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Abstract: Metabolite differential connectivity analysis has been successful in investigating potential
molecular mechanisms underlying different conditions in biological systems. Correlation and Mutual
Information (MI) are two of the most common measures to quantify association and for building
metabolite—metabolite association networks and to calculate differential connectivity. In this study,
we investigated the performance of correlation and MI to identify significantly differentially connected
metabolites. These association measures were compared on (i) 23 publicly available metabolomic
data sets and 7 data sets from other fields, (ii) simulated data with known correlation structures,
and (iii) data generated using a dynamic metabolic model to simulate real-life observed metabolite
concentration profiles. In all cases, we found more differentially connected metabolites when using
correlation indices as a measure for association than MI. We also observed that different MI estimation
algorithms resulted in difference in performance when applied to data generated using a dynamic
model. We concluded that there is no significant benefit in using MI as a replacement for standard
Pearson’s or Spearman’s correlation when the application is to quantify and detect differentially
connected metabolites.

Keywords: biological networks; data simulation; dynamic model; metabolomics; network analysis;
nonlinearity; Pearson’s correlation coefficient; permutation test; Spearman’s correlation coefficient;
Toeplitz correlation

1. Introduction

Metabolite concentration profiles measured in samples, like blood, urine, or tissues and their
patterns of variations, are regulated by complex bio-molecular machines. In recent times, there
has been a shift towards studying metabolite profiles in a holistic manner by computational and
mathematical methods, thanks to the possibility of measuring many metabolites simultaneously
using high-throughput techniques like mass spectroscopy (MS) and nuclear magnetic resonance
(NMR) [1–3].

A biological system can be represented as a complex network of interconnected biomolecular
entities [4] which can be visualised in a graphical manner as networks, i.e., sets of nodes that
are connected by edges to indicate the existence and the strength of pairwise relationships [5].
This representation shifts the focus towards the relationships among biological entities rather
than on their levels; in this light, network and network analysis are fundamental tools from the
systems biology toolbox to investigate and understand metabolomic data [6]. When the nodes
are metabolites, the network can be called a metabolite-metabolite association network [6,7], and,
in modern metabolomic studies, the interest is to reconstruct these associations patterns from observed
data measured in well designed experiments.
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Association patterns are usually quantified using similarity measures, like correlation and Mutual
Information (MI), and most algorithms built for the purpose of network inference make use of one of
these two indices [8].

Once metabolite-metabolite association networks are reconstructed, they can be analysed in the
context of the study design they have been reconstructed, for instance, comparing them across two or
more conditions and performing a so-called differential network analysis. In particular, the interest
lies in comparing the connections and magnitude thereof for each metabolite between different
networks to highlight network differences. The rationale is that, under normal conditions of the
system, the metabolites behave in an orchestrated manner and perturbations to the systems, such as
those induced by pathophysiological conditions, will induce modifications in the relationships among
metabolites that will be reflected in their connectivity patterns. Metabolite connectivity and differential
connectivity analysis are illustrated in Figure 1.

Figure 1. Graphical illustration of the concept of metabolite connectivity and differential connectivity.
An ideal unweighted metabolite-metabolite association network involving 10 metabolites is shown
under two different conditions. Metabolite i is connected with a different number of metabolites
(represented by the existence of an edge ) in the two conditions. The connectivity χi of metabolite i
is given by the number of connecting edges (for a generalisation for weighted association networks,
see Equation (28) in Section 3.3): 6 under condition 1 and 2 under condition 2. The differential
connectivity of metabolite i is given by ∆χi = χG1

i − χG2
i = 6− 2 = 4, as described in Equation (29).

In metabolomics, metabolite differential connectivity analysis has been successful to investigate
and highlight potential molecular mechanisms underlying cardiovascular diseases [7], age and sex
phenotypes [9], acute myocardial events [10], and severe bacterial infections [11]. For instance,
Saccenti et al. [7] analysed the metabolite-metabolite association networks specific to different
cardiovascular risk patients and reported differential connectivity of Very Low Density Lipoprotein
(VLDL) and glucose in high and low risk networks. Azal et al. [11] found the networks specific to
patients with necrotising soft tissues infections to be more connected than those of healthy controls and
singled out differentially connected metabolites that showed capability of interfering with bacterial
biofilm formation.

The motivation for this study arose when re-analysing data from Reference [12] in the context
of differential analysis of metabolite-metabolite association networks. The original study dealt
with the characterisation of metabolites profile associated with sex and age; we were interested
in exploring sex-specific patterns of metabolite-metabolite association networks. To this aim,
we performed differential network analysis as detailed in the Material and Methods section; briefly,
metabolite-metabolite association networks were built starting from the sample correlation matrices or
the MI calculated from male and female samples, and a weighted connectivity was calculated as the
sum of the (absolute) values of the pairwise Pearson’s correlation (respectively, MI) of a metabolite
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with every other metabolites, as illustrated in Figure 2. Differential connectivity was defined as the
difference between each metabolite connectivity in male and female specific networks, as exemplified
in Figure 1. Significance was assessed using a permutation test.

Figure 2. Graphical illustration of differential connectivity analysis. Given two data sets X1 and X2 of
size n1 × p and n2 × p with n1 possibly different from n2, weighted association matrices are built using
either correlation (C1 and C2, for X1 and X2, respectively) or Mutual Information (MI) (MI1 and MI2).
Weighted (metabolite) connectivity is then calculated as described in Equation (28) for group 1 and
group 2 as χG1

i and χG2
i . The differential connectivity is given by ∆χi = χG1

i − χG2
i , and it is calculated

using both correlation and MI. Significance is then assessed using a permutation test.

We observed many more differentially connected metabolites when using correlations as a
measure of association than with MI. Actually, all 128 measured metabolites showed statistically
significant differential connectivity when correlation was used and only 23 when MI was used.

These results were at first surprising: we expected MI to be a more informative measure for
quantifying relationship among metabolite than Pearson’s correlations. After all, it is a common place
to expect metabolites to exhibit nonlinear behaviour which is better captured by MI. MI (see definitions
and equations in Section 3.2) is a non-parametric measure, and it is a comprehensive measure of
independence, which makes it superior (in principle) for accounting for both linear and nonlinear
dependencies [13]. In fact, Pearson’s correlation can underestimate the dependence between variables
when the dependence translates into nonlinear relationships.

An illustrative example is given in Figure 3 that shows four different data patterns (plot of
simulated metabolite concentration) all having the same MI (1.32 nats) but very different correlation.
Correlation is not able to capture highly nonlinear dependence like in the case shown in panel C, where
the metabolites are obviously interdependent.

