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Abstract: A series of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide hybrids (6a–6o)
was synthesized and evaluated for carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity against the
human (h) isoforms hCA I, II, XIII (cytosolic isoforms), and hCA IX (transmembrane tumor-associated
isoform). The results revealed that the compounds 6a–6o exhibited Ki values in the low to medium
nanomolar range against hCA II and hCA IX (Kis ranging from 7.7 nM to 41.3 nM) and higher Ki values
against hCA I and hCA XIII. Compound 6i showed potent inhibition of hCA II (Ki = 7.7 nM), being
more effective compared to the standard inhibitor acetazolamide (AAZ) (Ki = 12.1 nM). Compounds
6b and 6d showed moderate activity against hCA XIII (Ki = 69.8 and 65.8 nM). Hence, compound 6i
could be consider as potential lead candidate for the design of potent and selective hCA II inhibitors.

Keywords: 1,2,3-triazole; triazino[5,6-b]indole-benzene sulfonamide; carbonic anhydrase inhibitors

1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are omnipresent metalloenzymes that they play a pivotal
catalytic role in the hydration of carbon dioxide to bicarbonate and protons by means of a ping pong
mechanism, which is a slow process under non-catalytic conditions [1–4].

CO2 + H2O⇔ HCO3
− + H+

These enzymes are encoded by eight genetically unrelated gene families, namely, α, β, γ, δ, ζ,
η, θ, and the recently reported ι class [5]. Among these, the α family is predominantly present in
mammals, and 16 isoforms have been reported with different catalytic activity, subcellular localization,
and tissue distribution [1–4]. There are five cytosolic forms (CA I, CA II, CA III, CA VII, and CA XIII),
five membrane-bound isozymes (CA IV, CA IX, CA XII, CA XIV, and CA XV), two mitochondrial
forms (CA VA and CA VB), and a secreted isozyme (CA VI) [1–4]. These isoforms are implicated in
different diseases, as shown in Table 1. Therefore, selective inhibition of a particular isoform redresses
the particular disease in which it plays a major role.
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Table 1. Carbonic anhydrase (CA) isoforms and associated diseases.

Disease Isoform Target

Glaucoma CA II, CA IV, CA XII

Cancer CA IX, CA XII

Epilepsy CA VII

Antineuropathic pain CA VII

Obesity CA VA

To date, the sulfonamide group is considered as main zinc-binding group for the design of carbonic
anhydrase inhibitors. Sulfonamides and their bio-isosteres such as sulfamides / sulfamates are known
to elicit potent carbonic anhydrase inhibition and hence they are present in drugs, which are prescribed
for the treatment of glaucoma, epilepsy, obesity, and cancer. The diuretic drugs mainly target CA II, CA
IV, CA XII, and CA XIV [6,7], the anti-glaucoma drugs target CA II, CA IV, and CA XII [8,9], while the
anti-epileptics target CA VII and CAXIV [10–12]. CA IX and CA XII specifically expressed in tumor
cells, and their inhibition results in anti-metastatic effects [13–15]. However, the main drawback of all
these drugs is the lack of selectivity, which results in serious side effects. Therefore, there is an urgent
need to design and develop selective isoform inhibitors. The tail approach has been very successful
in addressing this issue, and many novel scaffolds have been developed [16,17]. In this approach,
the attached tails bind to the active site cavity, preferably the middle and the rim part, which shows
variation in different CA isoforms. Some clinically/pre-clinically used sulfonamides are illustrated in
the Figure 1:
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Figure 1. Structures of some clinically used sulfonamides.

Owing to the development of novel carbonic anhydrase inhibitors with better isoform selectivity,
our group designed some novel hybrids in which the triazino[5,6-b]indole tail was conjugated to
benzene sulfonamide via a 1,2,3-triazole linker. Triazino[5,6-b]indole is a flexible tail with diverse
pharmacological activities, like anti-fungal/anti-bacterial [18], anti-diabetic [19], anti-depressant [20],
anti-hypertensive [21], anti-inflammatory [22], and anti-hypoxic activities [23].

