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Abstract: Motivation: Untargeted metabolomics comprehensively characterizes small molecules
and elucidates activities of biochemical pathways within a biological sample. Despite computational
advances, interpreting collected measurements and determining their biological role remains a challenge.
Results: To interpret measurements, we present an inference-based approach, termed Probabilistic
modeling for Untargeted Metabolomics Analysis (PUMA). Our approach captures metabolomics
measurements and the biological network for the biological sample under study in a generative
model and uses stochastic sampling to compute posterior probability distributions. PUMA predicts
the likelihood of pathways being active, and then derives probabilistic annotations, which assign
chemical identities to measurements. Unlike prior pathway analysis tools that analyze differentially
active pathways, PUMA defines a pathway as active if the likelihood that the path generated the
observed measurements is above a particular (user-defined) threshold. Due to the lack of “ground
truth” metabolomics datasets, where all measurements are annotated and pathway activities are
known, PUMA is validated on synthetic datasets that are designed to mimic cellular processes.
PUMA, on average, outperforms pathway enrichment analysis by 8%. PUMA is applied to two case
studies. PUMA suggests many biological meaningful pathways as active. Annotation results were
in agreement to those obtained using other tools that utilize additional information in the form of
spectral signatures. Importantly, PUMA annotates many measurements, suggesting 23 chemical
identities for metabolites that were previously only identified as isomers, and a significant number of
additional putative annotations over spectral database lookups. For an experimentally validated
50-compound dataset, annotations using PUMA yielded 0.833 precision and 0.676 recall.

Keywords: machine learning; inference; untargeted metabolomics; biological network; metabolic model

1. Introduction

Analyzing cellular responses to perturbations such as drug treatments and genetic modifications
promises to elucidate cellular metabolism, leading to improved outcomes in personalized medicine and
synthetic biology. Metabolomics has emerged as the new ‘omics’, providing a readout of cellular activity
that is most predictive of phenotype. Metabolomics, so far, has played a critical role in advancing
applications spanning biomarker discovery [1], drug discovery and development [2], plant biology [3],
nutrition [4], and environmental health [5]. Importantly, the advent of untargeted metabolomics to
measure molecular masses and spectral signatures of thousands of small molecule metabolites for a
biological sample allows unprecedented opportunities to characterize the phenotype.

The success of untargeted metabolomics in providing insight into cellular behavior, however,
hinges on solving two problems. Metabolite annotation concerns associating measured masses with their
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chemical identities. This problem is challenging, as a particular mass may be associated with multiple
chemical formulas (e.g., there are 21,988 known molecules associated with C20H24N2O3). There are
several techniques for annotating measurements. Database lookups rely on comparing the measured
spectral signature against experimentally-generated fragmentation patterns cataloged in reference
spectral databases (e.g., METLIN [6], HMDB [7], MassBank [8], NIST [9]). Database coverage, however,
is limited as catalogued spectral signatures are obtained experimentally. Alternatively, computational
methods that either mimic the ionization and fragmentation process or utilize machine learning
techniques (e.g., MetFrag [10], Fragment Identificator (FiD) [11], CFM-ID [12], CSI:FingerID [13]) score
the measured spectra against the predicted spectra of molecules in a candidate set. The chemical
identity associated with the highest scoring signature(s) is then assigned to the measured spectra.
Other annotation techniques exploit the biological context of the measurements. For example, iMet [14]
and BioCAn [15] exploit data about local neighborhoods within the network graphs to improve
annotation, while EMMF uses the biological context to engineer a candidate set based on enzyme
promiscuity [16].

The second problem, pathway enrichment analysis, concerns interpreting measurements within
their biological context to study coordinated changes arising in response to cellular perturbations.
Overrepresentation Analysis (ORA) tools (e.g., MESA [17], MetaboAnalyst [18], MPEA [19]) employ
statistical testing (e.g., Fisher’s exact test) to determine if a pathway is enriched in measured metabolites
to a degree different than expected by chance when compared to other cellular pathways or those in
a reference sample [20]. Pathway enrichment techniques can be broadly classified in two categories.
Topological analysis (TA) computes the observed metabolites’ centrality and connectivity, metrics that
reflect the importance of a metabolite in the turnover of molecules through a pathway or network
(e.g., MetaboAnalyst [18] and IMPaLA [21]). Metabolite annotation and pathway enrichment have
traditionally been solved as two independent problems, where pathway enrichment assumes that
the chemical identity of each measured mass is known a priori. In general, pathway analysis
techniques, therefore, do not adequately address issues related to uncertainty in metabolite annotation.
One exception is Mummichog, a set of statistical algorithms that predict functional activity directly
from measurements considered significant when compared to those in a reference sample [22].

We present a novel inference-based probabilistic approach, Probabilistic modeling for Untargeted
Metabolomics Analysis (PUMA), for interpreting metabolomics measurements. One input to PUMA
is the set of measurements that are already processed through metabolomics, e.g., MZmine [23],
XCMS [24], CAMERA [25]. Another input is a set of pathways, each consisting of enzymatic reactions
and their metabolic products, that are specific to the sample under study. Such pathways can be readily
assembled from databases such as KEGG or MetaCyc or others. Using these data, PUMA first calculates
the likelihood of activity of metabolic pathways within a biological sample. PUMA then utilizes
these predictions to derive probabilistic assignment of measurements to candidate chemical identities.
PUMA utilizes inference and approximates posteriors using Gibbs sampling, a Markov Chain Monte
Carlo (MCMC) sampling technique [26]. Although inference is a well-known machine learning
technique, there were several challenges in developing PUMA including: (1) identifying a suitable
generative model that represents the underlying biological process, (2) expressing complex relationships
using probability distributions, (3) speeding the inference procedure with complex mathematical
marginalization and vectorization, (4) identifying best model parameters, and (5) validating model
against the ground truth. Herein, we describe how PUMA addresses such challenges. PUMA is then
applied to two data sets collected for Chinese Hamster Ovary (CHO) cells [15] and human urinary
samples [27]. Predicted pathway activities are analyzed for biological significance and compared
against activity predictions obtained through statistical pathway enrichment analysis. We compare
PUMA annotations against those already established by prior analysis of these datasets. For the CHO
cell test case, metabolite annotations obtained using PUMA are compared to those published prior [15],
including annotations using METLIN [6], HMDB [7], and BioCAn [15]. For the human urinary samples,
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PUMA annotations are compared to published annotations [27] obtained using spectral databases and
experimental validation.

