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Abstract: Disorders of energy metabolism, which can result from a failure to adapt to the period of 

negative energy balance immediately after calving, have significant negative effects on the health, 

welfare and profitability of dairy cows. The most common biomarkers of energy balance in dairy 

cows are β-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA). While elevated 

concentrations of these biomarkers are associated with similar negative health and production 

outcomes, the phenotypic and genetic correlations between them are weak. In this study, we used 

an untargeted 1H NMR metabolomics approach to investigate the serum metabolomic fingerprints 

of BHBA and NEFA. Serum samples were collected from 298 cows in early lactation (calibration 

dataset N = 248, validation N = 50). Metabolomic fingerprinting was done by regressing 1H NMR 

spectra against BHBA and NEFA concentrations (determined using colorimetric assays) using 

orthogonal partial least squares regression. Prediction accuracies were high for BHBA models, and 

moderately high for NEFA models (R2 of external validation of 0.88 and 0.75, respectively). We 

identified 16 metabolites that were significantly (variable importance of projection score > 1) 

correlated with the concentration of one or both biomarkers. These metabolites were primarily 

intermediates of energy, phospholipid, and/or methyl donor metabolism. Of the significant 

metabolites identified; (1) two (acetate and creatine) were positively correlated with BHBA but 

negatively correlated with NEFA, (2) nine had similar associations with both BHBA and NEFA, (3) 

two were correlated with only BHBA concentration, and (4) three were only correlated with NEFA 

concentration. Overall, our results suggest that BHBA and NEFA are indicative of similar metabolic 

states in clinically healthy animals, but that several significant metabolic differences exist that help 

to explain the weak correlations between them. We also identified several metabolites that may be 

useful intermediate phenotypes in genomic selection for improved metabolic health. 

Keywords: metabolic profile; ketosis; transition period; livestock; methyl donor; one-carbon 

metabolism; negative energy balance 

 

  



Metabolites 2020, 10, 247 2 of 17 

 

1. Introduction 

Most dairy cows experience a period of negative energy balance immediately after calving due 

to both a reduction in feed intake preceding calving [1], and an increase in energy requirements for 

milk production [2]. A successful transition from pregnancy to lactation requires a series of complex 

and coordinated changes in metabolism and nutrient partitioning, known as homeorhesis [3]. Failure 

of these homeorhetic controls can lead to the development of metabolic disorders such as ketosis and 

fatty liver [4]. These disorders can have significant negative effects on the health, welfare and 

profitability of early-lactation dairy cows due to their (1) relatively high incidence [5,6], (2) 

demonstrated association with other diseases [4,7] and (3) their significant economic costs [8,9].  

Serum β-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA) are biomarkers that are 

commonly used to evaluate the energy balance of dairy cows in the transition period [6,10,11]. One 

of the main physiological responses to reduced energy intake is the mobilization of stored energy 

from adipose tissue as NEFA. Serum NEFA concentration is a measure of the degree of lipolysis, and 

therefore an indicator of the magnitude of negative energy balance [12]. Once released, NEFA are 

transported via the bloodstream to the mammary gland for milk fat synthesis, or to the liver where 

they undergo either (1) complete oxidation via the TCA cycle, (2) partial oxidation to ketone bodies 

(BHBA, acetone and acetoacetate), or (3) re-esterification to form triglycerides which can either be 

stored or exported as very low density lipoprotein (VLDL). BHBA is the most stable of the three 

ketone bodies [13], and is commonly used as a biomarker of energy balance [14].  

Mild elevations in serum BHBA and/or NEFA concentration during the transition period are 

considered normal [15], but marked elevations are indicative of excessive negative energy balance 

and/or perturbed metabolism [16]. Elevated concentrations of both BHBA and NEFA can be observed 

in clinically healthy animals (i.e., showing no visible signs of illness), and are associated with (1) 

reduced reproductive performance [11,17], (2) an increased incidence of clinical diseases such as 

displaced abomasa and metritis [15,17,18], (3) decreased milk production [6,11,19] and (4) an 

increased risk of culling [6,15,20]. However, despite these similarities, both the phenotypic [21,22] 

and genetic [23] correlations between these two biomarkers are low. This is not necessarily important 

if biomarkers are being used for management purposes (such as the identification of sick animals or 

the assessment of nutritional status) but may be significant if the biomarkers are used as phenotypes 

for genetic selection for improved animal health and resilience. There is therefore a need to better 

understand the metabolic states represented by BHBA and NEFA. 