The design of this new series of compounds was based on the tail approach via the fusion of indole
and 1,2,4-triazine, which were reported for high interactions with carbonic anhydrase (Figure 2) [24–28].
The present design mainly is mainly involved two strategies. The first one was to fuse the two
CA-binding scaffolds i.e., Indole and 1,2,4-triazine in order to develop a flexible tail with better
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interactions in the enzymatic site and the second one was to incorporate different N-alkyl substituents
in the indole tail in a systematic fashion to define optimal length (methyl, ethyl, propyl), bulkiness
(isopropyl) and un-saturation (allyl), which would confer the best CA inhibitory activity. It is reported
in the literature that 1,2,3-triazole is an efficient linker, useful in the design of potent CA inhibitors, as it
is an amide bioisostere and maintains high stability under basic as well as acidic hydrolysis conditions.
It also has high dipole moment and capability of H bonding in vivo. Due to its aromatic character,
it shows some π-stacking interactions with relevant amino acid residues [29].
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carbonic anhydrase.

2. Results and Discussion

2.1. Synthesis of the Target Molecules

The current design of experiment (DOE) was based on the molecular hybridization approach.
We synthesized molecular hybrids of a bulky triazino[5,6-b]indole, used as a tail, conjugated to benzene
sulfonamide through a flexible 1,2,3-triazole linker.

The synthesis of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide hybrids (6a–6o)
was performed according to the general synthetic scheme illustrated in Scheme 1. The intermediate
compounds (4a–o) were synthesized according to previously reported methods [30,31]. The N-alkylated
isatins (3a–o) were synthesized from the simple five-substituted isatins (1a–c) by nucleophilic
substitution of different alkyl halides (2a–e). The 3a–o were condensed with thiosemicarbazide
in aqueous 1,4-dioxane under reflux conditions by using cesium carbonate as a base followed by
propargylation to generate intermediates (5a–o). Finally the 5a–o were subjected to click reaction
with 4-azido benzene sulfonamide to generate 1,2,3-triazole-linked triazino[5,6-b]indole-benzene
sulfonamide hybrids (6a–o).
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Scheme 1. Synthesis of target 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide hybrids
(6a–6o). Reagents and conditions: (i) K2CO3, KI (0.05 mole%), DMF, reflux, 4–6 h; yield: 72–75%;
(ii) thiosemicarbazide, Cs2CO3, 1,4-dioxane, reflux, overnight; yield: 68–70%; (iii) propargyl bromide,
K2CO3, DMF, rt, overnight; yield: 86–90%; (iv) CuSO4·5H2O, sodium ascorbate, tBuOH:H2O (1:1),
60 ◦C, overnight; yield: 65–70%.

2.2. Carbonic Anhydrase Inhibition

The newly synthesized 1,2,3-triazole linked triazino[5,6-b]indole-benzene sulfonamide hybrids
(6a–6o) were evaluated for their carbonic anhydrase inhibitory activity against a panel of carbonic
anhydrases, i.e., hCA I, hCA II, hCA IX, and hCA XIII, by the stopped-flow CO2 hydrase assay method.
Highly purified CA isoforms were employed, for which the kinetic parameters for the physiologic
reaction (CO2 hydration) were measured (see the Experimental section for details), monitoring the color
change produced by the formation of H+ ions (and bicarbonate). For all the pure enzymes, the kinetic
parameters (kcat and kcat/KM) are measured and these values are given in the Table 2. These activities
were highly inhibited by the clinically used sulfonamide inhibitor acetazolamide (AAZ), as shown in
Table 2. It was observe that all these enzymes are highly efficient catalysts with kcat/KM > 107 M−1x s−1.

Table 2. Kinetic parameters of the pure CA isoforms employed in this work and inhibition constants
for acetazolamide (AAZ), a standard sulfonamide drug.