2. Methods

2.1. Motivating Example

A small example is provided to illustrate challenges in mapping measurements to metabolites
and pathways, and to show inference’s ability to address these issues. Figure 1 presents a snippet
of a network that shows two pathways (ovals), Pathway 1 and Pathway 2. Metabolites with known
chemical identities associated (circles) are either associated with one pathway (red circle) or more than
one pathway (blue circles). Measurements (squares) correspond to masses that can be associated with
one particular metabolite (red square) or multiple metabolites (blue squares). Not all metabolites within
a sample are measured due to either instrument limitations or because they are simply not present in
the sample due to biological or environmental factors. Some metabolites are thus not associated with
any measurements (white circles), and maybe associated with one or more pathways.

There are two types of uncertainties in interpreting measurements from untargeted metabolomics.
One type of uncertainty relates to assignment of metabolites to pathways (circles to ovals, Figure 1).
For example, measurement w3 is assigned to metabolite j5. Because j5 is a metabolite common to both
Pathways 1 and 2, there is an uncertainty in assignment of the metabolite to the pathways: j5 can be the
product of activity in either Pathway 1, Pathway 2, or both. The other uncertainty relates to assignment
of masses to metabolites, when a mass can map to multiple metabolites (squares to circles, Figure 1).
Measurement w4 can be attributed to one or two metabolites, j6 and j7, both sharing the same mass.
The uncertainty in assigning w4 to metabolites j6 and j7 manifests in further uncertainty. If w4 is
associated with j6, then it contributes to the activity of Pathway 1 (and/or other pathways with which j6
is associated), while, if w4 is associated with j7, then it clearly ought to contribute to the activity of
Pathways 2 (and/or other pathways with which j7 is associated). Not all measurements contribute to
these uncertainties. For example, measurement w5 is unique to metabolite j13. In turn, j13 is unique to
Pathway 2. Some measurements (such as w5) clearly contribute more significantly than others (such as
w3 and w4) in determining pathway activities.
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one or more pathways. Blue circles represent measured metabolites that have multiple-pathway 
memberships (multiple-pathway membership is assumed but not shown for j3 and j4). The red circle 
represents a metabolite that has membership in only one pathway. Measurement w5 uniquely maps 
to j13, which uniquely maps to Pathway 2, while all other measurements map to multiple metabolites, 
as shown by solid or dotted lines. 

Figure 1. Illustrative example of uncertainty when mapping measurements to metabolites and
pathways. Pathways (ovals) are associated with metabolites (circles), which in turn are associated
with measurements (square). White circles represent non-measured metabolite with membership
in one or more pathways. Blue circles represent measured metabolites that have multiple-pathway
memberships (multiple-pathway membership is assumed but not shown for j3 and j4). The red circle
represents a metabolite that has membership in only one pathway. Measurement w5 uniquely maps to
j13, which uniquely maps to Pathway 2, while all other measurements map to multiple metabolites,
as shown by solid or dotted lines.

Computing pathway activities using an enrichment ratio can be misleading, because it does
not take into account the uncertainty in attributing measurements to metabolites and pathways.
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The enrichment ratio for Pathway 1 can be computed as the ratio of four putatively-measured
metabolites divided by six total metabolites in the pathway. While this enrichment ratio seems high,
there is little confidence that Pathway 1 is active since all measured metabolites form this pathway
could be due to active pathways other than Pathway 1. Pathway 2 has an enrichment ratio equal
to 3 divided by 8. The significance or importance of this ratio is unclear. Inference will conclude
that Pathway 2 is active with high probability, as it includes a measured metabolite that cannot be
attributed to the activity of any other pathway. In contrast to enrichment methods, our inference-based
technique considers uncertainties in measurement-metabolite and metabolite-pathway relationships
when computing the likelihood of pathway activities. A pathway is considered active, if the likelihood
that it generated the observed measurements is above a particular threshold. When we analyze our
test cases, we will assume a threshold of 0.5. A user of PUMA may decide to use this threshold or
select a more suitable threshold above which pathways are deemed active.

2.2. Generative Model

To determine pathway activities, an untargeted metabolomics workflow (Figure 2A) begins with
collecting measurements, followed by metabolite annotation using annotation tools (e.g., database look ups
or annotation tools) and then applying pathway analysis tools (e.g., ORA or TA) to determine the pathway
activities. A pathway is assumed active when biological and environmental factors lead to the production
of some or all of its metabolic products. In some cases, metabolite annotation is skipped, and statistical
pathway activity is computed directly from measurements. In contrast, our inference-based approach
utilizes a generative model (Figure 2B) that mimics biological processes inherent to the sample under
study. Our presumed biological process assumes that when pathways are active, they cause the presence
of some its metabolites, which in turn results in observations of masses through untargeted metabolomics.
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PUMA first constructs a graphical model [28] that captures the complex relation among pathway
activities, metabolites, and measurements in a single integrated model. The model produces values
that are observed (measured), as well as hidden variables of interest, which cannot be directly observed
but rather inferred from those values that can be observed. In our case, the observations correspond to
mass measurements collected through untargeted metabolomics. The hidden variables are pathway
activities and the presence of a metabolite in a biological sample.

