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Abstract: Genomics-based metabolic models of microorganisms currently have no easy way of
corroborating predicted biomass with the actual metabolites being produced. This study uses
untargeted mass spectrometry-based metabolomics data to generate a list of accurate metabolite
masses produced from the human commensal bacteria Citrobacter sedlakii grown in the presence of a
simple glucose carbon source. A genomics-based flux balance metabolic model of this bacterium
was previously generated using the bioinformatics tool PyFBA and phenotypic growth curve data.
The high-resolution mass spectrometry data obtained through timed metabolic extractions were
integrated with the predicted metabolic model through a program called MS_FBA. This program
correlated untargeted metabolomics features from C. sedlakii with 218 of the 699 metabolites in the
model using an exact mass match, with 51 metabolites further confirmed using predicted isotope
ratios. Over 1400 metabolites were matched with additional metabolites in the ModelSEED database,
indicating the need to incorporate more specific gene annotations into the predictive model through
metabolomics-guided gap filling.

Keywords: metabolomics; flux balance analysis; multiomics; bioinformatics; mass spectrometry;
microbiome

1. Introduction

Studies of the gut microbiome have been shown to have a major impact on health and the risk
for disease. Predicting metabolic output in the gut microbiome would be particularly beneficial in
understanding how different nutrient sources influence metabolite production. Microbial metabolic
products have been shown to be involved in intercellular communication and immune response
mechanisms in the gastrointestinal tract [1,2]. It would, therefore, be beneficial to predict which
bacterial species are capable of producing bioactive metabolites under different nutrient sources.
Although there is no method that can directly model the gut microbiome as an entire system [3,4],
flux balance analysis [5] does allow for the development of metabolic models for individual species.
Developing a predictive model in microorganisms requires a sequenced genome and knowledge of
gene function to annotate the genome, and thus which proteins are translated. Gene annotations
are based on sequence similarity to known and conserved gene sequences. In cases where sequence
similarity is low to none, a process known as gap-filling is performed to make an educated guess on
gene function. By monitoring experimental growth under a variety of carbon, nitrogen, and sulfur
sources, biomass production can be an indicator of whether a particular set of metabolic pathways or
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transport functions exists in the genome, regardless of known sequence similarities [6]. Metabolism of
these nutrient sources produces diverse metabolites that cannot be confirmed with phenotypic growth
curve assays, nor a predictive method such as flux balance analysis. In addition, there is currently
no way of easily corroborating predicted biomass with the actual metabolites being produced under
specific nutrient conditions. Our goal is to compare a genome-based metabolic model with untargeted
metabolomic data to confirm the metabolome produced by a bacterium. Although applying untargeted
metabolomic data to systems biology has been a challenge in the field [7], the advent of sensitive,
high-resolution mass spectrometers [8] and recent metabolomic bioinformatics tools [9–14] provides a
great opportunity to improve multi-omic integration techniques to understand microbial metabolism.