Organisms CA Class Acronym Kcat
(s−1)

kcat/KM
(M−1 × s−1)

KI (Acetazolamide)
(nM)

Homo sapiens α hCA I 2.0 × 105 5.0 × 107 250
α hCA II 1.4 × 106 1.5 × 108 12.1
α hCA IX a 3.8 × 105 5.5 × 107 25.8
α hCA_XIII 1.5 × 105 1.1 × 107 17.0

a Catalytic domain.

The following structure-activity relationship can be inferred from the inhibition data of compounds
6a–o (Table 3).
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I Tthe cytosolic hCA II isoform was strongly inhibited by all the synthesized compounds 6a–o, in a
low to medium nanomolar range (Kis = 7.7 nM to 0.2527 µM). The best activity against hCA II
was shown by compound 6i (Ki = 7.7 nM), possessing a fluoro group attached at the 5th position
of the indole ring and an isopropyl group anchored to the nitrogen of indole. It was almost
twofold more active than the standard AAZ (Ki = 12.1 nM). Compounds 6d–6g, were found to
have potent activity at the nanomolar concentration against hCA II, with Ki ranging from 20.9
to 63.9 nM. Compounds 6k–6o, containing a chloro group at the 5th position of indole, showed
lower activity in the range of 61.7 to 252.7 nM, compared to compounds containing a fluoro group
and unsubstituted indole.

II The transmembrane hCA IX isoform, which is expressed exclusively in tumors, was also strongly
inhibited by the synthesized compounds in the medium nanomolar range (Kis = 34.9 nM to
0.3246 µM). Compounds 6d, 6e, 6f, and 6i showed equipotent nanomolar activity with AAZ,
with Kis ranging from 34.9 nM to 41.3 nM. Among these compounds, 6i showed the best activity
(Ki = 34.9 nM) against hCA IX isoform.

III The cytosolic hCA I and hCA XIII isoforms were inhibited by all synthesized compounds in
the high nanomolar range (Kis > 500 nM). However, compounds 6b and 6d showed moderate
activity with Kis of 69.8 nM and 65.8 nM respectively against hCA XIII isoform.

From the above structure–activity relationship, it was found that compound 6i was the most
potent compound with a Ki values of 7.7 nM against hCAII and 34.9 nM against hCA IX.

Table 3. Inhibition of hCA isoforms I, II, IX, and XIII with compounds 6a–o and AAZ as a
standard inhibitor.

KI (nM)

Compound Structure hCA I hCA II hCA IX hCA XIII

6a
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Table 3. Cont.

KI (nM)
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3. Conclusions

In conclusion, we report here the synthesis of a series of 1,2,3-triazole-linked triazino[5,6-b]indole-
benzene sulfonamide hybrids (6a–6o). The structures of these compounds where confirmed by
different spectral and elemental analyses methods (Supplemental Data S1). The Biological evaluation
of sulfonamides was performed against hCA I, hCA II, hCA IX, and hCA XIII. All compounds showed
low to moderate inhibitory activity against hCA II and hCA IX isoforms, at concentrations in the
range between 7.7 nM and 0.3246 µM. Compound 6i emerged as a potent hCA II and hCA IX inhibitor
(Ki = 7.7 nM against hCA II and 34.9 nM against hCA IX). The compounds 6b and 6d was showed
activity at medium nanomolar concentrations, with Ki of 69.8 nM and 65.8 nM, respectively, against
hCA XIII isoform. Thus, the compound 6i can be emerged as a novel potential lead compound to
develop selective carbonic anhydrase inhibitors against the hCA II isoform.