Our generative model assumes the following biological process: one or more pathways are
active. An active pathway causes the presence of some of its metabolites, which in turn results in
observations of masses through untargeted metabolomics data collection. The generative model
also assumes that the mass spectrometer is not biased towards particular measurements or classes
of molecules. The lack of observations regarding the presence of masses therefore contributes some
evidence regarding the corresponding pathway activity. The generative model is parameterized with
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prior information, or prior probabilities, about the behavior of the biological process. Here, we provide
priors on each step in the biological process: for pathway activities, on pathways generating their
metabolites, and metabolites mapping to mass measurements. We assume that the biological sample
has a metabolic model with I pathways, J metabolites, and K unique metabolite masses. A metabolite
may have membership in one or more pathways. PUMA assumes prior knowledge of adducts and
in-source fragmentation and utilizes the adjusted measured masses when mapping the measurements
to model metabolites. An (adjusted) measured mass may be associated with one or more masses of the
model metabolites. Masses of the model metabolites are mapped to discretized bins, where each bin is
centered at a unique mass value and allows for a mass tolerance of ±15 ppm. Each model metabolite
is assigned to a single bin that is centered closest to the metabolite’s mass. A binary vector w has K
entries and indicates putative mass observations of metabolites in the model. An entry of 1 for wk
in vector w indicates the observation (measurement) of at least one metabolite in the kth bin while a
0 indicates no observation for any metabolite in that bin.

Let a = (ai : i = 1, . . . , I) denote the status of I pathways in the biological sample, so a is a vector of
binary random variables, where a value of 1 indicates that the corresponding pathway is active and 0
indicates inactivity. We assume that the ai random variables are independent, with a Bernoulli(λ) prior:

p(ai = 1) = λ, i = 1, . . . , I (1)

For simplicity in defining our model, we assume that λ is a model parameter and set it to a
constant. As an alternative, we can give it a Beta prior.

Matrix Z is defined with I rows and J columns. Each entry zi j corresponds to the activeness of
metabolite j in pathway i, where a value of 1 indicates metabolite j is active due to pathway i and a
value of 0 indicates that metabolite j is not produced by pathway i. If a metabolite j is on a pathway i,
then the metabolite is produced according to the following probability:

p
(
zi j = 1

∣∣∣ai = 1
)
= µ, p

(
zi j = 1

∣∣∣ai = 0
)
= 0 (2)

Otherwise, p
(
zi j = 1

∣∣∣ai
)
= 0 when j is not on i. For simplicity, we assume that all metabolites

are equally likely to be generated with probability µ within an active pathway. Vector m collapses
the matrix Z into a binary vector with J elements, indicating the activeness of a metabolite due to
whichever pathway:

m j =

∑
i

zi j > 0

 (3)

Here [·] gives 1 when the condition inside is true or 0 otherwise.
As not all masses can be captured using the mass spectrometer, its observed accuracy is defined

using parameter γ. Let Jk define the group of metabolites that have masses in the k-th bin, then:

p
(
wk = 0

∣∣∣mJk

)
= (1− γ)

∑
j∈Jk

m j (4)

This probability means that every metabolite present in the biological sample has a chance γ to
be detected. In the case when all metabolites in Jk are not observed (

∑
j∈Jk

m j = 0), then mass k will not

be observed. The detection of a metabolite is independent of the detection of others in the sample.
No two groups, Jk and Jk′ , intersects because a metabolite has only one mass. The described model
is described using the plate representation [29] (Figure 3). The model presents the joint probability
distribution of random variables a, z, m and w defined as:

p(a, z, m, w) = p(a;λ) p(z
∣∣∣a;µ) p(m|z) p(w

∣∣∣m;γ) (5)
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per variable and enclosing these variables in a plate (rectangular box). The number of instances of
each enclosed variable is indicated by the fixed constant in the lower right corner of the box. Random
variables of the model (a, z, m, w) are shown in white circles. The variable m has a deterministic
relationship with Z. The shaded circle, labelled w, represents an observed random variable. µ, λ, γ are
parameters to the model.

2.3. Inference

Using the probabilistic model, we infer pathway activities and metabolite presence from mass
measurements. Specifically, we calculate the following probabilities. For each pathway i in the
biological sample we calculate p(ai|w), the posterior probability of pathway i being active given
evidence in mass measurements. PUMA utilizes Gibbs sampling to perform Bayesian inference [26]
to approximate the posterior probabilities of pathway activities conditioned on the measurements.
We then infer the presence of metabolites by calculating the posterior p

(
m j

∣∣∣w)
for all j. We use the latter

probabilities to rank a candidate set of metabolites for each mass measurement, where a candidate
set provides one or more suggestion of chemical identities that have the same mass, within an error
margin, as the observed one.

2.3.1. Inferring Pathway Activities

Gibbs sampling is employed to perform Bayesian inference to approximate p(a|w), the posterior
probability of pathway activities conditioned on the measurements. Naively sampling random
variables a and Z, is time consuming. To speed the Gibbs sampler, we marginalize hidden variables Z.
From the Bayesian formula:

p(a|w) = p(w|a)p(a)/p(w) (6)

Gibbs sampling is convenient in that there is no need to compute the denominator p(w) to draw
samples from the posterior p(a|w). We only need to focus the computation of p(w|a) and p(a), where the
latter was already assumed to have a Bernoulli distribution. Below we show how to compute p(w|a).
We point out that p(w|a) decomposes as follows:

p(w|a) =
∏

k
p(wk|a) (7)

This is because metabolites in separate Jk groups are independent given a, so do masses that are
computed within these groups. Then we focus on the calculation of p(wk|a). Let φ j(a) be the probability
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that at least one pathway in the biological sample generates metabolite m j. That is, φ j(a) = p
(
m j = 1

∣∣∣a).
The detailed calculation of φ j(a) is provided in Supplementary File S1, the calculation of φ j(a) is:

φ j(a) = 1− (1− µ)n j (8)

with n j being the number of active pathways that m j is on. Probability p(wk|a) is then computed
as follows:

p(wk|a)=

 1−Πj∈Jk

[
1− γφ j

]
wk = 1

Πj∈Jk

[
1− γφ j

]
wk = 0

(9)

The expression 1 − γφ j, a number between 0 and 1, represents the likelihood that the mass
spectrometer did not measure the activity of metabolite m j. Combining p(wk|a) with the Bernoulli
prior p(a), we have the joint probability p(w, a), which is sufficient for running the sampler and
getting samples from the posterior. If λ has a Beta prior, then we will sample a and λ together
from p(λ)p(a|λ)p(w|a).

