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Abstract: Red blood cells are constantly exposed to reactive species under physiological or pathological
conditions or during administration of xenobiotics. Regardless of the source, its accurate quantification
is paramount in the area of theragnostics, which had been elusive up until now. Even if there are a
lot of approaches to evaluate the oxidative stress, very sensitive methods are missing for the blood
system. We therefore sought to apply a highly sensitive approach, by liquid chromatography coupled
to mass spectrometry (UPLC–MS), for the quantification of reactive species such as superoxide radical
and hydrogen peroxide using dihydroethidium (DHE) and coumarin boronic acid (CBA) probes
respectively through the detection of 2-hydroxyethidium (2OH-E+) and 7-hydroxycoumarin (COH).
The use of the high-resolution mass spectrometry associated to UPLC ensured a selective detection of
superoxide and hydrogen peroxide in the blood system under diverse conditions such as oxidized
red blood cells (RBCs), untreated and treated parasitized RBCs. Moreover, this technique allowed the
determination of reactive species in human plasma. This protocol provides a huge opportunity for
in-depth study of several pathological conditions vis-a-vis their treatment in modern medicine.

Keywords: liquid-chromatography; mass spectrometry; superoxide radicals; hydrogen peroxide
species; red blood cells; human plasma; microvesicles; Plasmodium falciparum

1. Introduction

To unravel the biological roles of reactive oxygen species (ROS), the ability to detect, identify and
quantify the reactive species involved at the cellular level is paramount. Oxidative stress results from an
imbalance between the antioxidant system and generation of reactive species that normally takes place
in healthy organism. Under conditions of oxidative stress, the increase in reactive species production
leads to subsequent alteration of membrane lipids, proteins and nucleic acids [1,2]. Oxidative stress
can be measured directly by the quantification of reactive oxygen, nitrogen species or indirectly
by measuring the level of oxidative markers such as lipid peroxidation or antioxidant enzymes
or glutathione [3]. The direct and indirect methods are usually complementary to each other in
stating the oxidative state of a cell, but the direct approach is often more challenging. Several direct
approaches exist for eukaryotic cells among them luminescent assays (fluorescent, chemiluminescent
and bioluminescent) [4] and electron paramagnetic resonance (EPR) [5].
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Fluorescent assays use certain sensors such as H2DCFDA (2’,7’-dichlorodihydrofluorescein
diacetate) or CM-DCFDA, chloromethyl derivative of H2DCFDA, DHE (dihydroethidium, also called
hydroethidine), CBA (B-(2-oxo-2H-1-benzopyran-7-yl)-boronic acid or coumarin boronic acid).

However, these probes lack specificity and sensitivity for the targeted reactive species, which
limit their application and subsequent interpretation of results. Indeed, the probes often form several
adducts, which absorb or emit light at similar wavelengths and are also prone to redox-cycling [6].
In the same manner, the use of EPR assays has its shortfalls. Although EPR is described as the
“gold standard” for the detection of radical species, the spin adducts formed after reaction of the
probe with the specific radical is rapidly metabolized into the cell [7]. In these conditions, EPR
analysis is suitable only for the detection of extracellular reactive species. To overcome the problem
of non-selectivity, associations of fluorescent measurements with liquid chromatography (LC) were
reported for eukaryotic cells for the detection of specific adducts such as 2-hydroxyethidium (2OH-E+)
for superoxide and 7-hydroxycoumarin (COH) for hydrogen peroxide or peroxynitrite [8–11] (Figure 1).
Moreover, the use of mass spectrometry coupled with LC has been proposed to unequivocally detect
the desired adduct formed by the reaction of the probe with the targeted species [8,9,12–15].

In the case of red blood cells (RBCs), the options that offer the required specificity and sensitivity
are limited. The need for the study of ROS in the blood system is increasingly pertinent because of
several physiological (e.g., cell signaling), blood storage in transfusion units [16–19] (e.g., anaerobic and
cryopreservation), pathological (e.g., thalassemia and malaria) and chemotherapeutic (e.g., antimalarial,
anticancer, etc.) conditions that exacerbate oxidative stress [20,21].