Untargeted metabolomics combines high throughput molecular analytical techniques such as 

proton nuclear magnetic resonance (1H NMR) spectroscopy with multivariate statistical modelling, 

to characterize the metabolic response of a biological system to pathophysiological stimuli [24]. 

Examples in dairy cattle include studies of ketosis [25,26], fatty liver [27], hypocalcaemia [28] and 

displaced abomasa [29]. The collective metabolic features of a given state or condition can be 

described as its “metabolomic fingerprint”. As well improving our understanding of the biological 

processes, metabolomic studies can uncover intermediate molecular phenotypes (metabotypes) 

associated with complex animal health traits such as metabolic resilience. These metabotypes can 

then be integrated with genomic data to (1) elucidate the genetic architecture of these traits, and (2) 

improve genomic prediction accuracies [30,31]. 

The aim of this study was therefore to use an untargeted 1H NMR metabolomic approach to 

investigate the metabolomic fingerprints of serum BHBA and NEFA concentrations in clinical healthy 

dairy cows in early lactation, and in so doing (1) identify common and differential metabolic 

pathways, and (2) identify novel metabotypes for application to genetic selection for improved 

metabolic health. 

2. Results 

2.1. Analysis of Experimental Metadata 

Descriptive statistics of the datasets used in this experiment are shown in Table 1. BHBA 

concentrations were significantly higher in Dataset 1 than in Dataset 2 (p < 0.001). The differences in 
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all other parameters were not statistically significant (p > 0.05). The correlation between BHBA and 

NEFA concentrations was 0.45 in Dataset 1 and 0.40 in Dataset 2.  

Table 1. Descriptive statistics of the datasets used in this experiment, including number of 

animals (N), stage of lactation defined as days in milk (DIM), age in years, and β-

hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations (mmol/L) in 

the serum obtained from clinically healthy dairy cows. 

Variable 
Dataset 1 (N = 248) Dataset 2 (N = 50) 

P1 
Min Max Mean (SD) Min Max Mean (SD) 

DIM (days) 4 30 16.7 (6.0) 4 30 18.6 (7.3) 0.09 

Age (years) 2 12 3.7 (2.0) 2 9 3.9 (1.8) 0.22 

BHBA 

(mmol/L) 
0.22 1.86 0.55 (0.21) 0.23 0.94 0.42 (0.17) < 0.001 

NEFA 

(mmol/L) 
0.11 2.18 0.75 (0.32) 0.14 1.91 0.67 (0.36) 0.07 

1 Statistical significance of the differences between Datasets 1 and 2 were determined using 

paired t-test for DIM, and a paired Wilcoxon signed-rank test for age, BHBA and NEFA. 

2.2. 1H NMR Spectra 

Twenty-four metabolites could be clearly identified from the 1H NMR spectra. Two metabolites, 

cholate and 3-phenyllactate, were tentatively identified. Figure 1 shows representative spectra from 

animals in Dataset 1 with (a) elevated BHBA concentration, (b) elevated NEFA concentration and (c) 

normal BHBA and NEFA concentrations. Upfield regions of spectra were dominated by branched-

chain amino acids (leucine, isoleucine and valine), organics acids (BHBA, lactate, acetate) and the 

methyl and methylene groups of low density (LDL) and very low density lipoproteins (VLDL) at δ 

0.86 ppm and δ 1.25 ppm, respectively [32]. We also observed a prominent peak at δ 2.03 ppm which 

was consistent with the N-acetyl groups of glycoproteins [33]. The singlet at δ 3.14 ppm was identified 

as dimethyl sulfone (DMSO2) [34,35]. The middle of the spectrum was complex and dominated by 

glucose. Signal overlap and weak 2D signal strength meant that hippurate was the only compound 

that could be clearly identified in the downfield region. Relative chemical shifts and the multiplicity 

of identified peaks are available in the supplementary material (Table S1). 

Unsupervised analysis of the data using PCA showed no obvious clustering of samples by 

dataset. Results of ANOVA-simultaneous component analysis showed that fixed effects (cow age, 

herd of origin and days in milk (DIM)) explained only 13.94% of the spectral variation (Table S2). 