2.3.2. Inferring Metabolite Annotations

With samples drawn from p(a|w), we approximate p
(
m j

∣∣∣w)
, the posterior probability distribution

of metabolite j being present in the biological sample. Instead of running the Gibbs sampling procedure
again, we use previously collected samples of a from p(a

∣∣∣w) to estimate the probability p
(
m j

∣∣∣w)
.

Let S =
{
a ∈ samples o f p(a|w)

}
be a set of samples from the distribution p(a

∣∣∣w) , then:

p
(
m j

∣∣∣w)
= Σap

(
m j, a

∣∣∣w)
= Σap

(
m j

∣∣∣a, w
)
p(a|w) ≈

1
|S|

Σa∈S p
(
m j

∣∣∣a, w
)

(10)

The probability p
(
m j

∣∣∣a, w
)

has efficient computation. Let k j denote the entry of w corresponding
to metabolite j, and let \k j denote other entries in w. Then:

p
(
m j

∣∣∣a, w
)
=

p
(
m j, w

∣∣∣a)
p(w|a)

=
p
(
m j, wk j

∣∣∣∣a)p(w\k j

∣∣∣∣a)
p(w|a)

(11)

Here we use the fact that m j and wk j are independent of other mass observations when a is given.
With this relation, we have:

p
(
m j = 1

∣∣∣a, w
)
=

p
(
m j = 1, wk j

∣∣∣∣a)
p
(
m j = 1, wk j

∣∣∣∣a)+ p
(
m j = 0, wk j

∣∣∣∣a) (12)

Here, the terms that are constants to m j are canceled. Finally, we can compute p
(
m j, wk j

∣∣∣∣a) by
marginalizing over all m j, for j′ , j and j′ ∈ Jk:

p
(
m j, wk j

∣∣∣∣a) = ΣmJk\ j
p(m j, mJk\ j, wk j

∣∣∣∣a)
= ΣmJk\ j

p
(
wk j

∣∣∣∣m j , mJk\ j
)
p
(
m j, mJk\ j

∣∣∣a) (13)
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We decompose the above formulation into two terms for managing calculations. These two terms,
p
(
wk

∣∣∣mJk
)

and p
(
m j, mJk\ j

∣∣∣a) are further derived and re-expressed in the Supplementary Material, to yield
the following:

p
(
m j, wk j

∣∣∣∣a) =



(
1−φ j

) ∏
j′∈Jk, j′, j

(
1− γφ j′

) m j = 0, wk j = 0(
1−φ j

)1−
∏

j′∈Jk, j′, j

(
1− γφ j′

) m j = 0, wk j = 1

φ j(1− γ)
∏

j′∈Jk, j′, j

(
1− γφ j′

)
m j = 1, wk j = 0

φ j

1− (1− γ)
∏

j′∈Jk, j′, j

(
1− γφ j′

) m j = 1, wk j = 1

(14)

We use these equations to calculate the probabilities p
(
m j = 1, wk j

∣∣∣∣a) and p
(
m j = 0, wk j

∣∣∣∣a).
By normalizing the two terms to have a sum of 1, we get the posterior of metabolite annotations.
The derived probabilities are used as a scoring metric to rank a candidate set for each mass
measurement. Details on the derivation and implementation of metabolite annotation are provided in
Supplementary File S1.

2.4. Implementation and Parameter Initialization

We implemented PUMA using PyMC3 [30], a probabilistic programming framework that allows
for automatic Bayesian inference on user-defined models. In the implementation, we assume that
λ has a β prior with parameters α = β = 1. We sample both random variables a and λ. To draw
samples from a posterior distribution, PyMC3 utilizes a Markov Chain Monte Carlo (MCMC) sampling
technique [31]. The generative model was derived from the metabolic model for each of our case
studies. The observed accuracy of the mass spec, γ, is assumed to be 0.9. Each entry in µ is assumed
to be 0.5 if metabolite j exists on pathway i. T, the number of samples to draw from the model, is a
variable that can be set in PyMC3. The sampler was run multiple times with T values equal to 500,
1000, and 1500. We assumed 100 burn-in samples. For all reported runs, increasing the number of
drawn samples altered the computed probabilities slightly but did not affect the list of active pathways,
based on a 0.5 activity threshold. Drawing 1000 samples was used as a default.