Until now, methods in use are especially fluorescence using H2DCFDA [6,22–24] and EPR using
DMPO as a spin trap [25] for the direct quantification of reactive oxygen species in RBCs and human
plasma. The shortcomings of these prevailing approaches buttress the need for a newer and more
reliable approach. In this article, we report how the LC–MS method can be successfully applied to
erythrocytes and human plasma for quantifying superoxide radicals and its reduced form, hydrogen
peroxide in the erythrocyte system under diverse conditions.
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Figure 1. Formation of specific adducts from reaction of probes with targeted reactive oxygen species.
CBA: Coumarin boronic acid (detected as the formiate adduct C10H8BO6

−; m/z 235.0419 (th)), CBE:
pinacolate ester of Coumarin boronic acid, COH: 7-hydroxycoumarin (detected as the deprotonated
form C9H503

−; m/z 161.0244 (th)), DHE: dihydroethidium (detected as the protonated form C21H22N3
+;

m/z 316.1808 (th)) and 2OH-E+: 2-hydroxyethidium (detected as a cation C21H20N3O+; m/z 330,1601 (th)).

2. Materials and Methods

2.1. Materials

DMSO, 99.9%, DHE (dihydroethidium), CBA (Coumarin boronic acid), COH (7-hydroxycoumarin),
>98.0% (HPLC), phenylhydrazine, artemisinin and RPMI 1640 medium were purchased from
Sigma-Aldrich, St. Quentin Fallavier, France. Formic acid (Optima for LC–MS), ammonium acetate
(Optima for LC–MS), acetonitrile (HPLC gradient grade), methanol, (HPLC gradient grade) and
phosphate buffer saline were purchased from Thermo Fisher Scientific, Illkirch, France. 2OH-E+ was
synthesized following the protocol of Zielonka et al. [8].
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2.2. Biological Materials

2.2.1. Blood Sample Collection

Blood samples from healthy donors were collected in EDTA-containing tubes in the morning from
Etablissement Français du Sang (EFS, Toulouse, France), responsible for ethic statements. The samples
were centrifuged at 200× g for 5 min at 4 ◦C to separate the cellular components from the plasma and
stored at −80 ◦C until the analyses were carried out.

2.2.2. Cultivation of Plasmodium falciparum-Infected Red Blood Cells (RBCs).

Freshly drawn blood (Rh+) from healthy adults (both sexes were used) and anticoagulated with
heparin was stored in citrate-phosphate-dextrose with adenine (CPDA-1) prior to use. RBCs were
separated from plasma and leukocytes after centrifugation and subsequently washed three times in
RPMI 1640 medium. The laboratory strains of Plasmodium falciparum (mycoplasma-free) were grown
according to standard protocols. The parasites were maintained in RPMI 1640 medium supplemented
with 5% human serum at 2% hematocrit. Both strains FcB1-Columbia and F32-Tanzania were used for
developing the protocol. The P. falciparum parasites were maintained synchronized by treating the
culture with 5% (w/w) D-sorbitol (1:10) at the ring stage of the erythrocytic cycle (0–12 h) as described by
Lambros and Vanderberg [26]. If a very high parasitemia (≥ 80%) is required, a column chromatographic
technique involving magnetic columns is used to increase the synchrony and percentage parasitemia
at the trophozoite stage [27].

Before analysis the parasite culture pellet (FcB1-Columbia strain) is collected by centrifugation
at 469× g for 5 min in a 50 mL tube. The parasitized RBCs (pRBCs) were diluted appropriately in
phosphate buffer saline (PBS) to obtain 10–20 million cells/mL in 1.5 mL eppendorf tubes.

According to the study conducted, pRBCs were incubated with 200 nM ART for 1 h.

2.2.3. Oxidation of Red Blood Cells

RBCs were separated from whole blood by centrifugation at 200× g for 5 min at 4 ◦C and were
also washed three times in sterile phosphate buffer saline (PBS) avoiding presence of white blood
cells. The RBCs (5 × 106 cells) were incubated overnight (12 h) at 300 rpm at 4 ◦C in an Eppendorf
Thermomix (Hamburg, Germany) with the ROS inducer. For the present experiment (see Figure 2 for
details) RBCs were incubated with 1 mM phenylhydrazine (PHZ) in PBS. PHZ was removed the next
day by washing three times with PBS. Before analysis the suspension was centrifuged at 200× g for 5
min at 4 ◦C to obtain a pellet.
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preparation or the LC–MS analysis. Note: pRBCs: Plasmodium infected red blood cells, MeOH:
methanol, DHE: dihydroethydium, ART: artemisinin.
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2.2.4. Human Plasma

Human plasma was separated from whole blood by centrifugation at 200× g for 5 min at 4 ◦C.
Plasma was then transferred in a new Eppendorf while white blood cells and pellets were totally
removed. The plasma was then diluted 100 times in PBS.