Only the effect of age was statistically significant (p < 0.05). This suggests that most spectral variation 

is due to differences between individual animals.  
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Figure 1. Representative 700 MHz 1H nuclear magnetic resonance spectra of serum samples 

from early lactation dairy cows with (a) elevated β-hydroxybutyrate (BHBA), (b) elevated 

non-esterified fatty acid (NEFA), and (c) normal BHBA and NEFA concentrations. 

Downfield regions were vertically expanded 32 times for clarity. Legend: 1, cholate; 2, very 

low density lipoprotein/low density lipoprotein; 3, leucine; 4, isoleucine; 5, valine; 6, β-

hydroxybutyrate; 7, lactate; 8, alanine; 9, acetate; 10, N-acetyl glycoprotein; 11, pyruvate; 

12, citrate; 13, creatine; 14, creatine phosphate; 15, dimethyl sulfone (DMSO2); 16, choline; 

17, phosphocholine; 18, betaine; 19, methanol; 20, glucose; 21, glycine; 22, β-Glu; 23, α-Glu; 

24, 3-phenyllactate; 25, hippurate; 26; formate. * = tentative identification. 

2.3. Accuracy and Robustness of Prediction Models 

The robustness of the orthogonal partial least squares (OPLS) regression models built using data 

from Dataset 1 was assessed using (1) 10-fold cross-validation (Figure 2a,c) and (2) external validation 

with data from Dataset 2 (Figure 2b,d). Prediction accuracies derived from external validation were 

high for BHBA (R2 = 0.88), and moderately high for NEFA (R2 = 0.75). BHBA models were remarkably 

robust, with external validation R2 and RMSE results almost identical to cross-validation results. 

Models predicting serum NEFA concentration were less accurate than those predicting BHBA 

(NRMSE 0.32 and 0.50, respectively), but external validation results indicated that these models were 

still quite robust. p-values derived from permutation testing were < 0.001 for all models, indicating 

that models were not over-fitted. 
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(a) (b) 

  

(c) (d) 

Figure 2. Accuracy of orthogonal partial least squares (OPLS) regression models predicting serum β-

hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations from 1H NMR spectra, 

built using data from Dataset 1 (N = 248); (a) 10-fold cross-validation (CV)-predicted BHBA vs. 

measured BHBA; (b) external validation (N = 50)-predicted BHBA vs. actual BHBA; (c) CV-predicted 

NEFA vs. measured NEFA; (d) external validation-predicted NEFA vs measured NEFA. 

2.4. Metabolomic Fingerprints of BHBA and NEFA 

The metabolomic fingerprints associated with BHBA and NEFA were investigated using OPLS 

regression. Larger scores on the first latent variable (LV1) correspond to higher concentrations of both 

BHBA and NEFA (Figure 3a,b). LV1 loadings plots were used to identify which spectral features 

contributed most to the variation in the reference biomarker concentrations [36] (Figure 3c,d). 

Spectral features with positive loadings correspond to metabolites that are positively correlated with 

reference biomarker concentrations, and vice-versa. Peaks with a variable importance of projection 

(VIP) score greater than one were considered statistically significant [37] (Figure S2). 
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(a) (b) 

 

(c) 

 

(d) 

Figure 3. Results of the orthogonal partial least squares (OPLS) regression models predicting serum 

BHBA and NEFA concentrations from 1H NMR spectra; (a) First latent variable (LV1) vs. second latent 

variable (LV2) scores for the BHBA prediction model; (b) LV1 vs. LV2 scores for the NEFA prediction 

model; (c) LV1 loadings for the BHBA prediction model; (d) LV1 loadings for the NEFA prediction 

model. Scores plots color-coded by reference biomarker concentration, loadings plots by VIP score. 
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α-Glu = α glucose, β-Glu = β glucose, Ace = acetate, Ala = alanine, Bet = betaine, BHBA = β 

hydroxybutyrate, Cr = creatine, DMSO2 = dimethyl sulfone, Glu = glucose, Gly = glycine, Ile = 

isoleucine, Lac = lactate, Leu = leucine, NAG = N-acetyl glycoprotein, ChoP = phosphocholine, Pyr = 

pyruvate, Val = valine, LDL = low density lipoprotein; VLDL = very low density lipoprotein. 