3. Results

3.1. Model Validation

To give confidence in the performance of PUMA, it is desirable to validate the generative models
against a “ground truth” dataset, where all measured metabolites are annotated and there is sufficient
experimental evidence to allow attributing measured metabolites to specific pathways. Predictions
by PUMA can then be compared against this ground truth. Despite several databases that catalogue
various metabolomics datasets (e.g., MetaboLights [32], Metabolomics Workbench [33]), there are
currently no untargeted metabolomics sets that are 100% annotated. Further, there are no datasets that
allow attributing metabolites to specific pathways through experimental work. We therefore design
datasets that serve as “ground truth” datasets when validating pathway analysis tools. The datasets
are generated to mimic biological processes where genes within pathways work in concert and result
in enzymatic activities that produce metabolites [34]. These metabolites are then observed via mass
spectrometry. As central metabolism and network topology is conserved across many organisms [35],
we generated the synthetic datasets for a representative organism, the CHO cell, a popular biological
sample that is discussed herein as a case study. Its cellular pathways and their metabolites are used as
the basis for generating pathway and metabolite activities.
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To model a variety of plausible cellular activity, several synthetic datasets are generated.
The portion of active pathways and the portion of active metabolites are varied for each dataset.
A random portion (0.3, 0.5, and 0.7) of pathways are assumed active, and a random portion (0.05, 0.10,
0.15, 0.20, 0.25, 0.50, 0.75) of metabolites within each active pathway are generated. For each portion of
active pathways and for each portion of active metabolites, 100 metabolomics datasets reflecting the
masses of the active metabolites were generated. The observed accuracy γ was set to 1.
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We compared the likelihood of pathway activities computed by PUMA against the enrichment
ratios for the synthetic datasets. The enrichment ratio for a particular pathway is defined as the ratio
of measured masses that map to metabolites within the pathway to its size. We use AUC, the area
under the Receiver Operating Characteristic (ROC) curve to report the results. A ROC curve plots TPR
(True Positive Rate) vs. FPR (False Positive Rate) at different classification thresholds. The AUC considers
the performance of a classifier across all possible classification thresholds. Lowering the threshold for
classifying a pathway as active results in classifying more pathways as active, thus increasing both false
positives and true positives. The AUC effectively reports on the probability that the method ranks
an active pathway that is selected randomly more highly than an inactive pathway that is selected
randomly. The ROC curves are plotted for PUMA and for enrichment ratios (Figure 4). The AUCs
are consistently higher for PUMA than for the enrichment ratios, with the exception of the case
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when pathway activities are low (0.3) and only 0.1 of metabolites within each pathway are produced.
An increase in the number of measurements while the pathway activity is fixed provides PUMA with
more evidence and in general results in PUMA performance improvements that are more pronounced
than for enrichment analysis. The lowest AUC for PUMA occurs with the lowest pathway activity
and lowest number of generated metabolites (AUC = 0.69), while the lowest AUC for the enrichment
ratio analysis occurs with the highest portion of active pathways, and smallest number of generated
metabolites (AUC = 0.50). Importantly, PUMA outperformed the enrichment ratio, on average, by 8%,
with average AUCs of 0.81 and 0.73 for PUMA and enrichment ratios, respectively.

We then applied PUMA to each dataset and averaged PUMA’s precision, recall and accuracy on
identifying the presumed active pathways. At a pathway activity of 0.3 (Figure S1A), as we have more
observed metabolites, recall increases because PUMA has more evidence in terms of observations
to recover the correct pathway activities. Precision, PUMA’s ability to label true positives correctly,
is greater than 0.71, regardless of the active fraction of metabolites. Accuracy improves with increased
active metabolites due to the corresponding increase in PUMA’s ability to identify true positives.
This trend holds for other assumptions about pathway activities (Figures S2A and S3A).

We investigate how uncertainty in metabolite annotation impacts inference regarding pathway
activity. Before running PUMA, each mass measurement is attributed to a presumed active metabolite,
thus removing annotation uncertainty. Results (Figures S1B, S2B, and S3B) show a similar trend to
those in Figures S1A, S2A, and S3A. A similar trend holds when each measured mas is randomly
assigned a metabolite amongst model metabolites with the same mass as a measured mass
(Figures S1C, S2C, and S3C). This result emphasizes that computing pathway activities without
the explicit step of performing metabolite annotation via spectral databases or annotation tools is a
profitable approach. PUMA can, therefore, be used to accelerate the process of pathway activity analysis
by direct use of mass measurements and bypassing metabolite annotation using spectral databases.

We further investigated the robustness of the model to its parameters. While prior runs assumed
that the probability of observing a metabolite due to a particular pathway activity was 0.5, we varied
the corresponding model parameter µ to 0.25 and to 0.75 and re-ran PUMA. The results (Figure S4)
show that inference is dominated by other aspects of the model and that inference is robust to this
model parameter.

3.2. Case Study: Chinese Hamster Ovary (CHO) Cell

We apply PUMA to LC-MS (Liquid-Chromatography Mass Spectrometry) metabolomics data for
CHO cell cultures belonging to a low growth cell line [15] (Supplementary Table S1). LC-MS data was
collected under three different combinations of liquid chromatography methods and positive or negative
ionization modes. The authors processed the data using the CAMERA tool and the dataset was limited to
masses corresponding to ions formed through protonation or deprotonation. When combined, the data
provides a more comprehensive characterization of the sample in the form of 8711 measurements.
The metabolic model for the CHO cell was extracted from KEGG [36], based on metabolites and
pathways for the cricetulus griseus (Chinese hamster) under organism code cge. The model had
86 pathways, 1534 metabolites, and 722 unique mass measurements. The m/z of the precursor ions in
the measurement datasets were adjusted based on the ionization mode by adding or subtracting the
mass of one proton. Adjusted measurements ± a 15 ppm are then used to initialize the observation
vector w for each dataset, as described in Section 2.2. This model and LC-MS dataset were used prior
to evaluate BioCAn [15], a tool that aggregates results from spectra databases, annotation tools and
network connectivity. The BioCAn evaluation thus provided putative identities in the form of KEGG
identities, and also provided annotations using METLIN and HMDB. We, therefore, compare metabolite
annotations with those provided for METLIN, HMDB, and BioCAn.
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3.2.1. Probabilities of Pathway Activities

Detailed results for each dataset and for the combined data set is provided in Supplementary Table S1.
A pathway is considered active if p(ai|w) is equal to or greater than 0.5. As mass observations differ
from one set of measurements to another, the predicted activity differs among the datasets. A detailed
discussion of the results for the individual datasets is provided in Supplementary File S1. The rest of the
CHO cell analysis provided here is based on the combined dataset.

Many of the 42 pathways identified active by PUMA are biologically relevant. The biological
activity of most pathways such as TCA cycle, essential for energy metabolism, Biotin (vitamin B7)
metabolism, amino acid synthesis, and many others, is expected. However, the activity of some
pathways, including caffeine and drug pathways, is biologically unlikely active in the CHO cell samples.
Based on our experiments using the synthetic datasets, we expect some PUMA predictions to be false.