The question arose of why we observed such counter intuitive behaviour, which led us to
explore the question of which association measure is more appropriate for differential analysis of
metabolite-metabolite association networks. We started by re-analysing 23 data sets of publicly
available metabolomics studies from several research fields, ranging from plant to cancer metabolomics,
acquired on different matrices, from cell to tissues, with both MS and NMR. We then compared MI and
correlation on simulated data with different correlation structures and properties and using different
algorithms to estimate MI (see Section 2.1). Finally, we also compared MI and correlation on simulated
data generated using a dynamic model for the NF -κB pathway. In all cases, we found correlation,
either of Pearson’s or Spearman’s formulation, to be a more sensitive measure of similarity than MI
when used in the context of differential connectivity analysis.
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Figure 3. Four different data patterns obtained by plotting the simulated concentration of two
metabolites, A and B, on which Gaussian experimental noise has been added. (A) Positive linear
relationship, ρ = 0.96 (Pearson’s correlation); (B) Negative linear relationship, ρ = −0.96; (C) Sine-wave
relationship, ρ = 0 ; (D) Bell-shaped relationship, ρ = 0.28. In all cases, the MI is 1.32 nats (or 1.90 bits).
One nat is the information content of the uniform distribution on the interval [0, e] where e is the basis
of the natural logarithm. This figure is an adaptation from Table 1 from Reference [13].

2. Results

2.1. Differential Connectivity Analysis on Experimental Data

As anticipated in the Introduction, we observed a marked difference when calculating the
metabolite differential connectivity (see Equations (28) and (29)) from the metabolite-metabolite
association network estimated from blood samples collected from male and females subjects (data set
no. 15 in Table 1) [12].

Subsequently, we re-analysed 23 publicly available data sets pertaining metabolomic studies
from different fields, from cancer to plant biology. Although different in scope, most studies followed
the same simple experimental design: samples were collected from two groups of subjects or from
different conditions with the aim of comparing profiles between group 1 and group 2. A list of the data
sets considered is given in Table 1, together with a summary of sample size, number of metabolites
measured, the experimental platform, and the study design.

For each study, we calculated a weighted adjacency matrix using both Pearson’s correlation and
MI via empirical estimation for the two groups, and, for each metabolite, we defined the weighted
connectivity, which was compared between the two groups defined by the study design and in which
significance was assessed using a permutation test, as illustrated in Figure 2. Results are shown in
Table 1. In all cases, the number of differentially connected metabolites (at an α = 0.05 confidence
level) was much higher when correlation was used as a measure for association and subsequently
used to calculate the metabolite connectivity.
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Table 1. Correlation and MI indicate the number of features found to be statistically significantly differentially connected (at the α = 0.05 level using correlation and MI
as measure of association). Only in correlation and Only in MI denote differentially connected features found only using correlation and MI, respectively. Overlap
indicates those found by both methods. The number of observation (No. observations) is n = n1 + n2, where n1 and n2 is the sample size of group 1 and 2, respectively.
Study IDs starting with MTBL indicate data available in Metabolights database [14] (www.ebi.ac.uk/metabolights), while those starting with ST indicate data available
in the Metabolomics Workbench database [15] (www.metabolomicsworkbench.org). Data set No. 27 was obtained from the RAST database [16] (www.mg-rast.org).
Data sets without study ID were derived either from the original publications or from R packages within which they were distributed: BioMark [17], kodama [18],
MixOmics [19], and pgmm [20]. Abbreviations: CD, Crohn’s disease; CFS, Cronic fatigue syndrome; E Estrogen; E+P, Estrogen + Progesterone; ES, Ewing sarcoma;
IBD, Inflammatory bowel disease; MA, microarray; RMS, Rhabdomyosarcoma; UC, Ulcertive colitis. For data set 24 and 25, the superscripts ‘+’ and ‘−’ indicate the
250 most (the least, respectively) expressed genes, and the superscript r indicates a random selecion of 500 genes.

No. Differentially Connected Features

No. Study ID Ref. Platform Type No. Observations No. Features Design Correlation MI Only in Corr Only in MI Overlap

1 MTBLS90 [21] LC–MS Plasma 968 (485/483) 189 Sex (M/F) 132 101 68 37 64
2 MTBLS92 [22] LC–MS Plasma 253 (142/111) 138 Chemotherapy (before/after) 138 12 126 0 12
3 MTBLS136 [23] LC–MS Serum 668 (337/331) 371 Homone (E/E+P) 255 125 167 37 88
4 MTBLS161 [24] NMR Serum 59 (34/25) 30 CFS (case/control) 14 12 6 4 8
5 MTBLS404 [25] LC–MS Urine 184 (101/83) 120 Sex (M/F) 105 58 51 4 54
6 MTBLS547 [26] LC–MS Caecal 97 (46/51) 35 High fat diet (case/control) 35 4 31 0 4
7 ST000369 [27] GC–MS Serum 80 (49/31) 181 Adenocarcinoma/Healthy 181 69 112 0 69
8 ST000496 [28] GC–MS Saliva 100 (50/50) 69 Debridement (pre/post) 59 31 32 4 27
9 ST001000 [29] LC–MS Stool 121 (68/53) 124 IBD (CD/UC) 96 79 33 16 63
10 ST001047 [30] NMR Urine 83 (43/40) 149 Gastric cancer/healthy 109 85 42 18 67
11 ST000061 GC-MS Tissue 118 (59/59) 157 subcutaeus/visceral fat 156 83 73 0 83
12 [31] NMR Urine 50 (25/25) 200 cachexia (case/control) 163 57 115 9 48
13 [31] NMR Urine 77 (47/30) 63 cachexia (case/control) 63 33 30 0 33
14 [31] NMR Urine 60 (30/30) 63 cachexia (case/control) 55 43 15 3 40
15 [12] GC-MS Plasma 291(172/119) 128 Sex (M/F) 128 23 105 0 23
16 [12] GC-MS Plasma 200 (100/100) 128 Sex (M/F) 103 51 56 4 47
17 [12] GC-MS Urine 301 (129/172) 324 Sex (M/F) 256 143 136 23 120
18 MTBLS123 [32] NMR Urine 151 (79/72) 63 Shock (pre/post) 63 9 54 0 9
19 ST001243 [33] GC-MS Plasma 98 (48/50) 69 Trisomy 21 (yes/no) 69 28 41 0 28
20 MTBLS147 [9] NMR Plasma 370 (185/185) 417 Sex (M/F) 417 414 3 0 414
21 KODAMA [34] NMR Urine 80(40/40) 490 Subject (A/B) 459 293 187 21 272
22 [35] GC-MS Plant 70 (35/35) 67 Light/Dark 37 19 22 4 15
23 BioMark [17] LC–MS Apple 20 (10/10) 198 Treated/Untreated 124 58 83 17 41
24 MixOmics [36] MA Cell 43 (23/20)− 250 Sarcoma (RMS/ES) 250 18 232 0 18
25 MixOmics [36] MA Cell 43 (23/20)+ 250 Sarcoma (RMS/ES) 250 8 242 0 8
26 MixOmics [37] MA Cell 32 (16/16)r 500 High/Low dose 405 279 170 44 235
27 4537568.3-776.3 [38] 16S seq Faeces 145 (71/74) 243 Flock (A/B) 241 150 91 0 150
28 pgmm [39] Chemical assay Oil 50 (25/25) 7 Region (A/B) 4 0 4 0 0
29 pgmm [40] Chemical assay Coffee 43 (36/7) 12 Variety (Arabica/Robusta) 4 11 0 7 4
30 pgmm [41] Chemical assay Wine 130 (59/71) 27 Type (Barolo/Grignolino) 8 10 5 7 3