Mass spectrometry-based metabolomic data are already being used to assist in characterizing
metabolic models by comparing the metabolites produced in cell cultures to expected biomass output
via flux balance analysis (FBA) [15–19]. Although there are some excellent bioinformatic tools
available for integrating metabolomic data into flux-balance-generated metabolic models [15], they
require a significant amount of preliminary experimental work using multiple targeted quantitative
metabolomics assays, often requiring use of expensive isotopically labeled reagents. The MS_FBA
bioinformatics script illustrated in Figure 1 takes advantage of data generated from a simple untargeted
metabolomics workflow. Instead of performing targeted analysis on a list of hundreds to thousands
of predicted metabolites, we take advantage of information-dense untargeted metabolomic data to
identify metabolites that are biosynthesized by bacterial cells. The script was not designed to obtain
absolute quantitative data, but rather to confirm production or consumption of metabolites, thereby
giving a broad picture of the metabolome; in this case, we utilize the internal metabolites to simplify
the analysis, but any source of bacterial growth over the course of its curve can be utilized. Using a
time course of bacterial growth, untargeted metabolomic data are produced over the growth curve
to differentiate between metabolites synthesized within the cell or depleted through salvage and
transport pathways. MS_FBA then compares the untargeted feature list to a predicted metabolite
list based on the FBA of the microbe of interest. These can be either a predicted FBA compound list
or an entire database, such as the ModelSEED database [20]. Using predicted compounds from the
metabolic model is preferable, since it will take significantly less time and reduce the false positive
rate by reducing the number of spurious observations. The ModelSEED database becomes important
when assessing the accuracy of the metabolic model and potentially unpredicted metabolites. MS_FBA
uses a PyFBA [21] generated compound list to compare with metabolite mass-to-charge ratios (m/z) of
significantly changing features detected from XCMS Online [22] results. Metabolite identities are also
assessed using isotope ratios found within the raw data. This application creates a simple and efficient
way to evaluate metabolic models, thereby validating predicted gene annotations based on gap-filling
methods. Citrobacter sedlakii (C. sedlakii), having well-established metabolic models [6,23], was used
to illustrate how the R script, MS_FBA, can be used to verify a metabolic model using untargeted
metabolomic data and assess metabolites that have been left out of the predicted model based on
incomplete gap-filling.
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Figure 1. MS_FBA workflow illustrating the necessary input files and algorithmic processes involved 
in integrating metabolomics data with genome-based metabolic models. The algorithm requires two 
sets of data: one from mid (M), late (L) and stationary (S) phase cell culture extracts that have been 
analyzed using untargeted liquid chromatography mass spectrometry (LCMS) that have been 
converted to mzxml file format; the other is a metabolite list generated from flux balance analysis 
software, in this case we use PyFBA. The m/z features are searched within the metabolite list based on 
accurate mass and isotope ratios, then output as a ranked list and graphical visualization. 

2. Results 

PyFBA [21] was used to generate a metabolic model for C. sedlakii in minimal media 
supplemented with 0.2% glucose. The resulting metabolite list was imported into MS_FBA and stored 
as a dataframe for integration with high-resolution liquid chromatography mass spectrometry 
(LCMS) data. MS_FBA was implemented on both the reverse phase (RP) and hydrophilic interaction 
liquid chromatography (HILIC) datasets. After comparison with the metabolic model, a graphical 
output was generated to illustrate matches between XCMS Online [24] significant features and the 
predicted metabolites list (Figure 2). These features either increase or decrease over the course of the 
growth curve measured at mid-exponential, late-exponential, and stationary phases. MS_FBA also 
generates a graph that shows all the significant features alone, as well as the features that were not 
matched to the metabolic model. These are illustrated in Supplementary Materials Figure S1 for the 
reverse phase run performed in positive mode. 

 

Figure 2. A 3D graphical output from MS_FBA showing features with potential metabolite matches 
between significant features from reverse phase data and the PyFBA predicted metabolites list. There 
are two data points for every feature: the intensity difference between late-log phase and mid-log 

Figure 1. MS_FBA workflow illustrating the necessary input files and algorithmic processes involved in
integrating metabolomics data with genome-based metabolic models. The algorithm requires two sets
of data: one from mid (M), late (L) and stationary (S) phase cell culture extracts that have been analyzed
using untargeted liquid chromatography mass spectrometry (LCMS) that have been converted to
mzxml file format; the other is a metabolite list generated from flux balance analysis software, in this
case we use PyFBA. The m/z features are searched within the metabolite list based on accurate mass
and isotope ratios, then output as a ranked list and graphical visualization.

