
Supplementary Material

Table S1. ¹H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in deuterated water (D₂O). Clearly observed resonances are indicated in bold text. **s**, singlet; d, doublet; dd, doublet of a doublet; m, multiplet; t, triplet. The right two columns show the direction of the relationship with serum β -hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations determined by colorimetric assays. * = tentative identification.

	Metabolite	Chemical shift (δ) and multiplicity	BHBA	NEFA
1	cholate*	0.70 (m), 0.91 (m), 0.96 (m), 1.43 (m), 1.87 (m), 2.10 (m), 2.22 (m), 3.65 (m), 4.06 (t)	-	\downarrow
2	LDL/VLDL	0.86 (m), 1.25 (m)	↑	1
3	leucine	0.94 (d), 0.95 (d), 1.66 (m), 1.66 (m), 1.73	-	1
4	isoleucine	(m), 3.72 (m) 0.93 (t), 1.00 (d) , 1.24 (m), 1.45 (m), 1.45 (m), 3.66 (d)	-	\downarrow
5	valine	0.98 (d) , 1.03 (d) , 2.26 (m), 3.60 (d)	\downarrow	\downarrow
6	β-hydroxybutyrate	1.20 (d), 2.31 (m), 2.41 (m), 4.16 (m)	Ť	↑
7	lactate	1.31 (d), 4.31 (q)	\downarrow	\downarrow
8	alanine	1.46 (d), 3.77 (q)	\downarrow	\downarrow
9	acetate	1.9 (s)	1	\downarrow
10	N-acetyl glycoprotein	2.03 (m)	1	↑
11	pyruvate	2.46 (s), 7.65 (s)	-	\downarrow
12	citrate	2.52 (d), 2.66 (d)	-	-
13	creatine	3.02 (s), 3.92 (s)	1	\downarrow
14	phosphocreatine	3.03 (s), 3.93 (s)	-	-
15	dimethyl sulfone	3.14 (s)	\downarrow	-
16	choline	3.19 (s), 3.50 (m), 4.05 (m)	-	-
17	phosphocholine	3.21 (s), 3.58 (t), 4.17 (m)	1	↑
18	betaine	3.25 (s) , 3.89 (s)	1	-
19	methanol	3.34 (s)		
20	glucose	3.23 (dd), 3.40 (m), 3.46 (m), 3.52 (dd), 3.73 (m), 3.82 (m), 3.89 (dd), 4.63 (d), 5.22 (d)	↓	↓
21	glycine	3.50 (s)	↑	↑
22	β-glucose	4.63 (d)	Ļ	Ļ
23	α-glucose	5.22 (d)	Ļ	Ļ
24	3-phenyllactate*	2.87 (dd), 3.09 (dd), 4.26 (dd), 7.31 (m), 7.39 (m)	-	-
25	hippurate	3.96 (d), 7.54 (m) , 7.62 (m) , 7.83 (dd)	-	-
26	formate	8.44 (s)	-	-

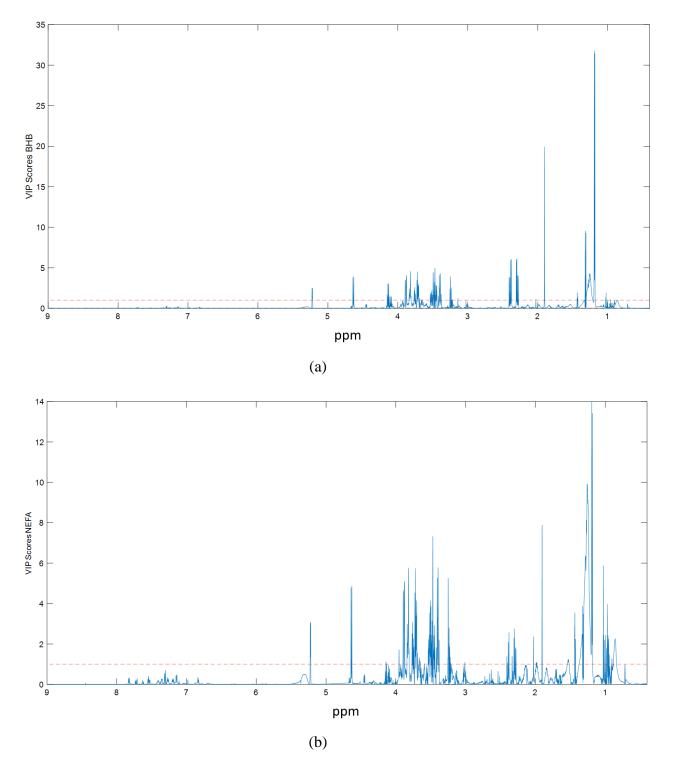


Figure S1. Results of PCA of ¹H NMR spectra of serum obtained from 298 dairy cows in early lactation from the Ellinbank research farm (Dataset 1, N = 248) and a commercial dairy farm in Tasmania (Dataset 2, N = 50).

Table S2. Results of ANOVA-simultaneous component analysis (ASCA) of ¹H NMR spectra of bovine serum (N = 298). Effect describes the relative influence of each variable (Herd, Age and days in milk (DIM)) on each spectra. P-value is derived from permutation testing (1000 iterations).

Variable	PCs	Effect	P-Value
Herd	1	0.47	0.33
Age	10	4.72	0.04
DIM	20	10.17	0.09
Residuals	-	86.06	-

MDPI

Figure S2. Variable importance of projection (VIP) scores derived from orthogonal partial least squares (OPLS) regression of ¹H NMR spectra of serum obtained from 298 dairy cows in early lactation, against (a) BHBA concentration and (b) NEFA concentration.