2.4.1. Commonalities in the Metabolomic Fingerprints of BHBA and NEFA 

The results of this study show that several metabolites showed similar co-variances with both 

BHBA and NEFA concentrations. The largest effect we observed was from peaks assigned to glucose, 

which were negatively correlated with both biomarkers. Other metabolites with common co-

variances included lactate, valine and alanine (negatively correlated), and glycine and 

phosphocholine (positively correlated). Spectral regions attributed to lipoproteins (LDL and VLDL) 

and glycoproteins were positively correlated with both BHBA and NEFA concentrations. 

2.4.2. Differences between the Metabolomic Fingerprints of BHBA and NEFA 

Figure 4 highlights the differences we observed between the metabolomic fingerprints of BHBA 

and NEFA. Acetate and creatine were positively correlated with BHBA, and negatively correlated 

with NEFA. A small number of metabolites showed significant co-variance with only one of the 

biomarkers. BHBA concentration was positively correlated with betaine, and negatively correlated 

with dimethyl sulfone (DMSO2), while NEFA concentration was positively correlated with isoleucine 

and negatively correlated with leucine. 

. 

(a) 

 

(b) 

Figure 4. Loadings on the first latent variable (LV1) derived from orthogonal partial least squares 

(OPLS) regression of 1H NMR spectra against serum BHBA (blue) and NEFA (red) concentrations in 
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early lactation dairy cows. Spectral regions between (a) δ 0.2 ppm to 2.9 ppm and (b) δ 2.9 ppm to 5.5 

ppm are shown. Figure (b) has been for clarity purposes. Ace = acetate, Bet = betaine, ChoP = 

Phosphocholine, Cr = creatine, DMSO2 = dimethyl sulfone, Ile = isoleucine, Leu = leucine, LDL/VLDL 

= low/very low-density lipoprotein, NAG = N-acetyl glycoprotein, Pyr = pyruvate. 

3. Discussion  

3.1. Similarities between BHBA and NEFA 

Not surprisingly, many of the metabolites identified as having common co-variance with both 

BHBA and NEFA concentrations are involved in hepatic energy metabolism. These relationships are 

summarized in Figure 5. Most obvious was the negative relationship between both biomarkers and 

glucose. Hypoglycaemia has been widely reported in early lactation dairy cows due to the massive 

demand for glucose for lactogenesis [3,38]. More recently, NMR metabolomics studies have identified 

serum glucose concentration as being (1) directly correlated to energy balance (r = 0.84) [39], and (2) 

lower in cows with clinical and subclinical ketosis [25] and fatty liver [27] when compared to healthy 

controls. Our results offer further evidence of the pivotal role glucose plays in the early lactation 

metabolic health in dairy cows. 

Lactate and alanine, important gluconeogenic substrates in ruminants [40,41], were also 

negatively associated with both BHBA and NEFA, as was valine (another gluconeogenic amino acid). 

Interestingly, Xu et al. [39] found no correlation between calculated energy balance in early lactation 

dairy cows and the concentrations of any of the branched-chain amino acids or lactate. Conversely, 

when compared to healthy controls, cows with fatty liver and displaced abomasa have been shown 

to have lower serum alanine concentrations [27,29], and cows with ketosis have lower lactate and 

alanine concentrations [25,42]. This suggests that alterations in glucogenic precursors, in particular 

lactate and alanine, are indicative of a perturbed metabolism, not simply negative energy balance. 

We previously showed that lactate concentration in pasture-fed dairy cows is heavily influenced by 

herd-specific management factors [43], and as such may not be heavily influenced by genetic factors. 

Alanine has been shown to be the most important glucogenic amino acid, and the most important 

gluconeogenic precursor after lactate and propionate, in dairy cows [41]. Therefore, genetic selection 

for cows with higher serum concentrations of alanine in early lactation may help to increase 

endogenous glucose supply. 

 

Figure 5. Summary of hepatic energy metabolism in early lactation dairy cows. Arrows 

indicate the direction of the relationship between the metabolites and the reference BHBA 

(blue) and non-esterified fatty acid (NEFA) (red) concentrations. BHBA = β-
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hydroxybutyrate; OAA = oxaloacetate; TAG = triglyceride, TCA = tricarboxylic acid, VLDL 

= very low density lipoprotein. 