2. Results

PyFBA [21] was used to generate a metabolic model for C. sedlakii in minimal media supplemented
with 0.2% glucose. The resulting metabolite list was imported into MS_FBA and stored as a dataframe
for integration with high-resolution liquid chromatography mass spectrometry (LCMS) data. MS_FBA
was implemented on both the reverse phase (RP) and hydrophilic interaction liquid chromatography
(HILIC) datasets. After comparison with the metabolic model, a graphical output was generated to
illustrate matches between XCMS Online [24] significant features and the predicted metabolites list
(Figure 2). These features either increase or decrease over the course of the growth curve measured at
mid-exponential, late-exponential, and stationary phases. MS_FBA also generates a graph that shows
all the significant features alone, as well as the features that were not matched to the metabolic model.
These are illustrated in Supplementary Materials Figure S1 for the reverse phase run performed in
positive mode.
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Figure 2. A 3D graphical output from MS_FBA showing features with potential metabolite matches
between significant features from reverse phase data and the PyFBA predicted metabolites list. There
are two data points for every feature: the intensity difference between late-log phase and mid-log
phase sample classes (red), and the intensity difference between the stationary phase and late-log phase
sample classes (blue).
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The metabolite features identified as significantly changing between time points on the growth
curve were matched to a PyFBA predicted metabolite list based on a C. sedlakii metabolic model, using
glucose as a carbon source. Isotope matches and adducts were readily validated in the raw data and in
the XCMS feature results, as demonstrated with glutamic acid from the RP data in Figure 3. MS_FBA
uses a preset list of adducts (Supplementary Materials Table S3) that it searches for within a given peak
group to give higher confidence in metabolite identity. Glutamic acid was accurately matched within
that peak group to a sodium adduct, a neutral loss of a water molecule, and the dimer. In addition,
there is a loss of a carboxylic acid group and a trimer that MS_FBA did not predict to be related to
glutamate, although upon inspection of the raw data are clearly related peaks. Numerous anticipated
metabolites, such as glutamate, were shown to have a significant increase from mid- to late-exponential
growth phases, while decreasing from late to stationary phases, indicating that the metabolites were
being consumed by salvage pathways after nutrients in the media were consumed. This is depicted in
the Figure 3 inset with an XCMS generated box and whisker plot of mid, late, and stationary phase
sample classes.
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Figure 3. Mass spectrum taken from late stationary phase sample L5, depicting the metabolite feature
eluting at 1.9 min correlating to glutamic acid and [M+H]+ at 148.0596 m/z. Identified in the spectrum
are the loss of carboxylic acid [M-COOH+H]+, the loss of water [M-H2O+H]+, the sodium adduct
[M+Na]+, the dimer [2M+H]+, and the trimer [3M+H]+. The inset graph shows the production and
decline of the feature identified as glutamic acid for mid, late, and stationary phases, with box and
whisker plots from the five biological replicates.

In addition to the predicted metabolite list, the ModelSEED database was also input as a full list
of metabolites to assess compounds in the metabolomic data that were not matched to the PyFBA
model. The RP data were run in positive mode and the HILIC data in negative mode to achieve better
separation of both polar and nonpolar metabolites and to improve detection of analytes that are not
readily ionizable in both MS polarities. The results of the MS_FBA analyses are reported in Table 1 and
Figure 4. A total of 253 compounds were detected in both LCMS runs (Supplementary Materials Tables
S1 and S2) out of the 699 expected compounds. Of the matched compounds, 109 compounds were
found exclusively in the HILIC data, 110 compounds exclusively in RP, and 35 compounds in both.
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Table 1. Summary of metabolite features matched to reverse phase (RP) and hydrophilic interaction
liquid chromatogprahy (HILIC) data using MS_FBA.

Features Matched RP HILIC

XCMS features (pre-MS_FBA) 1210 1560
Matched to PyFBA 135 118

PyFBA isotope matches 23 28
Matched to Model SEED 846 621

Model SEED isotope matches 107 90
Unique annotated metabolites to PyFBA 218

PyFBA compounds in search list 699
Model SEED compounds in search list 27,693

2.1. Reverse Phase Results

The XCMS Online results identified 1210 features from the reverse phase positive mode run that
were significantly changed using a P-value threshold of 0.05. Of those features, 135 were matched
to expected compounds list from PyFBA (Supplementary Materials Table S1); 23 of those were also
isotope ratio matches (Figure 4). When the 1210 features were compared to the ModelSEED database,
846 features were matched with accurate mass and 107 of those were isotope ratio matches. Each
feature has the possibility of matching with multiple compounds in the database if the compounds
have the same mass within a 5 ppm deviation. The 135 features from the reverse phase run matched
to 210 potential compounds from the PyFBA list, while the 846 features matched to 3242 potential
compounds from the ModelSEED database.
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from the PyFBA metabolic model with either accurate mass only (blue) or isotope ratio (red). The total
column is the combination of both RP positive mode and HILIC negative runs, without excluding
duplicate features between polarities.