4. Experimental Section

4.1. General Experimental Conditions

All the chemicals and solvents utilized as obtained from the suppliers. Wherever necessary,
anhydrous solvents are used. Thin-layer chromatography analysis (TLC), was carried-out by utilizing
Merck silica gel 60 F254 aluminum plates. A Stuart Digital Melting point Apparatus (SMP 30) was
used to determining the melting point of the compounds, which were uncorrected. The 1H and 13C
NMR spectra were recorded on Bruker Avance 500 MHz and 125 MHz respectively, with DMSO-d6 as
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the solvent. The chemical shift values were calculated in ppm using TMS as the standard reference.
The HRMS were recorded on Agilent QTOF mass spectrometer 6540 series and were performed using
ESI techniques at 70 eV. All the newly synthesized analogs were evaluated in vitro for their inhibitory
activity against a panel of recombinant CA isoforms, i.e., hCA I, hCA II, hCA IX, and hCA XIII, obtained
inhouse, using the stopped-flow CO2 hydrase assay.

4.1.1. Synthesis of N-Alkylated isatins (3a–o)

To a stirred solution of isatin (0.5 g, 0.00398 mole) in DMF (10 mL) we added potassium carbonate
(0.939 g, 0.006796 mole) and potassium iodide (0.05 mole%), and the resulting solution was stirred
for about 30 min. After the specified time interval, the respective alkyl halides (2a–e) was added and
the resulting solution was allowed to reflux. The progress of the reaction was monitored by using
TLC. Upon the completion of the reaction as assessed by TLC, the reaction mixture was poured into ice
water, and the precipitated solid was collected, washed with water, and recrystallized from ethanol to
yield compounds (3a–o) (yield 72–75%) [31,32].

4.1.2. Synthesis of N-Alkylated triazino[5,6-b]indolethioether derivatives (4a–o)

To a stirred solution of N-alkylated isatin (0.450 g, 0.002378 mol) in 40% aqueous 1,4-dioxane
(5 mL), thiosemicarbazide (0.260 g, 0.00285 mol) and Cs2CO3 (0.720 g, 0.00285 mol) were added.
The resulting solution was refluxed overnight. Upon completion of the reaction (as determined by
TLC), the reaction mixture was cooled to rt. The solid byproducts were filtered off and the filtrate was
acidified with conc. HCl to pH 1–3. The obtained solids were collected washed with water and dried
to give yellow-colored solids which were used without any further purification (yield 68–70%) [31,32].

4.1.3. Synthesis of N-Alkyl-3-prop-2-yn-1-ylthio)-5H-[1,2,4]triazino[5,6b]indole derivatives (5a–o)

To a stirred solution of compounds 4a–o (0.140 g, 0.00607 mole) in DMF (3 mL), K2CO3 (0.101 g,
0.000729 mol) and propargyl bromide (0.087 g, 0.000729 mol) were added. The resulting reaction
mixture was stirred at rt overnight. Upon completion of the reaction (monitored by TLC), the reaction
mixture was poured in ice-cold water, and the formed solid was collected, washed with water, and
dried to give brown-colored solids that were used without any further purification (yield 86–90%).

4.1.4. Synthesis of 4-(4-(N-Alkyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl)-1H-1,2,3-triazol-
1-yl)benzenesulfonamide derivatives (6a–o)

The compounds 5a–o (0.04 g, 0.0001 mol) and 4-azido benzene sulfonamide (0.024 g, 0.000 mol)
were suspended in 2 mL of a 1:1 water/tert-butanol mixture. Sodium ascorbate (0.048 g, 0.0002 mol)
was added, followed by copper (II) sulfate pentahydrate (0.031 g, 0.0001 mol). The heterogeneous
mixture was stirred vigorously overnight at which point it cleared and TLC analysis indicated complete
consumption of the starting materials. The reaction mixture were diluted with water and cooled in ice
to obtained the brown precipitate, which were collected by filtration. After washing with cold water
the precipitate were dried under vacuum to afford a pure product as a brown amorphous solid (6a–o).