www.ebi.ac.uk/metabolights
www.metabolomicsworkbench.org
www.mg-rast.org
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This has, of course, tremendous implications for data interpretation. For instance, if differentially
connected metabolites are used for enrichment and/or pathway analysis, a great deal of information
may be lost. Consider, for instance, data set 12 in Table 1, which collects GC-MS metabolite profiles of
healthy men and women. If pathway analysis is performed on the differentially connected metabolites
found using correlation or MI, the results are strikingly different: only one pathway (Aminoacyl-tRNA
biosynthesis) is found to be enriched (False discovery rate (FDR) < 0.05) when using MI as a measure
of association. Eight pathways are found only when using correlation. Results are shown in Table 2.
A similar exercise can be performed for data set n. 25 in Table 1. In this case, there is no pathway
enriched when using MI.

On the basis of this analysis, we could not draw unequivocal conclusions. In general, there is
overlap between the metabolites found to be differentially connected using correlation or MI, but,
in many cases, metabolites are found to be differentially connected only when using one of the
two measures. For instance, for data set 1 in Table 1, we observed 132 metabolites out of 189 to be
differentially connected when using correlation and 90 when using MI, with 64 found with both
measures; however, 68 metabolites were found only with correlation and 37 only with MI.

To investigate if these patterns were specific to metabolomic data, we analysed, with the same
approach, three transcriptomic data sets, one microbiomic data set, and three data sets pertaining
to chemical assays. With the exception of data set 29 and 30, we again observed more differentially
connected metabolites when using correlation.

Most data sets are unbalanced, with one group larger than the other: we re-analysed some of the
data sets by making them balanced to remove this possible confounding factor. This did not affect
the results, which were qualitatively the same: the use of correlation resulted in more differentially
connected metabolites also when data is balanced.

Table 2. Results of pathway enrichment for data set 12 and 25 from Table 1 based on the
sets of metabolite found to be differentially connected using correlation or MI as measure of
metabolite-metabolite association. FDR: False discovery rate. Empty cells indicate that no metabolite
was found to be associated with the given pathway.

Pathway Enrichment Based On
Data set 12 Correlation MI
Pathway Raw P FDR Raw p FDR
Aminoacyl-tRNA biosynthesis 3× 10−12 3× 10−12 0.0006 0.05
Valine, leucine and isoleucine biosynthesis 3× 10−5 0.001
Alanine, aspartate and glutamate metabolism 6× 10−5 0.002
Arginine biosynthesis 0.0004 0.008 0.006 0.18
Glyoxylate and dicarboxylate metabolism 0.001 0.020 0.25 1.00
Glycine, serine and threonine metabolism 0.002 0.020 0.03 0.72
Citrate cycle (TCA cycle) 0.002 0.020
Phenylalanine metabolism 0.002 0.020 0.09 0.91
Phenylalanine, tyrosine and tryptophan biosynthesis 0.004 0.040

Pathway Enrichment Based On
Data set 25 Correlation MI
Pathway Raw P FDR Raw p FDR
Citrate cycle (TCA cycle) 5× 10−5 0.004
Alanine, aspartate and glutamate metabolism 0.0004 0.016 0.15 1
Glyoxylate and dicarboxylate metabolism 0.001 0.020 0.17 1
Glycine, serine and threonine metabolism 0.001 0.020 0.18 1
Histidine metabolism 0.002 0.036 0.09 1
Tyrosine metabolism 0.004 0.050
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2.2. Type I Error

Given the results on experimental data, we questioned our validation procedure based on
permutation, speculating that the permutation test based on correlation could have resulted, for some
reason, in an inflated Type I error, leading to false positives.

To assess this, we devised a simulation strategy where groups 1 and 2 (see Figure 2) were
substituted with uncorrelated random data generated under a multivariate normal model, which
implies that no variable (metabolite) is differentially connected. Under this simulation scheme,
the observed number of differentially connected metabolites should be around 5, i.e., 5% of the
total number of metabolites tested, if significance test is performed at α = 0.05 level.

We recorded the Type 1 error as a function of sample size n, varying n from 25 to 500. As shown in
Figure 4, the observed Type I error is always around 0.05, independent from the sample size, and from
the particular measure of association used. On the basis of this, we could exclude the possibility of
inflated Type I error when correlation was used.

Figure 4. Type I error for the permutation test used to assess the statistical significance of metabolite
connectivity. Two data sets X1 and X2 are generate of size n× 20 under an uncorrelated multivariate
model (X1 ≈ N(0, I). Differential connectivity is calculated as described in Equations (28) and (29) and
assessed with a permutation test at the α = 0.05 significance level. The overall procedure is repeated
100 times.

2.3. Comparison of Correlation and MI on Simulated Data with Known Correlation Structure

We set up a strategy to investigate the behaviour of correlation and MI for differential network
analysis further. We generated data with known correlation structures as detailed in Sections 3.4.1–3.4.3
and confronted them with data with uncorrelated structures. The number of variables (i.e., metabolites)
was fixed to 20 while the number of samples varied between 10 and 500. In all cases, we varied the
strength of the correlation ρ between 0 and 1, which means that, apart from the case, ρ = 0.

In this case, we used the four entropy estimators outlined in Sections 3.2.1–3.2.4 to investigate if
the particular choice of a method to estimate the entropy necessary to calculate the MI had any effect
on the estimation of differential connectivity. Overall, we did not observe any relevant difference when
using different methods, and, for this reason, we present and discuss only the results obtained using
the empirical probability distribution to estimate the entropy (see Equation (19)). Results are shown in
Figure 5.

In all cases, we found more differentially connected metabolites using correlation indices as
a measure for association than any of the four MI methods. As it is to be expected, the number
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of differentially connected metabolites varied with both the sample size and the magnitude of the
known correlation ρ of the correlation structures. It should be noted that, in our simulation scheme,
the differential connectivity is always tested under the alternative hypothesis (see Equation (34)) being
true (except when ρ = 0); thus, the significant differential connectivity in every situation is expected to
be 20 for ρ = 0.1 to 1.0 and 0 for ρ = 0.