Pathway activities predicted by PUMA are contrasted against pathway enrichment ratios (Figure 5).
Pathways are labeled as statistically enriched based on statistical significance of their ratios using
Fisher’s Exact Test (FET). The null hypothesis is that there is no difference between the enrichment
ratios of pathways in the sample. A p-value equal to or less than 0.05 is considered significant.
Eight pathways are designated statistically enriched. These pathways are galactose metabolism, fatty acid
degradation, purine metabolism, N-glycan biosynthesis, amino sugar and nucleotide sugar metabolism,
glycosaminoglycan degradation, glycerophospholipid metabolism, lipoic acid metabolism. Among
them, six pathways were predicted by PUMA to be active with probability equal to 1 while the N-Glycan
biosynthesis pathway had a 0.53 likelihood of being active. Fatty acid degradation is predicted to be
inactive. There were many pathways that had low enrichment ratios and low PUMA-predicted activity.
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While there was consensus in some cases, there were also differences. PUMA designates some
pathways as active despite low enrichment ratios. For example, the enrichment ratios of the TCA
cycle, fatty acid biosynthesis, ubiquinone and terpenoid-quinone biosynthesis are 0.15, 0.29, and 0.13,
respectively. Meanwhile, PUMA predicted these pathways active with a likelihood of 1. There are three
pathways with enrichment ratio equal to 0.5. Of them, one pathway, biotin metabolism, is assigned active
by PUMA with probability 1.0. The biotin metabolism pathway has a measured mass that is unique and
cannot be generated by other pathways. However, the other two pathways, both glycosphingolipid
biosynthesis pathways, are predicted active with probability less than 0.5 (0.47 and 0.48). The reason
was as follows: the observed mass measurements in the glycosphingolipid biosynthesis pathways
could be mapped to galactose metabolism and glycosaminoglycan degradation pathways that are
associated with a unique measurement that cannot be attributed to any other pathway in model
(similar to the case of w5 in our illustrative example Figure 1). As the result, the glycosphingolipid
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biosynthesis pathways were assigned probabilities less than 0.5, while the pathways with the unique
measurements are predicted active with high probability.

3.2.2. Probabilities of Metabolite Annotations

A particular measurement was associated with a model metabolite if its mass matched the
measured mass within the bin tolerance. Each measurement therefore may be assigned zero, one or
more possible annotation. Probabilities of each metabolite being present in the sample as inferred by
PUMA are used to score and rank the putative annotations. Here, the top ranked metabolite(s) for
each mass is considered as the PUMA candidate set.

We assess the accuracy of PUMA annotations by comparing the level of agreement of PUMA
annotations with those using two other techniques, spectral database searches and BioCAn (Figure 6).
Spectral signatures collected for the CHO Cell were looked up in METLIN and HMDB as was previously
reported [15]. Out of 411 mass measurements, 85 were matched using their spectral signatures either
in HMDB or METLIN. Each such measurement had one or more chemical identities assigned to the
spectral signature. Here, the highest scoring metabolite(s) for each measurement using METLIN and
HMDB formed the spectral database candidate set.
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Figure 6. Metabolite annotations attained with PUMA against those identified by: (A) searching
spectral databases, HMDB and METLIN, and (B) BioCAn. The blue slice in each pie represents
“agreement”. The orange and gray slices represent “semi-agreement” and “disagreement” respectively.
Finally, the yellow slice represents the number of mass measurements that could only be annotated
by PUMA.

For each measurement, the PUMA candidate set was compared against the spectral database
candidate set. The comparison leads to four different scenarios: “agreement”, “semi-agreement”,
“disagreement”, and “only PUMA”. An “agreement” scenario is where the PUMA candidate set exactly
matches the spectral database candidate set. Such agreement occurs in 60 cases. A “semi-agreement”
is when the spectral database candidate set is a subset of the PUMA candidate set. That is, unlike
the “agreement” scenario, there is not complete consensus regarding the top candidate set, and hence
the “semi-agreement” label. There are 15 cases of “semi-agreement”. A “disagreement” scenario is
when the spectral database candidate set does not overlap with the PUMA candidate set. There were
10 such cases of “disagreement”. In 7 such cases, the spectral database candidate set is the second
likely putative annotation identified by PUMA. These putative annotations, which were not part of
the PUMA candidate set, had high PUMA activity scores that were close in value to scores of the
metabolite(s) in the PUMA candidate set. In the remaining 3 cases, however, the spectral database
candidate is assigned a low score by PUMA. Clearly PUMA and METLIN/HMDB disagree in regard to
these three cases. An “only PUMA” scenario is when the spectral database candidate set was empty,
but the PUMA candidate set was not. There were 326 such cases. This large number of “only PUMA”
cases reflects the low coverage of spectral databases.

PUMA annotations are compared against those obtained using BioCAn [15]. BioCAn aggregates
results from spectral database searches and in silico fragmentation tools. Further, BioCAn estimates
the confidence in annotation not only based on consensus scoring but also based on the presence of
metabolites that are connected to the mass measurement through substrate-product relationships.
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BioCAn identifies 338 out of 411 mass measurements that are annotated by PUMA. The top ranked
metabolite(s) for each mass as annotated by BioCAn is considered the “BioCAn candidate set”.
We analyze various scenarios as we did when comparing against the spectral database candidate set.
Again, there were four scenarios: “agreement”, “semi-agreement”, “disagreement”, and “only PUMA”.
The definitions of these scenarios are similar to the ones provided for the METLIN/HMDB comparison,
but against the BioCAn candidate set instead of the spectral database candidate set. There are 255 cases
of “agreement”, 46 cases of “semi-agreement”, 37 cases of “disagreement”, and 73 “only PUMA”
annotations. The disagreements fell into two categories. In 17 out of 37 cases, there was disagreement
regarding the top candidate, where PUMA ranked BioCAn’s candidate as second best. There were
genuine disagreements in 20 cases where the annotation by BioCAn was assigned a low score by PUMA.

To validate annotations, BioCAn experimentally validated 50 of their predicted annotations
against chemical standards. A subset of 37 compounds were confirmed present based on the standards.
Thus, BioCAn’s precision on this 50-compound dataset is 0.740 (37/50). PUMA correctly calculated
the likelihood for 33 of the 50 compounds in the sample: 25 were true positives, and 8 were true
negatives. PUMA miscalculated the likelihood for 17 annotations: 5 were false positives and 12 were
false negatives. PUMA’s precision for this 50-compound dataset is 0.833, thus achieving a significant
additional 0.093 improvement in precision over BioCAn. Recall for PUMA for this 50-compound
dataset was 0.676.