4-(4-(((5-methyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene sulfonamide (6a)
Yield: 57%; Color: Brown solid; mp: 235–240 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 8.87 (s, 1H), 8.34 (s,
1H), 8.10 (s, 2H), 7.99 (s, 2H), 7.80 (s, 2H), 7.51 (s, 3H), 4.77 (s, 2H), 3.86 (s, 3H);13C NMR (125 MHz,
DMSO) δ 167.1, 159.9, 158.0, 147.2, 145.7, 144.2, 141.3, 139.0, 138.5, 127.9, 122.5, 120.8, 113.2, 108.1, 107.9,
28.1, 25.29. HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C19H16N8O2S2; 453.0916; found 453.0965.

4-(4-(((5-ethyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene sulfonamide (6b)
Yield: 59%; Color: Brown solid; mp: 202–204 ◦C; 1H NMR (500 MHz, DMSO-d6) δ8.85 (s, 10H), 8.38
(dd, J = 17.8, 4.8 Hz, 11H), 8.10 (d, J = 8.6 Hz, 21H), 7.99 (d, J = 8.6 Hz, 20H), 7.85 (d, J = 8.2 Hz,
8H), 7.83–7.75 (m, 12H), 7.50 (s, 20H), 4.75 (s, 19H), 4.44 (q, J = 7.0 Hz, 21H), 1.35 (t, J = 7.2 Hz, 28H);
13C NMR (125 MHz, DMSO-d6) δ 166.58, 146.11, 145.83, 144.23, 141.55, 141.02, 139.02, 131.43, 127.91,



Metabolites 2020, 10, 200 9 of 13

123.28, 122.37, 122.06, 120.72, 117.94, 111.68, 36.45, 25.31, 13.73; HR-MS (ESI-QTOF): m/z calculated for
[M + H]+ C20H18N8O2S2; 467.1072; found 467.1120.

4-(4-(((5-propyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene sulfonamide (6c)
Yield: 61%; Color: Brown solid; mp: 261–263 ◦C; 1H NMR (500 MHz, DMSO) δ 8.62 (s, 1H), 8.13 (s,
1H), 7.81 (d, J = 56.5 Hz, 5H), 7.57 (d, J = 35.0 Hz, 3H), 7.27 (s, 3H), 4.51 (s, 2H), 4.12 (s, 2H), 1.57 (s, 3H);
13C NMR (125 MHz, DMSO) δ 166.7, 146.6, 144.2, 141.4, 139.0, 131.4, 127.9, 123.2, 122.3, 121.9, 120.7,
117.9, 111.8, 43.0, 25.35, 21.62, 11.6.HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C21H20N8O2S2;
481.1229; found 481.1268.

4-(4-(((5-isopropyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene sulfonamide
(6d) Yield: 53%; Color: Brown solid; mp: 213–215 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 8.84 (s, 1H),
8.19 (d, J = 7.5 Hz, 1H), 8.09 (d, J = 8.4 Hz, 2H), 8.04–7.93 (m, 4H), 7.62 (t, J = 8.1 Hz, 1H), 7.49 (s, 2H),
5.21–5.13 (m, 1H), 4.73 (s, 2H), 1.61 (d, J = 6.7 Hz, 6H). 13C NMR (125 MHz, DMSO) δ 166.2, 146.2, 145.9,
144.2, 141.5, 140.6, 139.0, 131.3, 127.9, 123.1, 122.3, 122.0, 120.7, 118.2, 112.6, 46.7, 25.3, 20.3. HR-MS
(ESI-QTOF): m/z calculated for [M + H]+ C21H20N8O2S2; 481.1229; found 481.1294.

4-(4-(((5-allyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene sulfonamide (6e)
Yield: 61%; Color: Brown solid; mp: 230–232 ◦C; 1H NMR (500 MHz, DMSO-d6) δ8.84 (s, 1H), 8.39
(s, 1H), 8.05 (d, J = 45.9 Hz, 5H), 7.78 (s, 2H), 7.52 (s, 2H), 6.02 (s, 1H), 5.08 (s, 4H), 4.77 (s, 2H); 13C
NMR (125 MHz, DMSO) δ 166.4, 147.0, 146.5, 144.3, 141.5, 141.3, 139.0, 131.4, 123.5, 122.5, 122.0, 120.8,
117.9, 112.0, 43.5, 25.3. HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C21H10N8O2S2; 479.1072;
found 479.1087.