The general trend seen in analysing the number of significantly differentially connected
metabolites increases with both sample size n and the known correlation ρ of the data structures.
As for any statistical test, the power of our approach increases with both sample size and effect
magnitude. We notice that, at n = 500 and ρ > 0.8, most methods display the significance of
differential connectivity to be 20 with any of the data structures we tested against.

MI is only able to show significant differential connectivity of 20 at ρ > 0.8 irrespective of
the sample size, indicating a reduction of power to detect differential connectivity. Interestingly,
we observed that the performance of MI, in inferring the differential connectivity, drops significantly
at ρ = 0.3 and then trends upwards again. This observation was consistent for all sample sizes and all
methods used to estimate the entropy in this study.

Figure 5. Median of the significant differentially connected variables on all simulated data sets per
known correlation ρ per sample size n.

In all cases we observed, the maximal differential connectivity (i.e., 20) is always achieved for
smaller values of ρ and smaller sample size when using correlation rather than MI.

Given the above mentioned hypothesis, it might be easier to understand why when MI is used
as the measure for association; it performs extremely poorly in identifying differential connectivity.
The poor performance is unaffected by sample size or by the underlying data correlation structure.
These results confirm what was observed when analysing a real life metabolomics data set.
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2.4. Comparison of Correlation and MI on Simulated Data from a Dynamic Model

The dynamic metabolic model of the NF-κB was used to generate physiologically plausible
metabolite concentration profiles for n individuals as detailed in Reference [8], mimicking the real life
process of data generation from a population of subjects. This data presents metabolites with complex,
nonlinear relationships that are almost impossible to simulate with statistical methods; hence this
approach gives a better representation of the metabolite-metabolite association patterns observed in
real life experimental data.

Working in a two-groups scenario (see Figures 1 and 2), we varied the kinetic parameters using
the multipliers (ε) to change the behaviour of the entire model. The effect of the modification of the
kinetic parameters on the overall model behaviour is shown in Figure 6. Values of ε > 1 induces fast
oscillations in the concentration profiles of certain metabolites (panel A), while values of ε < 1 flattens
out the oscillating behaviour (panel C). Panel B of Figure 6 gives the time concentration profiles for the
original, unperturbed, model.

Figure 6. Behaviour of the NF-κB dynamic model. (A) Time concentration profiles for model
perturbation with ε > 1. (B) Original model. (C) Time concentration profiles for model perturbation
with ε < 1. Different colours correspond to different metabolite time profiles. The vertical lines indicate
the time sampling point.

Here, we used ε as a measure of the perturbation of the dynamic model (data in X1), with respect
to the original one defined under normal physiological conditions (data in X2). However, it should be
noted that it is difficult to relate ε to the number of possibly differentially connected metabolites. This is
because it is not possible to predict the relationship among metabolites directly from the structure of the
dynamic model. As a matter of fact, the use of the dynamic metabolic model allows a more exhaustive
analysis on metabolite associations, but correlations observed in the data do not always reflect the
structure of the metabolic network: two metabolites can be direct neighbours in the metabolic network
but not correlated; conversely, two metabolites can be very distant in the metabolic network but show
high correlation.

The connectivity is formally tested under a null hypothesis scenario, like in the case of data
generated under different correlation models (see Sections 3.4.1–3.4.3), but, in this case, the expected
connectivity for each metabolite in the NF-κB model for the unperturbed case (ε = 1) is different
from 0.

In addition, in this case, the use of correlations results, on average, in more differentially connected
metabolites, than when using MI, as shown in Figure 7. Pearson’s and Spearman’s correlation
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performed similarly for most cases, and the marginal difference of Pearson correlation performing
better in extremely low sample sizes might be explained by the bias created between the relationship
of the two correlation methods, as discussed in Section 2.5.

Figure 7. Median of the significant differentially connected variables on data simulated using the
NF-κB dynamic model as a function of the model perturbation ε and the sample size n.

There is an inherent difference in the change of behaviour in the model with ε < 1 and ε > 1,
as shown in Figure 6. There is a significant increase in oscillations, at least for some metabolites, when
ε > 1 with the magnitude and the frequency of the oscillations increasing with ε. This introduces high
nonlinearity in the data and may partially explain why MI performs better with ε > 1 than with ε < 1.
However, this does not explain the differences observed between correlation and MI.

We observed the differential connectivity to be zero for ε = 1 only for large sample size n = 500,
suggesting the existence of spurious associations for small sample size and/or instability in the
estimation of both correlation and MI.

We speculate that the perturbation in the kinetic parameters may induce pseudo-associations
among metabolites that are picked-up by correlation but not by MI, thus increasing metabolites
connectivity (see definition in Equation (29)). These pseudo-associations may be stronger when ε > 1
and the system is oscillating with high frequency, since small changes in kinetics can result in larger
variation in concentration when sampling happens at a constant time as in the present case. When ε < 1,
most metabolites exhibit smooth linear and exponential curves, and the variability in concentration is
greatly reduced. For example, consider two metabolites, M1 and M2, with the concentration of M1
following an exponential curve for ε = 1 and ε > 1, while M2 shows a small oscillation behaviour with
ε = 1 and a large oscillation with ε > 1. If sampling happens at, say, t = 10, 000 units, at ε = 1, there
would be small variations in M1 and M2; however, at ε > 1, there might be large variations in M2
depending on whether the crest or the trough is picked up, especially if the frequency and amplitude
are high. This would result in a situation where, when ε = 1, a small change in M1 is correlated to
small change in M2, and, when ε > 1, a small change in M1 is correlated to a large change in M2;
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hence, the two variable would show up as differentially connected when the relationship change
between them might be less subtle. As the number of samples is increased, the occurrence of such
pseudo-associations will be reduced.

In contrast with what was observed with data generated under different correlation models,
we observed differences when using different algorithms for the estimation of MI. In particular,
the asymptotic bias was large and observable. Indeed, using the Miller-Madow correction
(see Section 3.2.2) resulted in a marked increase in performance of MI especially with ε > 1. On the
contrary, the shrinkage estimation of entropy failed to show any increase in performance for inferring
differential connectivity as the sample size was increased, confirming previous observations that the
shrinkage estimation is more effective at lower sample sizes [42].

When using correlation, for a small sample size (n ≤ 50), the number of differentially connected
metabolites for the case of data generated with ε < 1 seems not to vary, while it increases for
ε > 1. For larger sample size (n ≥ 250) the number of differentially connected metabolites exhibits a
symmetric behaviour with respect to ε = 1. A similar behaviour is observed when using MI, which
shows less sensitivity to detect differentially connected metabolites, especially for ε < 1 and small
sample size. The sub-optimal performance of MI to infer connectivity can be explained by considering
the analytical relationship existing between Pearson correlation and MI, as shown in Section 2.5.