2.3. LC–MS Assays

2.3.1. LC–MS Measurements

The LC–MS analysis was performed using an Ultimate 3000 UPLC system consisting of a solvent
organizer SRD-3600 with a degasser, a high pressure binary gradient pump HPG-3400RS, a thermostated
autosampler WPS3000TRS, an oven TCC3000SD and an UV-Visible detector DAD3000 (ThermoFisher
Scientific, Courtaboeuf, France) coupled with LTQ-Orbitrap XL ETD mass spectrometer (ThermoFisher
Scientific, Courtaboeuf, France).

The 2 mobile phases used for analyses consisted of A) 20 mM ammonium acetate solution
prepared in water (MilliQ) pH 9 and B) acetonitrile for superoxide detection and in A) 0.1% formic
acid solution prepared in water (MilliQ) and B) 0.1% formic acid prepared in acetonitrile for hydrogen
peroxide detection.

For 2OH-E+ analysis, UPLC was performed using an UPLC Kinetex EVO C18 1.7 µm column
(2.1 mm × 100 mm) at 50 ◦C; flow rate 400 µL/min using the following chromatographic conditions:
75% A/25% B to 95% B in 2.5 min with a non-linear gradient (concave, “curve 3”), hold for 0.5 min and
then back to the initial conditions in 0.1 min. The MS analysis was performed in positive electrospray
ionization (ESI) mode: spray voltage 4.2 kV; capillary temperature 300 ◦C, resolution 15000.

For COH analysis a UPLC Kinetex C18 1.7 µm column (2.1 mm × 100 mm) was used at 40 ◦C;
flow rate 500 µL/min using the following chromatographic conditions: 85% A/15% B to 75% B in
2 min, to 98% B/2% A in 0.1 min. The MS analysis was performed in negative electrospray ionization
(ESI) mode: spray voltage 3.2 kV and capillary temperature 300 ◦C, resolution 7500. The peaks of the
chromatogram were integrated using Xcalibur software.

Before each measurement, a calibration curve was prepared. The 2-hydroxyethidium (2-OH-E+)
standard solutions were freshly prepared on the day of experiment by diluting the stock solution
(50 µM) serially in the mobile phase A to obtain 6 standards from 10 to 500 nM. The COH standard
solutions were also freshly prepared on the day of experiment by diluting the stock solution (10 mM)
serially in aqueous methanol (50% v/v). Examples of the corresponding curves are presented in
Figure 3A,B. LOD and LOQ were calculated from several calibration curves giving the following values
LOD 7 nM/LOQ 24 nm for superoxide and LOD 11 nM/LOQ 37 nM for hydrogen peroxide.
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2.3.2. Analysis of Oxidized Red Blood Cells

Fifty microliters of the pellet were probed with 20 µM of DHE or CBA and incubated for 30 min.
After centrifugation at 200× g for 5 min at 4 ◦C, the supernatant was collected for analysis. Then 100 µL
of a hemolysis buffer (5 mmol/L sodium phosphate and 1 mmol/L EDTA, pH 8.0) were added to the
pellet and vortexed rigorously. Before analysis, 100 µL of methanol were added to the lysed cells and
to the supernatant to precipitate the cell debris. After centrifugation at 5000× g for 30 min at 4 ◦C,
both samples were analyzed by the LC–MS analysis.

2.3.3. Analysis of Plasmodium Falciparum Parasitized Red Blood Cells

A suspension of pRBCs was probed with 20 µM of DHE or CBA and incubated alongside with
artemisinin (ART; 200 nM). After 1-hour incubation the suspension was centrifuged at 200× g for 5 min.
After removing the supernatant, the pellet was washed 2–3 times in 100 µL PBS. To lyse the cells,
100 µL of the hemolysis buffer (5 mmol/L sodium phosphate and 1 mmol/L EDTA, pH 8.0) were added
to the pellet placed on ice. To facilitate the lysing of the plasmodial membranes 2 freeze thaw cycles
twice were performed at −80 ◦C and water bath respectively for about 30 min. Before analysis, 100 µL
of methanol were added to the lysed cells and to the supernatant to precipitate the cell debris. After
centrifugation at 5000× g for 30 min at 4 ◦C, both samples were analyzed by the LC–MS analysis.

As a control, the red blood cells were incubated with the vehicle only, i.e., using an equal amount
of solvent as was used for the incubations with the chemicals of interest.