2.2. HILIC Results

In comparison to the reverse phase data, the XCMS Online results identified 1560 features from
the HILIC negative mode data that were under the P-value threshold of 0.05. Of those 1560 features,
118 were matched to the expected compounds list from PyFBA (Supplementary Materials Table S2), 28
were isotope ratio and accurate mass matches, while 90 features matched accurate mass alone. When
the 1560 features were compared to the ModelSEED database, 621 features were matched— 90 isotope
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ratio and accurate mass matches and 531 accurate mass only matches. Each feature has a chance of
matching to multiple compounds in each database or list used if the compounds are isomers. The 118
features from the HILIC run matched to 148 compounds from the PyFBA list, while the 621 features
matched to 1983 compounds from the ModelSEED database.

MS_FBA also generates a list of the matched compounds (Supplementary Materials Tables S1
and S2) describing the compound name, the feature ID that was given in the XCMS Online results,
the observed m/z value of the feature, its retention time, the peak group in which it elutes, the isotope
ratio difference, whether it met the isotope ratio criteria to the identified compound, and the identified
adduct. Adducts are considered within 5 ppm of the monoisotopic mass of the predicted metabolite
plus the mass of the ionizing species, as provided in Supplementary Materials Table S3, for either
positive or negative mode. Peak groups are features that have eluted within the same time window
and indicate potential adducts or co-eluting species. In addition to this, there are some feature IDs that
are repeated in these tables because there are either structural isomers or enantiomers. The best way to
alleviate this issue is to confirm the identity of the compound using a standard to confirm both retention
time and tandem MS fragmentation pattern. In this particular study of C. sedlakii grown in glucose
media, there were 210 potential metabolite matches to 135 features in reverse phase positive mode and
148 potential matches to 118 features in HILIC negative mode when compared to the metabolic model.

3. Discussion

A summary of the matched feature results for both the RP and HILIC datasets is presented in
Figure 4. The metabolic model generated 699 metabolites that would be feasibly detected in an LCMS
system (i.e., metal ions and low molecular weight molecules were removed, such as CO2 and NH3).
The identification of feature adducts assists in positively identifying features, particularly in the cases
where there is an isotope match. In the case of glutamic acid (Figure 3), not all neutral losses were
identified in the peak group. Along with the [M+H]+ peak, MS_FBA correctly identified the water
neutral loss, the sodium adduct, and the dimer. It did not detect the loss of the carboxylate group or
the trimer. The adduct list (Supplementary Materials Table S3) could easily be adjusted to include the
trimer; however, identifying all neutral losses with a single adduct list is not feasible, since metabolites
have different functional groups susceptible to in-source fragmentation. Future versions of MS_FBA
must include dynamic algorithms to detect neutral losses based on the predicted structure of the parent
mass. In the RP dataset, e a total of 135 features were matched to the predicted metabolite list, 23 of
which were isotope ratio matches. In the HILIC dataset, a total of 118 features were matched, with
28 of those features having isotope ratio matches. The low percentage of isotope ratio matches is
likely a result of low abundance peaks, where the M+1 peak was not detected and was below the
signal-to-noise ratio of the instrument. In comparison to the total features from the XCMS Online
results (Table 1), it is clear there are more metabolites being produced than are detected and matched
to the metabolic model described, particularly with the significant increase in isotope ratio matches.
Although MS_FBA does not describe the false discovery rate, it is expected to be rather high, with only
five biological replicates. However, the statistical analysis between the three time points is performed
coupled with the biological feature check in order to compensate for this.

In total, 35 out of 253 features were identified as being the same in both RP and HILIC datasets.
Reverse phase chromatography typically provides coverage for non-polar metabolites, whereas HILIC
provides polar metabolite selectivity [25]. These results demonstrate the importance of using multiple
chromatographic modes and MS polarities to enhance metabolite coverage. With a total number of
218 unique features being matched to the predicted PyFBA metabolic model of 699 metabolites, we
still obtained less than 30% coverage in our model, keeping in mind that some of these features are
adducts and correlate to single metabolites. This is where the ModelSEED database can be utilized
to see more realistic potential matches. Indeed, it would be better to see more isotope ratio matches
to improve confidence in this initial identification. Although the cell density for C. sedlakii in 0.2%
glucose was exceptionally low (0.2 to 0.5 OD600), we took this as a challenge to see how low our
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metabolome detection could get, as well as to generate an original yet simple set of data to use with
the MS_FBA script. This had an obvious impact, with only 41% of compounds matched to the PyFBA
expected list in both the combined RP and HILIC datasets. Considering the cell density was this low,
the amount of coverage the MS_FBA script was able to obtain was surprising. However, optimizing
the growth portion of the experimental procedure will help when applying MS/MS validation methods
in our algorithms.