2.5. Relationship between Correlation and MI

In the case of two bivariate variables, x1, x2, linearly correlated with correlation ρ, there is a direct
relationship between the MI MI(x1, x2) and ρ. If

(X1, X2) ≈ N(µ, Σ) , (1)

with

Σ =

(
σ2

1 ρσ12

ρσ12 σ2
2

)
, (2)

where σ2
1 and σ2

2 is the variance of x1 and x2, respectively, and σ12 their covariance, it holds that (see
Equation (2) in Reference [43]):

MI(X1, X2) = −
1
2

log(1− ρ2) . (3)

From Equation (3), it follows that if two variables are linearly (cor)related, their MI is (almost)
always smaller than their correlation. This is shown in Figure 8, where the relationship (Equation (3))
is given for −1 ≤ ρ ≤: MI(X1, X2). In particular, it holds that

MI(X1, X2)→


< ρ if |ρ| < 0.916

= ρ if |ρ| = 0.916

> ρ if |ρ| > 0.916

. (4)

The relationship between MI and correlation is shown for data simulated under the average
model (see Equation (38)) in Figure 8B and for experimental data set 3 from Table 1 in Figure 8C,
which show good agreement between the analytical relationship between correlation and MI given in
Equation (3). Figure 9 shows the same relationship for data generated using the NF-κB dynamic model.
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Figure 8. (A) MI MI(X1, X2) of two bivariate variables X1, X2 linearly correlated with correlation
ρ as a function of ρ. The two curves intersect at approximately ρ = 0.916. (B) MI versus Pearson’s
correlation from data simulated with an average correlation of 0.6 (beta simulation). (C) MI versus
Pearson’s correlation from experimental data (data set 3 from Table 1).

Figure 9. MI versus Pearson’s correlation from data simulated with the NK-kB dynamic model when
with (A) ε = 0.1 and (B) ε = 10.

A similar behaviour is also observed when Spearman’s correlation is used as an index of
association. In fact, if there are no ties, the Pearson’s and Spearman’s correlation coefficient are
related, for sample size n, by the formula [44]

ρS =
6

π(n + 1)

[
arcsin ρ + (n− 2) arcsin

(ρ

2

)]
, (5)

which is shown in Figure 10. For linearly positively correlated variables as in the present simulation,
the Spearman’s correlation is biased downwards (in absolute value), and the difference is maximal for
ρ = 0.577 (respectively, for ρ = −0.577 for negatively correlated variables.). The magnitude of the bias
depends on the sample size n, but the location where it assumes maximum value is independent from
n. For a calculation, see Reference [45]. However, for a large sample size (n > 50), the bias introduced
by taking the Spearman’s correlation in place of the Pearson’s to quantify association is negligible, and,
as a consequence, the estimation of the differential connectivity is not affected.
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Figure 10. Relationship (see Equation (5)) between the Spearman’s (Equation (7)) and the Pearson’s
(Equation (6)) correlation coefficients for linearly correlated data for different sample size n.

3. Materials and Methods

3.1. Association Measures

In this study, we used two methods to calculate correlations and four methods to estimate MI as
association measures for building the networks.

Correlation Indices

The Pearson’s (sample) correlation coefficient [46] between two random variables X and Y is
defined as

ρ =
cov(X, Y)
SX × SY

, (6)

where SX and SY is the standard deviation of the measured X variables (respectively, Y), and cov(X, Y)
is the covariance between X and Y. The Pearson’s correlation coefficient is probably the most used
measure of association used in life sciences, and it is a standardised version of the covariance, which,
being dependent on the scale of the variables, can vary, in principle, between 0 and +∞ .

The Spearman’s correlation coefficient [47] between two variables, X and Y, is defined as

ρS = 1−
6 ∑ d2

i
n(n2 − 1)

, (7)

where d is the difference in rank order between metabolite X and Y, and n is the sample size.
The Spearman’s correlation coefficient is an appropriate measure for nonlinear association between
two variables, X and Y.

3.2. MI

MI is defined in information theory as the mutual dependence of two random variables X and Y
and can be interpreted as reduction in uncertainty of the outcome of one variable on observation of
another variable.
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Before defining operatively the concept of MI, we shall introduce the concept of entropy since it is
related to MI. Entropy is a measure of the uncertainty about the values that a certain random variable
X, distributed with probability distribution p(x), can assume.

H(X) = −∑ p(x) log p(x) , (8)

while, if X is continuous,

H(X) = −
∫

p(x) log p(x)dx . (9)

Equation (8) can be recognised as the the expectation value of − log p(x); thus

H(X) = E[− log p(x)] . (10)

As an example, assuming a metabolite X in which concentration can assume only the values x1 = 0.4,
x2 = 0.9, and x3 = 1.3 with probability p(X = x1) = 0.2, p(X = x2) = 0.7, and p(X = x3) = 0.1,
the entropy of X is

H(X) = − ∑
x1,x2.x3

p(x) log p(x) (11)

= − [0.4× log(0.4) + 0.7× log(0.7) + 0.1× log(0.1)] (12)

= 0.8018 . (13)

The entropy measures the uncertainty of a variable: the higher the entropy, the higher the
uncertainty on that variable. Turning to a biological example, if a metabolite shows little variability,
i.e., its range of variation is limited, its entropy will also be lower. On the contrary, a metabolite with a
large variability will have high entropy. The entropy is usually related to the content of information
of a random variable: the higher the entropy, the higher the information content. One can think of a
metabolite that does not vary, whatever the experimental circumstances, that assumes value c with
probability p(X = c) = 1; its entropy will be H(X) = 0, thus nullifying the information associated
to it.

Thus, the calculated entropy of a metabolite will be related to its variance. For instance, if X is
normally distributed ≈ N(µ, sigma2), its entropy is just 1

2
(
log 2πσ2 + 1

)
. The entropy of a variable

is maximum when its probability distribution is uniform, and, in contrast with the variance, it can
assume negative values.

In practical applications, the probability distribution p(x) is not known a priori but is estimated
from the observed distribution of the data, i.e., the empirical entropy is estimated. Estimating entropy
is not a trivial task, and many different algorithms exist.

The most common way of expressing the MI between two random variables X and Y is by
expressing the distance between the joint distribution p(X, Y) and product distribution p(X)p(Y)
using the Kullback-Leibler divergence [48]:

MI(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (14)

Since

log
( p(x, y)

p(x)p(y)
)
= log

( p(x|y)
p(x)

)
= log

( p(y|x)
p(y)

)
, (15)

it follows that
MI(X, Y) = H(X)− H(X|Y) , (16)
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and taking into account the symmetry of information:

H(X)− H(X|Y) = H(Y)− H(Y|X) , (17)

an elegant expression of MI as a function of entropy where the MI MI(X, Y) between X and Y, can be
obtained as

MI(X, Y) = H(X) + H(Y)− H(X, Y) , (18)

where H(X) and H(Y) is the entropy of X and Y, respectively, and H(X, Y) is the entropy of X and Y.
Hence, the problem of estimating MI boiled down to the problem of estimating entropy. In this

study, we used four different methods to estimate entropy in order to calculate MI, as implemented in
the infotheo R package [49].