4-(4-(((8-fluoro-5-methyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6f) Yield: 59%; Color: Brown solid; mp: 244–246 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 8.86
(s, 1H), 8.20–8.16 (m, 1H), 8.10 (d, J = 8.6 Hz, 2H), 7.99 (d, J = 8.6 Hz, 2H), 7.84 (dd, J = 8.8, 3.9 Hz, 1H),
7.70–7.63 (m, 3H), 7.51 (s, 1H), 4.76 (s, 2H), 3.86 (s, 3H); 13C NMR (125 MHz, DMSO-d6) δ 167.15, 159.89,
147.16, 144.25, 139.02, 138.48, 127.90, 122.49, 120.78, 118.93, 118.73, 118.67, 118.59, 113.14, 107.91, 28.04,
25.29; HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C19H15FN8O2S2;471.0822; found 471.0824.

4-(4-(((8-fluoro-5-ethyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6g) Yield: 53%; Color: Brown solid; mp: 246–248 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 8.85
(s, 1H), 8.19 (dd, J = 8.1, 2.3 Hz, 1H), 8.10 (d, J = 8.7 Hz, 2H), 7.99 (d, J = 8.7 Hz, 2H), 7.91 (dd, J = 8.9,
4.0 Hz, 1H), 7.66 (td, J = 9.2, 2.4 Hz, 1H), 7.50 (s, 2H), 4.75 (s, 2H), 4.45 (q, J = 7.0 Hz, 2H), 1.34 (t,
J = 7.1 Hz, 3H); 13C NMR (125 MHz, DMSO-d6) δ 167.16, 159.85, 146.63, 145.75, 144.26, 139.03, 137.40,
127.91, 122.39, 120.73, 118.97, 118.87, 118.77, 113.24, 108.09, 36.63, 25.33, 13.73; HR-MS (ESI-QTOF): m/z
calculated for [M + H]+ C20H17FN8O2S2; 485.0978; found 485.0979.

4-(4-(((8-fluoro-5-propyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6h) Yield: 63%; Color: Brown solid; mp: 240–242 ◦C; 1H NMR (500 MHz, DMSO) δ 8.84 (s,
1H), 8.18 (dd, J = 8.2, 2.5 Hz, 1H), 8.09 (d, J = 8.8 Hz, 2H), 7.98 (d, J = 8.8 Hz, 2H), 7.89 (dd, J = 9.0,
4.0 Hz, 1H), 7.64 (td, J = 9.2, 2.6 Hz, 1H), 7.50 (s, 2H), 4.74 (s, 2H), 4.35 (t, J = 6.9 Hz, 2H), 1.83–1.74
(m, 2H), 0.78 (t, J = 7.4 Hz, 3H); 13C NMR (125 MHz, DMSO) δ 167.3, 159.8, 157.9, 147.1, 145.8, 144.3,
141.1, 139.0, 137.8, 127.9, 122.3, 120.7, 113.4, 108.2, 107.9, 43.2, 25.4, 21.6, 11.5. HR-MS (ESI-QTOF): m/z
calculated for [M + H]+ C21H19 FN8O2S2 499.1135; found 499.1153.