2.3.4. Analysis of Human Plasma

The diluted plasma was probed with 20µM of DHE or CBA. To separate plasma membrane vesicles
(PMVs) from other components (ghost, cell fragments and debris), the suspension was centrifuged at
5000× g for 10 min at 4 ◦C. The supernatant was then collected and 100 µL of methanol was then added
to lyse PMVs [28,29]. The sample was further centrifuged at 5000× g for 30 min at 4 ◦C and analyzed.

3. Results and Discussion

3.1. Detection of Reactive Oxygen Species in Oxidized RBCs

Treatment of RBCs with PHZ, a strong oxidant, causes selective association of oxidized
alpha-globin chains with the membrane skeleton, which reduces RBC deformability, a characteristic of
beta-thalassemia. Furthermore, PHZ induces deleterious oxidations in the components of erythrocytes,
generating ROS and reacting with hemoglobin by changing the oxyhemoglobin into methemoglobin,
hemichromes and other byproducts [30–32]. The nature and amount of ROS produced in such conditions
were investigated using LC–MS. An example of the mass chromatogram is presented in Figure 4A,B.
The corresponding concentration of superoxide and hydrogen peroxide deduced from the calibration
curves are presented in Figure 5. As demonstrated, a significant increase (approximately 4 folds) of
both species was observed for PHZ treated RBC in comparison with untreated ones. The concentration
increased from 10 to 50 nM for O2

•- and from 25 to 100 nM for H2O2.
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Figure 4. Extracted mass chromatogram based on m/z 330 and corresponding 2OH-E+ mass spectrum
(A). Extracted mass chromatogram base on m/z 161 and corresponding COH mass spectrum (B).
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hemoglobin of the RBC releasing ferrous iron (Fe2+) species, heme that can reoxidize to form
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act as antimalarials by inducing an overproduction of ROS after activation by heme or free iron [33].
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Figure 6. Quantification of superoxide (A) and H2O2 (B) in parasitized RBCs treated with artemisinin
comparatively to the untreated ones. Note: results represents six replicates from three independent
experiments, value = mean ± SD. * = Significant (p < 0.05).

3.3. Detection of Reactive Oxygen Species in Human Plasma

Plasma membrane-vesicles (PMVs) are released into circulation because of normal and
stress/pathogenic conditions. PMVs are also referred as microparticles (MPs), microvesicles (MVs)
or rarely, ectosomes. They are submembrane fragments shed from the plasma membrane of red
cells, platelets, white cells during cell growth, activation, proliferation, senescence and apoptosis [36].
PMVs contain a pro-oxidant or antioxidant machinery that may produce or scavenge ROS metabolic
enzymes (direct effect) and can modify (activate or inhibit) the ROS content in the extra-as well as the
intracellular compartments [37]. Taking into consideration that plasma contains PMVs that directly or
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indirectly produce or scavenge ROS, we investigated the exact amount of superoxide radicals and H2O2

species levels in the human plasma of healthy donors. It was impossible to detect ROS in non-diluted
plasma as the matrix effect was observed inducing a shift of the retention time (Figure 7A,B). A 100-fold
dilution of the plasma allowed us to achieve the right retention time (Figure 7C). The same phenomenon
(matrix effect in non-diluted plasma) was also observed for H2O2 species detection. Moreover, a second
peak was detected for a retention time of 1.82 min. This peak is attributable to a little percentage of
DHE (eluted at this retention time) oxidized during ionization into 2OH-E+. This second peak was not
taken into account in the integration of the peak because it did not originate from superoxide.
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The LC–MS allowed us to detect ROS in healthy donor’s plasma at 201 ± 13 nM for superoxide
and 50 ± 9 nM for hydrogen peroxide. This result is of particular interest because it is highly desirable
to measure abnormal levels of ROS in clinical samples of patients with iron overload disorders such as
thalassemia and myelodysplastic syndromes [38] to better predict progression, and to improve the
treatment outcomes of iron chelators.
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4. Conclusions

The use of the high-resolution mass spectrometry associated to UPLC ensured a selective detection
of superoxide and hydrogen peroxide in the blood system under diverse conditions such as oxidized
RBCs, untreated and treated parasitized RBCs. Moreover, this technique allowed the determination
of reactive species in human plasma. This novel method appears to be of great interest due to
the increasing consideration given to ROS in various pathological states and the development of
therapeutics agents.
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