3.2.1. Entropy of Empirical Probability Distribution

The most common approach to estimate entropy is through the calculation of the probability
distribution starting from the empirical data [49]. This is obtained by computing the relative frequency
of occurrence of each value:

Ĥemp(X) = − ∑
x∈X

#(x)
n

log
#(x)

n
, (19)

where #(x) is the number of data points having value x, and n is the number of samples.
However, it is necessary to note that empirical estimators are biased downwards and the estimate

is always smaller than actual entropy, and the variance of the empirical estimator is dependent on the

sample size [50]. More precisely, the variance is upper bounded by
( (log n)2

n
)
.

3.2.2. Miller-Madow Asymptotic Bias Corrected Empirical Estimator

The empirical estimation suffers from an asymptotic bias of − |x|−1
2n , where |x| is the number of

bins with non-zero probability. This bias can be especially large if the number of bins starts exceeding
the sample size. The Miller-Madow correction attempts to get around this problem by adding the
asymptotic bias to the empirical estimation of entropy [50]. This correction is given by

Ĥmm(X) = Ĥemp(X) +
|x| − 1

2n
, (20)

and it reduces the bias of the estimation without changing the variance.

3.2.3. Shrinkage Estimate of the Entropy of a Dirichlet Probability Distribution

Shrinkage is a popular technique to improve estimators, especially for smaller sample sizes.
The shrinkage estimator attempts to combine two estimators in a weighted average with a factor
λ∗ ∈ [0, 1]. The two estimators are as follows,

1
|x| , (21)

#(x)
n

. (22)

The method shrinks the latter estimate towards the former by minimising the mean square error
λ∗. The entropy estimate is then given by

Ĥshrink(X) = − ∑
x∈X

p̂λ∗(x) log p̂λ∗(x) , (23)
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where

p̂λ∗(x) = λ∗
1
|x| + (1− λ∗)

#(x)
n

. (24)

The target estimator 1
|x| has low variance and high bias, whereas the unregulated estimator #(x)

n has
large variance and low bias. The benefit of using such a shrinkage method is that the resulting estimator
surpasses both of the individual estimates in terms of accuracy and statistical efficiency [51,52].

3.2.4. Schurmann-Grassberger Estimation

The Schurmann-Grassberger method estimates the entropy by utilising a Bayesian parametric
strategy assuming samples to be Dirichlet distributed, i.e., multivariate beta distributed given by

p(X; θ) =
∏i∈{1,2,...|x|} Γ(θi)

Γ(∑i∈{1,2,....|x|} θi)
∏

i∈{1,2,....|x|}
xθi−1

i . (25)

The entropy of the Dirichlet distribution can be determined by the following with θi = N as a constant
probability of every event.

Ĥdir(X) =
1

n + |X|N ∑
x∈X

(#(x) + N)(ψ(n + |X|N + 1)− ψ(#(x) + N + 1)) , (26)

where, N is the prior probability of an event xi ∈ X assuming that no event xi becomes more
probable than another, and ψ(z) as the Digamma function with ψ(z) = dlnΓ(z)

dz and Γ(z) as the Gamma
function [42,53,54].

It should be remarked that all the estimations used above assume the variables to be discrete
in nature; continuous variables are binned before calculations as a pre-processing step. We used the
default binning parameters from infotheo R package.

3.3. Network Concepts

A network or graph is a graphical representation of the association between objects. In biology,
such are molecular components, like genes, proteins, or metabolites, and, in the network, they
are represented by nodes. The association between two nodes is represented as link (or edge)
connecting the two nodes. The nature of the association among the molecular features can be diverse:
in the case of genes regulatory networks, the edges represent regulatory interactions where the
protein product of a given gene directly modulates the expression of a target gene; in co-expression
networks, the edge represent significant co-expression levels of the connected genes; in protein-protein
interaction networks, edges represent the existence of a physical interactions between proteins.
In metabolite-metabolite association networks, two metabolite are connected if their concentration
levels are significantly correlated.

For manipulation and analysis, networks can be mathematically represented as matrices through
the so-called adjacency (also called connectivity) matrix A: the rows and columns of the adjacency
matrix represent the nodes whereas non-null entries represent links. If the edges are binary indicating
only the presence-absence of an association the network is said to be unweighted, and the elements aij
of the adjacency matrix describing the association between node i and j are either 1 or 0:

aij =

{
1 if there is association

0 otherwise
. (27)

If the strength of the interaction can be quantified, a weight can be given to the edge; thus,
the network is said to be weighted: in this case, the elements of a weighted adjacency matrix are real
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numbers that indicate the strength of the interaction and can vary, for instance, in the [−1, 1] range for
correlation, in the [0,+∞) range for MI, or in the [0, 1] range for probability.

Each node in a network can be characterised using functions that can be derived from the patterns
of its association. A very common measure is the node degree or connectivity, that is, the number of its
connection. For a p× p network A, the connectivity of the node i is given by

χi = ∑
j>i
|aij| . (28)

If the network is unweighted, it holds 0 < χi < p− 1. If the network is weighted, the range
of the connectivity depends on the nature of the association measure. If (the absolute value of the)
correlation is used, χi still ranges between 0 and p− 1, in which case, it means that the molecular
feature represented by node ai is perfectly correlated with all other nodes in the network. If MI is used,
which is in the [0,+∞) range, χi also range between 0 and ∞.

3.3.1. Differential Network Analysis

Differential connectivity (see Figure 1 for a graphical overview) is calculated comparing the
metabolite connectivity for p metabolites measured under two different conditions or in two groups,
as exemplified in Figure 2.

Given two data sets X1 and X2 of size n1 × p and n2 × p with n1 possibly different from
n2, measured under Group 1 (condition 1) and Group 2 (condition 2), respectively (total sample
size n = n1 + n2), and selecting an association measure (either correlation or MI), the differential
connectivity ∆χi for the ith node (metabolite) is given by

∆χi = χG1
i − χG2

i . (29)

In the simulation study discussed in Section 2.3, data X2 is taken to be ≈ N(0, Ip), where Ip is the
identity matrix of appropriate dimensions. Under this model, the expected connectivity E[χG2

i ] (where
E[∗] indicate the expected value of ∗) is zero, from which it follows that

E[∆χi] = E[χG2
i − χG1

i ] = E[χG1
i ] = χG1

i . (30)

3.3.2. Permutation Tests to Assess Statistical Significance of Differential Connectivity

The significance of the differential connectivity was assessed implementing a permutation test.
First, each and every column of the data matrices X1 and X2 pertaining to Group 1 and 2 (see Figure 2) is
independently permuted; the column values x1, x2, . . . xn are replaced by xp(1), xp(1), . . . , xp(n), where
p(1), p(2), . . . , p(n) are a random permutation of 1, 2, . . . , n. This ensures that the mean and the
variance of each column in X1 and X2 are preserved, but the relationships among the variables are
destroyed. For randomised data, the expected metabolite connectivity is E[χi] = 0.