4-(4-(((8-fluoro-5-isopropyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6i) Yield: 55%; Color: Brown solid; mp: 235–237 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 8.84
(s, 1H), 8.20 (d, J = 7.8 Hz, 1H), 8.10 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.3 Hz, 3H), 7.63 (s, 1H), 7.50 (s, 2H),
5.17 (s, 1H), 4.73 (s, 2H), 1.61 (d, J = 6.1 Hz, 6H); 13C NMR (125 MHz, DMSO) δ 166.8, 159.7, 157.8, 146.7,
145.8, 144.2, 141.1, 139.0, 137.0, 127.9, 122.3, 120.7, 119.2, 118.8, 46.9, 25.3, 20.3. HR-MS (ESI-QTOF): m/z
calculated for [M + H]+ C21H19 FN8O2S2499.1135; found 499.1174.
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4-(4-(((8-fluoro-5-allyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6j) Yield: 51%; Color: Brown solid; mp: 245–247 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 8.81
(s, 1H), 8.21 (d, J = 6.7 Hz, 1H), 8.09 (d, J = 8.3 Hz, 2H), 7.99 (d, J = 8.3 Hz, 2H), 7.78 (d, J = 5.0 Hz, 1H),
7.65 (t, J = 8.2 Hz, 1H), 7.50 (s, 2H), 6.06-5.96 (m, 1H), 5.13–5.05 (m, 4H), 4.74 (s, 2H); 13C NMR (125
MHz, DMSO) δ 167.4, 159.9, 158.0, 146.9, 145.7, 144.3, 141.3, 139.0, 137.6, 132.1, 127.9, 122.4, 120.8,
119.0, 118.7, 113.6, 108.3, 43.8, 25.3. HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C21H17FN8O2S2

497.0978; found 497.1027.

4-(4-(((8-chloro-5-methyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6k) Yield: 62%; Color: Brown solid; mp: 243–248 ◦C; 1H NMR (500 MHz, DMSO) δ 8.87 (s,
1H), 8.39 (s, 1H), 8.10 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 5.5 Hz, 1H), 7.51 (s, 1H),
4.77 (s, 1H), 3.86 (s, 1H);13C NMR (126 MHz, CDCl3) δ 172.04, 151.12, 150.44, 148.97, 145.57, 144.27,
143.71, 135.73, 132.74, 127.25, 126.31, 125.47, 124.14, 118.20, 109.43, 41.18, 29.99. HR-MS (ESI-QTOF):
m/z calculated for [M + H]+ C19H15ClN8O2S2 487.0526; found 487.0530.

4-(4-(((8-chloro-5-ethyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6l) Yield: 57%; color: Brown solid; mp: 252–256 ◦C; 1H NMR (500 MHz, DMSO) δ 8.86 (s,
1H), 8.40 (s, 1H), 8.10 (d, J = 7.3 Hz, 1H), 7.99 (d, J = 7.0 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.82 (s, 1H),
7.51 (s, 1H), 4.75 (s, 1H), 4.44 (d, J = 5.7 Hz, 1H), 1.29 (d, J = 47.6 Hz, 1H); 13C NMR (126 MHz, CDCl3)
δ 172.04, 151.80, 150.30, 149.06, 145.56, 145.35, 143.81, 132.66, 132.51, 127.17, 126.07, 125.52, 123.87,
122.79, 118.21, 53.69, 32.67, 29.99.HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C20H18ClN8O2S2

501.0682; found 501.0694.

4-(4-(((8-chloro-5-propyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6m) Yield: 63%; Color: Brown solid; mp: 257–262 ◦C; 1H NMR (500 MHz, DMSO) δ 8.85
(s, 1H), 8.39 (s, 1H), 8.10 (d, J = 7.1 Hz, 1H), 7.99 (d, J = 7.0 Hz, 1H), 7.90 (d, J = 7.9 Hz, 1H), 7.80 (d,
J = 7.3 Hz, 1H), 7.51 (s, 1H), 4.74 (s, 1H), 4.35 (s, 1H), 1.78 (d, J = 6.1 Hz, 1H), 0.79 (s, 2H); 13C NMR
(126 MHz, DMSO) δ 167.46, 146.95, 145.67, 144.25, 140.63, 139.99, 138.86, 131.10, 127.90, 127.75, 122.34,
121.44, 120.70, 119.24, 113.68, 43.18, 25.42, 21.48, 11.56.HR-MS (ESI-QTOF): m/z calculated for [M + H]+

C21H20ClN8O2S2 515.0839; found 515.0839.