In summary, comparing PUMA annotations against those obtained through spectral database
and BioCAn shows significant levels of agreement. METLIN, HMDB and BioCAn incorporate
spectra signatures during annotation while PUMA relies solely on pathway organization and mass
measurements. Importantly, for the CHO cell, PUMA increased annotation by 383% over spectral
databases and by 21% over BioCAn.

3.2.3. Evaluation of PUMA in Overcoming Uncertainty in Annotation

As a measured mass may be attributed to more than one metabolite, there is uncertainty inherent
in mapping measurements to metabolites. Matrix τ, with J rows and K columns, maps metabolites
in the model to their corresponding masses. We investigate if PUMA benefits from reducing the
mapping uncertainty by adjusting the τ matrix prior to running PUMA. In the case of the CHO cell,
the annotations obtained via spectral lookups in the METLIN and HMDB databases are used to assign
identities to some of the measured masses prior to running PUMA. To capture this knowledge, matrix τ
is modified to map each mass k to precisely a single metabolite j, which is identified based on the
METLIN and HMDB annotations. Column entries other than τ i, j are set to zero, indicating that
mass k uniquely maps to metabolite j. Using the updated τ, PUMA calculated posteriors for pathway
activities. There was a slight change in predicted posteriors (average increase of 0.003) compared to
those obtained using the original τ matrix. The change however does not alter posterior probabilities
sufficiently to modify the list of active pathways. We repeated the analysis but incorporated the
annotation data available from BioCAn instead of that obtained through spectral databases. The change
in τ caused a slight change in predicted posteriors (an average of 0.001 per pathway) compared to
those obtained using the original τ matrix. The one significant change was for pathway Phenylalanine
metabolism where pathway activity changed from 0.03 to 1.0. The phenylalanine metabolism pathway
is responsible for producing tyrosine. This finding suggests that substantial additional annotations, as
provided in the form of added annotations by BioCAn over the use of spectral databases, are required
to inform inference in regard to pathway activities.

3.3. Case Study: Human Urinary Sample

We apply PUMA to untargeted metabolomics datasets collected for human urinary samples
analyzed by Roux et al. [27]. Detailed annotations using KEGG identities, if available, are provided
for 384 metabolites based on careful analysis of 659 and 825 annotated ions in the positive and
negative modes, respectively. As PUMA utilizes post-processed metabolomics data, we utilized the
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384 mass measurements, which were already adjusted for ionization, adducts, and in-source fragment
ions, as input to PUMA. Byproducts in the urine may be attributed to human metabolic pathways.
We, therefore, modeled pathways responsible for these byproducts using the human metabolic model
from MetaCyc [37]. The model had 275 pathways, 716 metabolites, and 565 unique masses. To evaluate
PUMA without prior knowledge of metabolite annotations, each of the 384 mass measurements were
mapped to all model metabolites that were within ±15 ppm, as described in Section 2.2. Only 123 out
of the Roux et al. measured masses matched to metabolites in the model.

3.3.1. Probabilities of Pathway Activities

PUMA designated 41 pathways as active in human urinary sample (Supplementary Table S1).
We investigate how inference results compare with pathway enrichment ratios (Figure 7). Of the
41 pathways designated to be active using PUMA, six pathways (tRNA charging, 4-hydroxyproline
degradation I, histidine degradation VI, lysine degradation II, purine ribonucleosides degradation
to ribose-1-phosphate, nicotine degradation III) are statistically enriched. As in the CHO cell cases,
there were cases of agreement and disagreement. There are several pathways were PUMA predicts
low activity, while enrichment assumes a high enrichment ratio, including alanine biosynthesis II,
glutamate degradation II, aspartate biosynthesis, arginine degradation VI, and alanine degradation III.
The probabilities for these pathways are 0.26, 0.22, 0.17, 0.31, and 0.25, respectively, while the
corresponding enrichment ratios are 1.0, 0.57, 0.75, 0.6, and 1.0. Many measurements assigned to these
pathways, however, are not unique as they can generated due to activity of other pathways.
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3.3.2. Probabilities of Metabolite Annotations

The PUMA probabilities for each metabolite being present in the sample are used to score and rank
metabolites. Only the top ranked metabolite(s) for each mass are considered as the PUMA candidate set.
We compared our annotation against those provided by Roux et al. [27] (Figure 8). These annotations
were either identified by matching at least two of their physicochemical parameters to those in a
reference standard or annotated through spectral database lookups (HMDB). Some measurements were
annotated as isomers, without identifying the precise chemical molecular identity. Each measurement
was assigned the best possible match. We refer to this match as the Roux candidate. When comparing
the PUMA candidate set to the Roux candidate, there were four scenarios: “agreement”, “clarification”,
“disagreement”, and “model incompleteness issues”. An “agreement” scenario is where the
PUMA candidate set exactly matches the Roux candidate. Such agreement occurs in 85 cases.
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A “clarification” scenario is when the PUMA candidate set provided a specific chemical annotation
while the Roux candidate annotated the measurement as an isomer. There were 23 cases of “clarification”.
A “disagreement” scenario is when the Roux candidate was available in the model but was not predicted
as match by PUMA. There was one case of “disagreement”. A “model incompleteness issues” scenario
is when the Roux candidate was not in the model, reflecting that PUMA provides the best match within
the scope of model metabolites. There were 14 “model incompleteness issue”. More comprehensive
metabolic model could address such issues.Metabolites 2020, 10, x FOR PEER REVIEW 15 of 19 
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3.4. Model Convergence, Complexity, and Runtimes

The time and space complexity in sampling the model is O(T × I × J). The runtime for drawing
1000 samples for pathway activity prediction and metabolite annotation for the CHO cell dataset
were 231 and 0.5 s, respectively. The corresponding runtimes for the Human Urinary case study were
280 and 0.4 s, respectively. The runs were performed on a Dell PowerEdge R815 server with 64 cores
(4× AMD Opteron 6380 processors) and 128 GB of RAM, running at 2.5 GHz.

