [9]. 

Probabilistic Quotient: This approach is based on the calculation of the dilution factor of each 

sample with respect to a reference sample [36]. Here, the reference sample was calculated as the 

median value of each glycan’s abundance across all measured samples. For each sample, a vector of 

quotients was then obtained by dividing each glycan measure by the corresponding value in the 

reference sample. The median of these quotients was then used as the sample’s dilution factor, and 

the original sample values were subsequently divided by that value. The underlying assumption is 

that the different intensities observed across individuals are imputable to different amounts of the 

biological material in the collected samples. 

Quantile: This method forces the distributions of the glycans (columns) to be the same with 

respect to the quantiles [52]. It requires replacing each point of a glycan with the mean of the 

corresponding quantile, resulting in perfectly aligned distributions by construction. 

Rank: Values are replaced with their corresponding ranks across the samples. 

Log-transformation: Biological data have been observed to often follow a log-normal 

distribution [38]. Since our correlation estimator assumes normally distributed data, we included 

both the non-transformed and the log-transformed data for each considered normalization method, 

except the median centering. 

Subclass-specific normalization: LC-ESI-MS measures IgG glycosylation at the glycopeptide 

level, which means that the information about the IgG isoform is preserved. In Caucasian 
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populations, as those considered in this paper, the Fc glycopeptides of IgG2 and IgG3 have identical 

peptide moieties [28,29], and are therefore not distinguishable with this profiling method. 

Furthermore, only 10 glycoforms of IgG4 were detectable due to the low abundance of this IgG 

subclass in human plasma. For this platform, each normalization method was applied both on the 50 

glycoform measurements together, as well as separately per each IgG subclass. 

4.3. Prior Knowledge 

The IgG N-glycan synthesis pathway considered in this analysis reflects the extended version 

established and validated in Benedetti et al. [26]. For LC-ESI-MS data, the same glycosylation 

pathway was assumed for all IgG subclasses (Figure 2). For UHPLC-FLD data, each peak was 

approximated to only be represented by its most abundant structure, according to Pučić et al. [31] 

(Supplementary Figure S1). 

For MALDI-FTICR-MS, the biochemical pathway was constructed based on current 

understanding of glycosylation synthesis reactions [53] (Supplementary Figure S2). However, since 

the available data included only glycan masses and not single structures, all the structures with the 

same mass were merged into a single node and masses not included in our dataset were removed 

(Supplementary Figure S3). The resulting compositional pathway was then adapted to match the 

masses in the dataset (Supplementary Figure S4). 

4.4. GGM Estimation 

Correlation networks were computed using the preprocessed glycan abundances. GGMs are 

based on partial correlation coefficients, which represent pairwise dependencies in multivariate 

normally distributed data when conditioned against all other variables. To obtain a reliable estimate 

for the partial correlation matrix, we used the shrinkage-based GeneNet algorithm [40]. Multiple 

hypothesis testing was corrected for by controlling the FDR at 0.01 using the Benjamini–Hochberg 

method [54]. 

4.5. Overlap to the Biological Reference 

The overlap between biological reference and correlation network was calculated using Fisher’s 

exact tests [55,56], which evaluate whether two categorical variables are statistically independent [57], 

with low p-values indicating a lack of independence. We classified all glycan pairs in a 2 × 2 

contingency table, according to whether they were connected by an edge in both the data-driven 

GGM and the biochemical pathway (true positives), only in the GGM (false positives), only in the 

pathway (false negatives), or in neither (true negatives). From these values, the computed Fisher’s 

exact test p-value can be interpreted as an overlap measure between the two classifiers (in our case, 

represented by the presence or absence of an edge in the GGM and in the pathway). The lower the p-

value, the higher the overlap. In the context of this paper, the normalization with the lowest Fisher’s 

test p-value will produce the GGM with the highest overlap to the biochemical pathway of glycan 

synthesis and will be ranked as the best normalization. 

4.6. Statistical Association with Age 

For each platform and normalization method, we computed the p-value of the linear model 

glycan ~ age. p-values were corrected for multiple testing by controlling the false discovery rate (FDR) 

at 0.01. For the purpose of this analysis, we only considered the normalization approaches common 

to all datasets for easier comparison. We then computed the fraction of significant p-values for each 

dataset and normalization method. Since we analyzed four LC-ESI-MS cohorts versus one UHPLC-

FLD and one MALDI-FTICR, we first computed the average of the fractions of significant associations 

across the LC-ESI-MS cohorts and then averaged those values with the other two cohorts. This final 

average is reported in Table 3. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/10/7/271/s1, Figure 

S1: Reference pathway for IgG UHPLC-FLD data, Figure S2: Hypothetical pathway of total plasma N-glycan 
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synthesis, Figure S3: Creation of the reference pathway for the MALDI-FTICR-MS data, Figure S4: Reference 

pathway for total plasma N-glycans in MALDI-FTICR-MS data, Figure S5: LC-ESI-MS normalization analysis 

results (Korčula 2010 cohort), Figure S6: LC-ESI-MS normalization analysis results (Split cohort), Figure S7: LC-

ESI-MS normalization analysis results (Vis cohort), Figure S8: associations with age, Table S1: statistical results 

of the association with age analysis. 
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