Spectral features attributed to VLDL and LDL were positively correlated with the concentrations 

of both BHBA and NEFA. These results need to be interpreted with caution as the methanol extraction 

used in this study removed much of the protein from the samples and may have introduced 

experimental artefacts. Interestingly, 1H NMR spectroscopy has recently been shown capable of 

providing high-throughput and accurate quantification of lipoprotein subclasses in human serum 

and plasma samples [32,44]. It is important to note that these protocols used different pulse sequences 

and involved the dilution of plasma/serum in a deuterated water/phosphate buffer solution without 

any metabolite extraction, such as the one used in our study. The findings of these studies cannot, 

therefore, be applied directly to our results. However, lipoprotein metabolism is central to early 

lactation health in dairy cows, and impaired VLDL production in the liver can result in hepatic 

triglyceride (TAG) accumulation (Figure 4) and the development of fatty liver [45]. 

Dyslipoproteinaemia is also an important feature of metabolic syndrome in humans, and the 

quantification of lipoprotein subclasses is considered critical to the better understanding of this 

disease [44]. We believe that the investigation of serum lipoproteins using 1H NMR spectroscopy 

holds great promise in the research of early lactation metabolic health in dairy cows, and we plan to 

validate the aforementioned protocols on bovine serum and plasma samples.  

The region of the spectrum associated with glycoproteins was also significantly positively 

correlated with both NEFA and BHBA concentrations. Glycoproteins are acute phase proteins which 

can be used as indicators of inflammation in cattle [46]. In dairy cattle, increased serum NEFA 

concentrations in early lactation are associated with uncontrolled inflammation, and this 

inflammatory dysfunction is hypothesized to be a central link between metabolic and infectious 

disorders [14,47]. 1H NMR spectroscopy is showing promise for the quantification of glycoprotein A 

(GlcA) in human research into metabolic diseases such obesity, diabetes mellitus and the metabolic 

syndrome [33]. Given that these syndromes have much in common with early lactation metabolic 

disease in dairy cows (e.g., insulin resistance), we believe that further research into GlcA as a 

biomarker for early lactation health is warranted. Overall, our results offer further evidence that 

inflammation plays an important role in early lactation metabolic health of dairy cows.  

Glycine was positively correlated with the concentrations of both BHBA and NEFA. 

Metabolomics studies comparing healthy and ketotic dairy cows have reported (1) no change in 

glycine concentrations [25], (2) increased glycine concentrations in cows with sub-clinical ketosis [26], 

(3) increased glycine concentrations in cows with clinical ketosis [48] and (4) decreased glycine 

concentrations in cows with clinical ketosis [26] and fatty liver [49]. Glycine concentration has also 

been shown to increase in response to lipolysis [50]. These differing results suggest that changes in 

glycine concentration may be dependent on the severity of the metabolic disorder (i.e., increased in 

mild cases, and decreased in more severe cases). Most interesting are the findings of a recent 

metabolomics study that showed that glycine concentrations in plasma and milk were strongly 

negatively correlated with energy balance in early lactation dairy cows (r = −0.80 and r = −0.79, 

respectively) [39]. The authors of this study hypothesized that this relationship was due to an increase 

in one-carbon or methyl donor metabolism, specifically an increase in the conversion of choline to 

glycine. Given that all cows in our study were clinically healthy, our results are consistent with 

glycine being an indicator of negative energy balance, lipolysis, and/or sub-clinical ketosis. Further 

work is required to better understand the role of glycine metabolism in clinical metabolic disease. 

The positive correlations between phosphocholine and both BHBA and NEFA concentrations, 

and between betaine and BHBA concentration, are consistent with an increase in methyl donor 

metabolism in cows experiencing negative energy balance. Methyl donor metabolism and nutrition 

are receiving a great deal of attention in dairy science due to links with early-lactation cow health 

(including fatty liver), milk production and immune function [51]. Betaine, phosphocholine and 

glycine are intermediates in several important one-carbon metabolic pathways including the folate 

and methionine cycles, and the cytidine diphosphate (CDP)–choline pathway [51] (Figure 6a). The 

positive correlation between NEFA and phosphocholine may be due to increased breakdown of 
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phosphatidylcholine (Figure 6a). This is consistent with the findings of Imhasly et al. [52] who 

showed that serum concentrations of lyso-phosphatidylcholines and phosphatidylcholines increase 

in response to negative energy balance in post-partum dairy cows. The positive association observed 

between betaine and BHBA could be due to increased oxidation of choline. A detailed description of 

these pathways is beyond the scope of this study, however our results suggest that methyl donor 

metabolism has an important influence on both BHBA and NEFA concentrations in early-lactation 

dairy cows.  