Although the overall signal intensity and metabolite production were lacking due to the low
glucose concentration, there were hundreds more features that had potential matches with the
ModelSEED database compared to the PyFBA generated metabolic model. This indicates that the gap
filling methods are not sufficient to predict all the metabolic pathways and transport mechanisms that
are actually present in the bacterium. Gap filling [26] in PyFBA provides additional enzymatic and
transport reactions based on known essential reactions, user-supplied phylogentic information, and
analysis of incomplete subsystems to identify reactions and missing enzymes based on metabolites
predicted in the model. To prevent an excess of additional reactions that would produce an inaccurate
model, a gap generation step is added. This part of the algorithm systematically bisects the added
reactions and tests for growth. Reactions are removed until the predicted biomass matches the
phenotypic growth curve. Even with our 0.2% glucose data, it is apparent that too many reactions
were removed, as more metabolites are observed using the ModelSEED database than those predicted
from the PyFBA model. These data will be used in the next version of MS_FBA to reiterate the
metabolic model to include reactions that produce observed metabolites. In addition, an extra MS/MS
validation step will also be employed to more accurately confirm metabolite identities by including
data-dependent fragmentation in the untargeted workflow. This preliminary work with a simple
glucose nutrient source is important in developing the workflow for specificity to untargeted data,
which are easy to produce but have a high density of information. The next phase will involve modeling
more complex mixtures, including Lysogeny Broth (LB) media. If we wish to move towards modeling
metabolism in the gastrointestinal tract, we first need to accurately predict whether metabolites are
produced or consumed. This first version of MS_FBA has developed an essential tool for identifying
metabolites in an untargeted manner that will improve our gap-filling algorithms to produce more
accurate metabolic models.

4. Materials and Methods

4.1. Bacterial Culturing and Sample Preparation

To compare raw metabolomics data to metabolic models generated via flux balance analysis,
we grew C. sedlakii as a model system, on which the metabolomics workflow was performed. Five
biological replicates of C. sedlakii cultures were prepared by upscaling the same workflow used to
generate the genomic model [23]. From a glycerol stock obtained from the Biology Department
stockroom at San Diego State University, a 10 mL overnight growth in tryptone yeast glucose (TYG)
media was prepared aerobically by inoculating 1 µL of the glycerol stock. The following day, the
overnight growth was streaked onto TYG agar plates to obtain individual colonies. Five colonies
were picked and individually grown in 10 mL of TYG media overnight. This overnight growth was
then washed three times with sterile phosphate buffered saline (PBS) for transfer to minimal media.
The washed pellet was resuspended in 1 mL of PBS, then 2 µL of each pellet was inoculated into
10 mL of modified 3-morpholinopropan-1-sulfonate (MOPS) broth with 0.2% glucose. The modified
MOPS media consisted of the following: 1X MOPS (40 mM MOPS + 10 mM Tricine), 0.4% glycerol,
9,5 mM NH4Cl, 0.25 mM NaSO4, 1.0 mM MgSO4, 1.32 mM K2HPO4, 10mM KCl, 0.5 µM CaCl2, 5 mM
NaCl, and 6 µM FeCl3 [23]. All cultures were incubated at 37 ◦C and cultures in liquid media were
incubated on an orbital shaker at 250 rpm. Cell densities were ranged from 0.2 to 0.5 from mid-log
phase to stationary phase. The choice of 0.2% glucose was taken as a direct scale-up from the original
plate-based assays used to generate the metabolic model.
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Each of the five biological replicates had three replicate samples for three different extraction time
points. The negative growth control was inoculated with 2 µL of the sterile wash buffer to ensure
sterility during the wash step and was also prepared in triplicate, giving a total of 18 samples. The
bacteria were grown to mid, late, and stationary phases before each set of samples (1 negative control
and 5 biological replicates) were quenched and extracted. Extraction of the internal metabolites [27]
was performed by first pelleting the cells at 4000 rpm for 15 min at 4 ◦C and removing the supernatant.
This was followed by three washes in PBS and centrifuging at 13,000 rpm at 4 ◦C for 5 min in between
each wash. Cells were quenched in liquid nitrogen with 1 mL of 2:2:1 acetonitrile/methanol/water.
Freeze/thaw cycles between a water bath at 37 ◦C and liquid nitrogen were performed 3 times to lyse
the cells. The supernatant was transferred to a glass vial and dried under 99.999% pure nitrogen flow.
A bicinchoninic acid assay was performed on the cell pellet to measure protein concentration; these
values were used to normalize the volume of 50:50 acetonitrile/water, which was used to reconstitute the
samples for LCMS analysis. The spent media were not extracted for analysis of the external metabolites.