4-(4-(((8-chloro-5-isopropyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6n) Yield: 56%; Color: Brown solid; mp: 263–265 ◦C; 1H NMR (500 MHz, DMSO) δ 8.85 (s,
1H), 8.40 (s, 1H), 8.10 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 8.6 Hz, 1H), 7.95 (d, J = 8.9 Hz, 1H), 7.80–7.75 (m,
1H), 7.50 (s, 1H), 5.16 (dt, J = 13.6, 6.7 Hz, 1H), 4.73 (s, 1H), 1.61 (d, J = 6.8 Hz, 1H);13C NMR (126
MHz, DMSO) δ 166.92, 146.52, 145.82, 144.26, 140.54, 139.11, 139.01, 130.89, 127.92, 127.53, 122.36,
121.33, 120.73, 119.71, 114.31, 47.03, 30.95, 25.38, 20.33.HR-MS (ESI-QTOF): m/z calculated for [M + H]+

C21H20ClN8O2S2 515.0839; found 515.0856.

4-(4-(((8-chloro-5-allyl-5H-[1,2,4]triazino[5,6b]indol-3-yl)thio)methyl-1H-1,2,3-triazol-1-yl)benzene
sulfonamide (6o) Yield: 67%; Color: Brown solid; mp: 261–264 ◦C; 1H NMR (500 MHz, TFE) δ 8.81 (s,
1H), 8.40 (s, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.81–7.75 (m, 1H), 7.50 (s, 1H), 5.99
(ddd, J = 22.0, 10.3, 5.0 Hz, 1H), 5.13–5.02 (m, 2H), 4.73 (s, 1H);13C NMR (126 MHz, DMSO) δ 167.54,
146.67, 145.70, 144.27, 140.68, 139.65, 138.99, 131.82, 131.04, 127.89, 122.51, 121.44, 120.76, 119.42, 117.79,
113.91, 43.48, 31.33, 25.06.HR-MS (ESI-QTOF): m/z calculated for [M + H]+ C21H17ClN8O2S2 513.0682;
found 513.069.

4.2. CA Inhibition

An SX.18 V-R Applied Photophysics (Oxford, UK) stopped-flow instrument was used to assay
the catalytic inhibition of various CA enzymes [32]. Phenol Red (at a concentration of 0.2 mM) was
used as an indicator, working at maximum absorbance of 557 nm, with 10 mM Hepes (pH 7.4) buffer,
0.1 M Na2SO4 (for maintaining constant ionic strength; these anions are not inhibitory in the used
concentration), following the CA-catalyzed CO2 hydration reaction for a period of 5–10 s. Saturated
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CO2 solutions in water at 25 ◦C were used as a substrate. Stock solutions of the inhibitors were
prepared at a concentration of 10 mM (in DMSO/Water 1:1, v/v), and dilutions up to 0.01 nM were
prepared using the assay buffer mentioned above. At least 7 different inhibitor concentrations were
used for measuring the inhibition constant. Inhibitor (I) and enzyme (E) solutions were pre-incubated
together for 10 min at room temperature prior to the assay, in order to allow for the formation of the E–I
complex. IC50-s values were calculated from the enzyme activity (as kcat, see Table 2) with respect to
the inhibitor concentration. Triplicate experiments were done for each inhibitor concentration, and the
values reported in this paper are the mean of such results. The inhibition constants were obtained by
non-linear least-square methods, using the Cheng–Prusoff equation, as reported earlier, and represent
the mean from at least three different determinations: KI = IC50/[(1 + [S]/KM)]. KM values for all
enzymes were reported earlier (see Table 2) by us [26–31]; [S] is the CO2 concentration at which the
experiments were performed. All CA isozymes used here were recombinant proteins obtained as
reported earlier by our group [33–38].

Supplementary Materials: The spectral data as supporting information are available online at http://www.mdpi.
com/2218-1989/10/5/200/s1; Data S1: 1H NMR spectra of 6a–o, 13C NMR spectra of 6a–o.
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