  

(a) (b) 

Figure 6. Summary of (a) phospholipid and one-carbon/methyl donor metabolism [53,54], 

and (b) creatine metabolism in early lactation dairy cows. Arrows indicate the direction of 

the relationship between the metabolites identified using untargeted 1H NMR 

metabolomics, and reference BHBA (blue) and non-esterified fatty acids (NEFA) (red) 

concentrations. ADP = adenosine diphosphate; ATP = adenosine triphosphate; DMG = 

dimethylglycine; NEB = negative energy balance. 

3.2. Differences between BHBA and NEFA 

Despite many similarities, we observed some significant differences between the metabolomic 

fingerprints of BHBA and NEFA. Most obvious was the difference in the direction of correlation 

between acetate and the two biomarkers. Acetate is a volatile fatty acid produced by microbial 

fermentation of feedstuffs in the rumen, and is an important energy source [55] (via oxidation or the 

partial oxidation of acetyl-CoA in the liver) and substrate for de novo milk fat synthesis [56] in cows. 

The negative relationship we observed between acetate and NEFA is consistent with the findings of 

Bielak et al. [57], who reported a negative correlation (r = 0.44) between plasma NEFA and acetate 

concentrations in early lactation dairy cows, possibly due to the down-regulation of the active 

transport of acetate across the rumen wall. The positive association between acetate and BHBA is 

consistent with previously discussed metabolomic studies of ketosis and fatty liver [25,27]. These 

results suggest that differences in acetate metabolism may help to explain the weak correlation 

between serum BHBA and NEFA concentrations in early lactation dairy cows. 

The positive correlation between creatine and BHBA concentration is consistent with previous 

reports that creatine is a potentially useful biomarker of ketosis and severe energy deficiency in dairy 
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cows [25,26,39]. Creatine is an important intermediate in energy metabolism, and this result may 

represent increased breakdown of creatine phosphate in skeletal muscle and the release of high-

energy phosphate for the conversion of adenosine diphosphate (ADP) to adenosine triphosphate 

(ATP) (Figure 6b). Interestingly, creatine concentration was negatively correlated with NEFA 

concentration (albeit weakly and non-significantly (VIP < 1)). That mobilization of energy from 

skeletal muscle is a feature of the BHBA metabolomic fingerprint, but not that of NEFA, suggests that 

elevated BHBA concentrations are indicative of a more severe energy deficiency than are elevated 

NEFA concentrations. However, the ability to rapidly mobilize energy from skeletal muscle may be 

advantageous to early-lactation dairy cows, and we believe the role of creatine metabolism in 

transition cow health warrants further investigation. We therefore plan to undertake genome-wide 

association studies to better understand the genetic relationships between hepatic and skeletal muscle 

energy metabolism. 

The significant negative correlation between DMSO2 and BHBA concentration was an 

interesting finding of this study. DMSO2 concentration in the milk and rumen fluid of dairy cows has 

been shown to vary according to feeding system; higher in pasture-fed cows managed outdoors than 

in cows fed a total mixed ration indoors [58]. Maher et al. [59] showed that the concentrations of 

DMSO2 in milk and plasma are highly correlated (r = 0.69), so serum DMSO2 may also be an indicator 

of pasture intake. Given that all animals in this experiment were fed pasture, the negative association 

we observed between DMSO2 and BHBA concentration may indicate that hyperketonemic cows are 

consuming less feed. 

4. Materials and Methods  

All procedures undertaken in this study were conducted in accordance with the Australian Code 

of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical 

Research Council, 2013). Approval to proceed was granted by the Agricultural Research and 

Extension Animal Ethics Committee of the Department of Jobs, Precincts and Regions Animal Ethics 

Committee (DJPR, 475 Mickleham Road, Attwood, Victoria 3049, Australia), and the Tasmanian 

Department of Primary Industries, Parks, Water and Environment (DPIPWE Animal Biosecurity and 

Welfare Branch, 13 St Johns Avenue, New Town, Tasmania 7008, Australia). AEC project approval 

code 2017-05. 