4. Discussion and Conclusions

We presented in this paper PUMA, a probabilistic approach to interpret mass measurements
collected through untargeted metabolomics. PUMA first uses inference to determine pathway activities.
While prior works focused on computing pathway enrichment in the context of comparing one sample
against the other, here, we define a pathway as active based on its likelihood of being responsible for the
presence of one or more metabolomics measurements. In determining activity, PUMA reasons about
the complex relationships between the measurements as well as known pathway as defined through
the underlying biochemical networks. In doing so, levels of uncertainty in mapping measurements
to metabolites and pathways are significantly reduced. Moreover, a clearer view of the likelihood of
pathway activity levels emerges when compared to simple enrichment analysis. PUMA then utilizes the
likelihood of pathway activities to compute the posterior probability distribution of metabolites being
present in the sample. The mathematical formulation for computing pathway activities and metabolite
annotation probabilities was essential in achieving fast runtimes. For each test case, PUMA’s runtime
for calculating pathway activities was under five minutes. The runtime for calculating metabolite
annotation was less than a second. A naïve implementation of pathway activity inference would have
caused significantly longer runtimes.

PUMA was validated using synthetic datasets, generated to compensate for the lack of
“ground truth” metabolomics datasets where all metabolites and pathway activities are known.
As expected, additional measurements consistently improve PUMA recall scores. This study provided
two strong results. First, fixing identities of the measurements prior to computing pathway activities
provide limited improvement in PUMA performance, thus emphasizing that bypassing metabolite
identification prior to computing pathway activity is a valid approach for determining pathway activities.
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Second, using AUC for the ROC curve as a metric, the pathway activity likelihoods computed using
PUMA, on average, outperform the pathway enrichment analysis by an average of 8%.

PUMA was applied to two case studies, the CHO test case and the human urine test case. In regard
to pathway analysis, PUMA identifies pathways that have a high likelihood of being active but
have statistically low enrichment ratios, and pathways with low likelihood of being active yet with
statistically high enrichment ratios. PUMA, therefore, offers a perspective on pathway activity that is
distinctly different from that offered by statistical enrichment.

In regard to metabolite annotations, PUMA results had high agreement to prior annotations.
This high level of agreement occurs despite the fact that PUMA does not utilize additional information
in form of spectra signatures, as employed by other techniques. In the case of the CHO cell test
case, PUMA increased the percentage of mass annotation by 383% over spectral lookups and by 21%
over BioCAn. PUMA analysis of a 50-compound dataset that was experimentally verified by BioCAn,
yielded 0.676 recall and 0.833 precision, which provides a significant 0.093 improvement in precision
over BioCAn. For the human urine test case, PUMA showed agreement in annotating 85 metabolites
that were annotated before using database looks ups. PUMA also suggested new putative identities for
measurements that were previously identified only as isomers. Agreements demonstrated for both test
cases against prior experimental annotations (those provided by BioCAn [15] and by Roux et al. [27])
provide strong evidence for PUMA’s annotation capabilities.

The approach of predicting differential functional activity directly from spectral features without
a priori metabolite annotation was previously shown effective using Mummichog [22]. PUMA utilizes
all measurements to compute the likelihood of pathway activities that gave rise to the measurements.
PUMA considers a biological sample under a certain condition, while Mummichog utilizes differentially
expressed measurements to determine differently observed pathways/modules. PUMA uses the likelihood
of pathway activities to derive metabolite annotations. Analyzing both the synthetic data sets and the
CHO cell test case, PUMA confirms that the organization of metabolic networks can resolve the
ambiguity in metabolite annotation to a large extent, as previously noted when using Mummichog.

PUMA is based on inference but differs from other inference-based methods. ProbMetab [38]
uses a probabilistic method [39] to assign empirical formulas to measured spectra given potential
formulas. The method proposed by Jeong et al. constructs a generative model to infer the likelihood of
a metabolite in the sample and the correctness of matching the measurement to a candidate metabolite
within a spectral database based on measured spectra’s similarity to that of the proposed candidate and
to other competing spectra in the database [40]. The competing spectra, however, may not be relevant
to the sample. Del Carratore et al. uses evidence in the form of isotope patterns, adduct relationship
and biochemical connections to infer metabolite annotations [41]. ZODIAC [42] also utilizes inference
to re-rank molecular formula candidates suggested by SIRIUS [43].

The presented method herein provides a novel, efficient, inference-based pathway analysis
technique. PUMA can be enhanced in multiple ways. PUMA assumes that pathway activities are
independent. Under this assumption, observed (present or absent in the sample) metabolites are
not independent because they share the same set of hidden random variables. This relationship is
evident in the graphical representation of the generative model (Figure 3). However, PUMA does not
consider biochemical dependencies between substrates and products. The generative model proposed
herein can be strengthened by considering such relationships. Further, modeling instrument bias
and sensitivity to metabolite concentrations can enhance PUMA, as well as other annotation tools.
PUMA, like Mummichog, BioCAn, and other enrichment analysis tools depend on genome-scale
metabolic models. However, such models are often incomplete, yielding incomplete analyses as
evidenced in the scenario of “model incompleteness issues” when applying PUMA to the human
urine sample. Integrating metabolomics data with genomics data can potentially yield improved
metabolic models [44]. PUMA, like many other tools, can be enhanced by investigating instrument
bias and sensitivity to metabolite concentrations. Herein, synthetic datasets served an important role in
validating PUMA’s performance. The synthetic datasets were generated using the CHO cell as a model
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organism and assumed several scenarios with a wide range of pathway activity and observations. It is
possible to make alternate assumptions regarding the data generation process and further adjust the
generation assumptions to account for potential biases in collecting the measurements.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/5/183/s1.
Supplementary File S1.pdf provides additional derivations in support of inference of pathway activity and
metabolite annotations. Supplementary Table S1 provides additional results on the synthetic dataset and on the
CHO case study.
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