The permuted version of X1 and X2 are used to build the weighted association matrices, using
either correlation or MI, which are then used to compute, for each metabolite, the “permuted”
differential connectivity:

∆χ
perm
i = χ

G1,perm
i − χ

G2,perm
i . (31)

The permutation procedure is repeated Nperm = 103 times to build a distribution Di of permuted
differential connectivity values for metabolite i. This distribution is used to compute the significance
of the differential connectivity of metabolite i, which is expressed as P-value calculated as

Pi =
1 + Num(Di > ∆χi)

Nperm
, (32)
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where Num(Di > ∆χi) indicates the number of elements of Di in which absolute value is larger than
χi, the differential connectivity of metabolite i calculated from the original, non-permuted, data X1

and X2.
This permutation approach is equivalent to a hypothesis testing procedure, where the

null hypothesis
H0 : ∆χi = 0 (33)

is tested against the alternative hypothesis

H1 : ∆χi > 0 . (34)

3.4. Data Simulations

Data were randomly generated under a Gaussian multivariate model with X a n× p data matrix

X ≈ N(0, Σp) , (35)

with n varying between 10 and 1000.
All variables have been simulated with variance equal to 1, so Σ equals the correlation matrix.

Three different correlation structures were used as described in the following section.

3.4.1. Toeplitz Correlation Structure

The Toeplitz correlation structure (also called auto-regressive model) describe correlation patterns
where adjacent pairs of observations are highly correlated, and those further away are less correlated,
with the correlation between the i-th and j-th observations decay exponentially with respect to |i− j|.

This correlation structure is often used to simulate data in a linear discriminant setting [55],
in linear mixed modelling, and in the time series literature as a model for group correlations [56].

The corresponding correlation matrix has the form

Σ =



1 ρ ρ2 ρ3 · · · ρp−1

ρ 1 ρ ρ2 · · · ρp−2

ρ2 ρ 1 ρ · · · ρp−3

ρ3 ρ2 ρ 1 · · · ρp−4

...
...

...
...

. . .
...

ρp−1 ρp−2 ρp−3 ρp−4 · · · 1


. (36)

We generated 10 Toeplitz correlation matrix by varying ρ between 0.0 and 1.0 in steps of 0.1.
Given ρ, random Toeplitz matrices were generated using the strategy proposed by Hardin

and coworkers [56] using the R function simcorTop provided in the supplementary material of
Reference [56] and are available at pages.pomona.edu/ jsh04747/research/simcor.r. The parameters
used were k = 1, ε = 0.01, and edim = 2. Data matrices were generated using the R function mvrnorm.

3.4.2. Hub Correlation Structure

The hub correlation structure (referred to as hub observation model) describes the situation where
k groups of variables are presented, and the observations within each group are correlated with a single
observation (the so-called hub) with decreasing strength. The k groups are independent, i.e., there is
no correlation among variables belonging to different groups.
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Set the first observation in each group to be the hub-observation, the correlation Σ1,i between
variable i = 1, 2, . . . , g, and the hub-observation

Σ1,i = ρ−
(

i− 2
g− 2

)γ

(ρ− ρmin) . (37)

We simulated a hub correlation structure with 2 groups of unequal size (15 and 5, respectively)
and varied ρ between 0.1 and 1.0 in steps of 0.1 using a quadratic attenuation (γ = 2).

Given ρ, random hub-correlation matrices were generated using the R function simcor.H provided
by Hardin [56]. The parameters used were k = 2, ε = 0.01, γ = 2, size = (5,2) and edim = 2.
Data matrices were generated using the R function mvrnorm.

3.4.3. Average

Random correlation matrices Σp (with elements ρij) were generated satisfying the property

2
p2 − p ∑

i>j
|ρij| = ρ , (38)

which is the average correlation in Σp is ρ, having all variables with a different degree of correlation.
This was accomplished by using the vine method [57,58]. Briefly, correlations are obtained by

sampling from a Beta distribution with support −1 ≤ x ≤ 1. The mean µ and the variance σ2 of the
Beta distribution are related to the two Beta shape parameters α and β by the relationships

µ =
α

α + β
(39)

σ2 =
αβ

(α + β)2(α + β + 1)
,

from which it follows

α =
1
σ2 −

1
µ

(40)

β = α(
1
µ
− 1) .

The mean µ was numerically optimised to give average correlation ρ between 0.1 and 0.8 in steps
of 0.1. The variance σ2 of the Beta distribution was set to 0.1 in all cases. The corresponding optimised
µ values were 0.113, 0.116, 0.123, 0.135, 0.163, 0.201, 0.262, and 0.382, respectively, from which the
Beta shape parameters α and β were calculated using Equation (40) and used in the generating vine
algorithm (see Section 2.4 in Reference [58]).

3.5. Data Generation Using a Dynamic Metabolic Model

To generate data showing correlation patterns similar to those that can be expected in a standard
metabolomic experiment used a dynamic kinetic model, we chose a dynamic model describing
the lipopolysaccharide-induced activation of Nuclear Factor kappa B signalling pathway (NF-κB,
Nuclear Factor kappa-light-chain-enhancer of activated B cells). The model consists of 59 ordinary
differential equation describing the reactions involving 35 metabolites. The model describes the
intra-cellular signalling pathway that activates NF-κB p65-p50 in response to lipopolysaccharide,
which is a gram-negative bacterial endotoxin that triggers an inflammatory response in many cells,
including uterine smooth muscle cells. The model was obtained from the BioModels database [59]
(www.ebi.ac.uk/biomodels/) with accession number BIOMD0000000489. Full details on the model
building and accessory files can be found in the original publication [60].

www.ebi.ac.uk/biomodels/
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Simulation of Individual Metabolite Concentration Profiles

Subject-specific profiles were generated by varying the Kmi and the ki constants for all the 59
reactions and the initial concentrations cm for 4 metabolites with non-zero initial concentrations in the
model. The Kmi and the ki constants and the initial concentrations cm were sampled from an uniform
distribution ≈ U(a, b) with lower and upper bounds a and b set to the reference values ±10% as given
in the original publication [60].

For j-th individual, the values of k, Km, and c for any given reaction were defined as

kj
i ≈ U(0.9× ki, 1.1× ki) ,

Kmj
i ≈ U(0.9× Kmi, 1.1× Kmi) ,

cj
m ≈ U(0.9× cm, 1.1× cm) . (41)

We generated 1000 individual profiles from which we randomly sampled data set of varying
size (n = 10, 25, 50, 100, 250, and 500). In our comparative study, we used these data as data set(s) X2,
i.e., as a reference data set X2 (see Figure 2 for Group (condition) 2).