4.1. Animals and Datasets 

A total of 298 Holstein-Friesian cows were used in this experiment. The calibration dataset 

(Dataset 1) was collected between August and September 2017 from 248 animals located at the 

Ellinbank Dairy Research Centre, Ellinbank, Victoria, Australia. An independent validation dataset 

(Dataset 2) was collected in September 2018, from 50 cows located on a commercial dairy farm in 

Smithton, Tasmania, Australia. All cows were clinically healthy, and had been calved for between 4 

and 30 days at the time of sampling. Feeding systems on Australian dairy farms are diverse but can 

be classified into 5 main feeding systems [60]. Both farms operated under feeding system 2; grazed 

pasture plus moderate to high level concentrate feeding (> 1.0 tonne of concentrate fed in the milking 

parlour per cow per year). 

4.2. Blood Sample Collection and Reference Biomarker Measurements 

A single serum sample was taken from each cow immediately after morning milking 

(approximately 07:00) according to the protocol described in Luke et al. [43]. Cows were fed their 

concentrate ration as soon as they entered the milking parlour, meaning that samples were collected 

approximately 10 min after grain feeding.  

An aliquot of each serum sample was shipped on ice to Regional Laboratory Services (Benalla, 

Victoria, Australia) for BHBA and NEFA analyses. Colorimetric assays were performed using a Kone 

20 XT clinical chemistry analyser (Thermo Fisher Scientific, Waltham, MA, USA); an enzymatic 

kinetic assay for BHBA (McMurray et al., 1984) and enzymatic end point assay for NEFA (Randox 
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Laboratories, Crumlin, UK). The uncertainty of measurement (at a 95% confidence level) was ± 0.060 

mmol/L at 0.85 mmol/L for BHBA, and ± 0.031 mM at 1.45 mM for NEFA. A second aliquot was stored 

at −20 °C until processing for NMR spectroscopy. 

4.3. Sample Preparation for NMR Spectroscopy 

Details of the sample preparation and metabolite extraction protocols used in this study can be 

found in Luke et al. [43]. Briefly, 300 µL of serum was (1) mixed with 600 µL of methanol, (2) vortexed, 

(3) incubated at −20 °C for 20 min, and (4) centrifuged at 11,360× g at 21 °C for 30 min to pellet proteins. 

A 600 µL aliquot of the supernatant was then transferred to a clean 2 mL microcentrifuge tube, dried 

under vacuum at 21 °C overnight using a SpeedVac Savant SPD 2010 Concentrator (Thermo Fisher 

Scientific, Waltham, MA, USA) then reconstituted in a D2O phosphate buffer solution (100 mM 

K2HPO4) containing 0.25 mM DSS-d6 as an internal standard. A 550 µL aliquot of reconstituted 

extract was transferred to a 5 mm NMR tube for analysis. 

4.4. 1H NMR Data Acquisition and Pre-Processing 

One-dimensional proton spectra were acquired using a Bruker Ascend 700 MHz spectrometer 

equipped with cryoprobe and SampleJet automatic sample changer (Bruker Biospin, Rheinstetten, 

Germany). A Bruker noesypr1d pulse sequence was used over a –0.76–10.32 ppm spectral range with 

the following acquisition parameters; (1) a temperature of 298 K, (2) 256 scans after eight dummy 

scans (3) acquisition time per increment of 2.11 s, and (4) relaxation delay (D1) of 2.00 s. This resulted 

in 32,768 data points. A line broadening of 0.3 Hz was applied to all spectra prior to Fourier 

transformation. Spectra were manually phased, baseline corrected and referenced to the internal 

standard (DSS-d6) at δ 0.00 ppm using the Topspin v.3.6.1 software (Bruker Biospin, Rheinstetten, 

Germany). 

Data pre-processing was performed in MatLab v.R20017b (Mathworks, Natick, MA, USA). 