Data for Group (condition) 1 was constructed by varying the values of kj
i , Kmj

i , and cj
m specific for

the j-th individual defined in Equation (42) as

k̃j
i = ε× kj

i ,

K̃m
j
i = ε× Kmj

i ,

c̃j
m = ε× cj

m , (42)

where ε is a scaling parameter, equal for all subjects and reactions. We varied ε over the values 1
10 , 1

5 , 1
3 ,

1
2 , 1

1.5 , 1, 1.5, 2, 3, 5, 10 which were used to generate subject specific metabolite profiles as described
above. Data was collected in data sets X1 of varying size (n = 10, 25, 50, 100, 250, and 500) and for each
ε value.

3.6. Experimental Data

We considered the metabolomic data set compendium compiled by Mendez and coworkers [61].
The compendium contains 10 data sets representative of the three most common metabolomic
experimental platforms (nuclear magnetic resonance NMR; gas chromatography mass spectrometry,
GC-MS; liquid chromatography mass spectrometry, LC-MS) applied to metabolomic profiling of
different biofluids (urine, serum/plasma, faeces). All the data sets pertain case/control studies with a
a clear binary outcome available to model (either a primary or secondary outcome of the publication,
or a subset of a multi-class study) and have different sample size and number of variables (metabolites)
acquired. Data sets characteristics and references are given in Table 1. We made use of the processed
cleaned data made accessible via the github link provided in Reference [61] and available in xlsx
format. We refer to Reference [61] for more details about the data processing and cleaning. Data were
used as provided by Reference [61], with the exception for those data sets where missing data was
present: variables with missing data were either removed (data set MTBLS136) or imputed (data set
ST001047) using the random forest-based approach implemented in the R package missForest [62].

In addition, we considered other data sets to include also tissues (fat) and plant and fruit extracts
together with microbiome data (16S sequencing) and chemical assays on diverse fluids like oil, wine,
and coffee. For completeness, we also included two transcriptomic data sets. Data were derived from
the original publications or from R packages with which they were distributed, as indicated in Table 1.

The transcriptomic data set were analysed considering only the 250 most and less differential
expressed genes between the two classes. Some data sets presented unbalanced groups, and they were
analysed retaining the original sample size or making them balanced (see Table 1 for more details).
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3.7. Software

Calculations were performed using R [63], MATLAB [64], and Python [65]. The R code for
differential network analysis is available at www.systemsbiology.nl, under the software tab.

4. Discussion

Correlation and MI measures have been widely used in many research applications to quantify
and describe the relationships between variables, thus having become the foundations for network
inference methods [8]. In general, researchers trained in statistics tend to use correlation based indices,
while researchers trained in computer science gravitate towards mutual-information. However,
the use of the correlation coefficient is much more widespread in life sciences research than MI:
a Pubmed search (March 2020) returned 61,709 hits for “correlation coefficient” against and 3582
hits for “MI”. Inference methods based on correlation can only detect linearly direct associations
and can miss nonlinear relations, which play essential roles in many nonlinear systems, such as
biological systems [66]. In this light, MI has attractive properties, especially when dealing with the
detection of nonlinear relationships [67]. This was one of the main reasons we expected MI to have
superior performance in metabolite-metabolite association networks, given the nonlinear nature of
the relationships existing among metabolites concentrations. Being based on mutual independence,
MI can be considered to be a nonlinear version of correlation that can detect nonlinear correlations
(but not direct associations nor dependencies owing to the information of only joint probability) and
have the same overestimation problem as correlation [66].

Correlation and MI measure have been compared mostly in the framework of gene networks
inferences. Steuer et al. showed an almost one-to-one correspondence between correlation and MI
when measuring gene pairwise relationships [68], while Lindolf et al. found no superior merits of
MI for constructing co-expression networks [69]. Song et al. examined different correlation-based
measure of association and found them to outperform MI in terms of elucidating gene pairwise
relationships [70]. In gene ontology studies, it has been observed that, when robust correlation and
robust mutual-information has disagreed, the robust correlation findings seemed to be statistically and
biologically more plausible [70].

There is little literature on the use of MI in metabolomics applications (12 hits for a Pubmed
query “metabolomics AND MI”, performed in March 2020). Numata et al. found that MI was able
to detect additional nonlinear correlations undetectable for the Pearson coefficient [71], and Yu et al.
concluded that Spearman and MI indexes outperform the other measures to co-associate metabolite
and microbiome data [72]. Based on Reference [73,74], Numata et al. also advocated for the use of MI
since MI, for pairs of variables, is not altered by homeomorphic (nonlinear) transformations of the data,
which may be relevant because metabolomic data rarely yield absolute concentrations, but rather yield
ratios of concentrations [75]. However, Saccenti et al. found MI to overestimate chance associations [7].
Correlation are objectively difficult to estimate and are sensitive to experimental noise [76] and to data
pre-processing like normalization [77]. However, correlation indexes have nice properties, such as:
(i) it can be easily calculated, (ii) it allows for asymptotic statistical tests (regression models, Fisher
transformation) for calculating significance, and (iii) the sign of correlation allows one to distinguish
between positive and negative relationships.

Although in this study we ignored the directionality of the relationships to build networks and
calculate connectivity and perform connectivity analysis, this is a an inherent limitation of MI that
cannot capture directionality and changes thereof since it is a strictly semi-positive quantity [78].
In fact, (strong) positive correlation can indicate an equilibrium condition or enzyme dominance,
while strong negative correlation can indicate the presence of a conserved moiety [75]. In addition,
correlation indices can be calculated with significantly fewer samples than MI [70], and we observed
MI to require significantly larger sample sizes to obtain the same robustness attained by correlation.
Moreover, the estimation of MI depends on the particular choice of algorithms and user defined

www.systemsbiology.nl
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parameter setting [79], and we also observed dependence on the estimation algorithm when MI is
used for differential connectivity analysis.

On the basis of our investigation concerning the use of correlation and MI for differential
connectivity analysis we can conclude that (i) Pearson’s and Spearman’s correlation coefficient
are better to detect deferentially connected metabolites than MI methods in metabolite-metabolite
association networks created from experimental data, simulated data with known correlated
structures, and from a dynamic metabolic model; (ii) when a dynamic metabolic model was used to
simulate real-world like observational data, different methods to estimate entropy showed different
performance. However, the same could not be concluded when simulated data structures were
used. (iii) When analysing the relationship between correlation and mutual-information, we find that
mutual-information of two linearly related variables is almost always less than that of their correlation
and this was observed in real metabolomics data, simulated data, and data simulated using the NF-κB
dynamic model.

Overall, the present investigation indicates that there is no benefit in using MI in place of standard
Pearson’s and Spearman’s correlation when the focus of the application is the detection of differentially
connected metabolites in differential network analysis.
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