Spectra were imported as a matrix of signal intensities using the ProMetab v.1.1 script [61]. Spectral 

pre-processing involved (1) deletion of the residual water peak region (δ 4.68–5.00 ppm), (2) spectral 

alignment using the correlation optimized warping algorithm [62], (3) normalization to total signal 

area (area = 1), (4) deletion of methanol (δ 3.32–3.36 ppm) and DSS-d6 (δ 0.4–0.60 ppm) peak regions, 

and the non-informative region beyond 9.00 ppm, (5) baseline correction using automatic weighted 

least squares and (6) mean centering. 

4.5. Statistical Analysis 

Statistical analysis of experimental metadata was performed in R v3.6.2 [63]. Differences 

between the 2 datasets were analysed using a paired t-test or a Wilcoxon signed-rank test depending 

on the normality of the data.  

Multivariate statistical analyses were performed using the PLS Toolbox v. 8.5.2 (Eigenvector 

Research Inc., Manson, WA, USA). Preliminary data analysis and outlier detection was performed 

using an unsupervised PCA. Examination of PC1 vs. PC2 scores plot showed 14 samples from Dataset 

1 outside the 95% confidence level ellipse (Figure S1). These samples were individually examined, 

and a single spectrum with poor water suppression and baseline correction was removed from 

subsequent analyses. The influences of fixed effects (DIM, age and herd) on spectra were investigated 

using ANOVA simultaneous component analysis with 1000 permutations [64]. Untargeted 

metabolomic fingerprinting was done by regressing reference NEFA and BHBA concentrations 

against 1H NMR spectra using supervised OPLS regression. Variable importance of projection (VIP) 

scores for the first latent variable were used to identify the most statistically significant peaks in each 

model. Peaks of interest were identified using the Chenomx NMR suite software v.8.4 (Chenomx Inc., 

Edmonton, AB, Canada), comparison to the literature, 2D NMR analysis (COSY, gHMBC and 

gHSQC), and statistical total correlation spectroscopy [65]. 

OPLS models were constructed using data from Dataset 1. The robustness of models was 

assessed using (1) cross-validation using a venetian blind technique (10 sample splits with 1 sample 
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per blind) and (2) external validation using data from Dataset 2. The prediction accuracy of OPLS 

models was assessed using the coefficient of determination (R2) and root mean square error (RMSE). 

Normalized RMSE (NRMSE) values, calculated as external validation RMSE divided by the 

interquartile interval of the observed data, were used to compare RMSE estimates for NEFA and 

BHBA predictions. Permutation testing (50 iterations and statistical significance determined using a 

Wilcoxon signed-rank test) was performed to ensure that models were not over-fitted.  

5. Conclusions 

In this study we used an untargeted 1H NMR metabolomics approach to investigate the serum 

metabolic fingerprints of the two most common biomarkers of energy balance in dairy cows, BHBA 

and NEFA. Our results suggest that while BHBA and NEFA are indicative of similar metabolic states 

in early-lactation dairy cows, there are significant differences between the two biomarkers. 

Metabolites with common co-variances were intermediates of energy, phospholipid, and methyl 

donor metabolism. The most significant differences in the metabolomic fingerprints were related to 

acetate and creatine metabolism. We also identified several intermediate metabotypes which, when 

combined with genomic data, will enable further the investigation of the genetic architecture of 

metabolic health in early lactation dairy cows.  

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/10/6/247/s1, Table 

S1: 1H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in deuterated water (D2O). 

Clearly observed resonances are indicated in bold text. s, singlet; d, doublet; dd, doublet of a doublet; m, 

multiplet; t, triplet. The right two columns show the direction of the relationship with serum β-hydroxybutyrate 

(BHBA) and non-esterified fatty acid (NEFA) concentrations determined by colorimetric assays, Table S2: 

Results of ANOVA-simultaneous component analysis (ASCA) of 1H NMR spectra of bovine serum (N= 298). 

Effect describes the relative influence of each variable (herd, age and days in milk (DIM)) on spectra. p-value is 

derived from permutation testing (1000 iterations), Figure S1: Results of PCA of 1H NMR spectra of serum 

obtained from 298 dairy cows in early lactation from the Ellinbank research farm (Dataset 1, N = 248) and a 

commercial dairy farm in Tasmania (Dataset 2, N = 50), Figure S2: VIP scores from OPLS regressions of 1H NMR 

spectra of serum obtained from 298 dairy cows in early lactation against (a) BHBA concentration and (b) NEFA 

concentration. 
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