4.2. LCMS Conditions

Two separate untargeted LCMS analyses were performed on the C. sedlakii extracts on an Elute
UHPLC and Bruker Impact II quadrupole time of flight (QTOF) LCMS system. The first analysis
was performed on a Scherzo SM column (Imtakt, Portland OR, USA) in reverse phase. A gradient
elution was used from 98% channel A (0.1% formic acid in water) to 98% channel B (0.1% formic acid
in acetonitrile) over 22 min, using a flow rate of 200 µL/min and a 15 µL injection volume. The mass
spectrometer was operated in positive mode using a mass range of 50–1000 m/z at a scan rate of 3 Hz.
The capillary voltage was set to 5500 V, with nebulizer gas pressure set at 1.8 bar, dry gas flow set
at 4.0 L/min, and dry gas temperature set at 200 ◦C. Ion funnels 1 and 2 were set to 100 and 200 V,
respectively. The collision RF was set to 750 V, with a transfer time of 60 µs and a pre-pulse storage
time of 5 µs.

The second analysis was performed on a Luna NH2 column (Phenomenex, Torrance CA, USA)
using HILIC. A gradient elution was used from 98% channel B (acetonitrile) to 98% channel A (20 mM
ammonium acetate, 40 mM ammonium hydroxide) over 55 min using a flow rate of 100 µL/min and a
15 µL injection volume. The mass spectrometer was operated in negative mode using a mass range
from 50 to 1000 m/z at a scan rate of 3 Hz. The capillary voltage was set to 3500 V with nebulizer
pressure of 2.0 bar, a dry gas flow of 6.0 L/min, and dry gas temperature of 200 ◦C. Ion funnels 1 and
2 were set to 100 and 200 V, respectively. The collision RF was set to 350 V, with a transfer time of
75 µs and a pre-pulse storage time of 5.0 µs. Data were acquired using Bruker HyStar v4.1 SR2 and
converted to mzxml format using Bruker CompassXport v3.0.7.

The data obtained in this study will be accessible at the NIH Common Fund’s National
Metabolomics Data Repository (supported by NIH grant, U01-097430) website, the Metabolomics
Workbench, https://www.metabolomicsworkbench.org.

4.3. XCMS Online Feature Detection

XCMS Online was used to perform feature detection, retention time correction, and to identify
statistically significant features that changed between mid to late exponential phases and between late
exponential and stationary phases. XCMS Online is a freely available metabolomics data processing
and analysis software (xcmsonline.scripps.edu) [14,24,28,29]. Parameters used for feature detection,
retention time alignment, and statistical analysis are described in Supplementary Materials Table S4.

4.4. PyFBA Flux Balance Analysis

PyFBA [21] is the flux balance analysis python script used to generate the metabolic model
from the genome sequence and the predicted metabolite list. This software is freely available at
http://linsalrob.github.io/PyFBA/. Details on how to generate a PyFBA metabolite list from an annotated

https://www.metabolomicsworkbench.org
http://linsalrob.github.io/PyFBA/
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genome can be found as previously described. Any flux balance analysis software can be used, provided
that the metabolite list is in the proper format described at https://github.com/mmarney/MS_FBA.

4.5. Metabolite Prediction for Metabolomics Integration

The metabolite prediction against the flux balance model was performed using a script developed
in-house named MS_FBA. MS_FBA is an R script available for download from https://github.com/

mmarney/MS_FBA and can be run on any standard computer with R installed. For details on
installation and implementation of MS_FBA, see https://github.com/mmarney/MS_FBA/blob/master/
INSTALLATION.md. Details on script parameters are available in the Supplementary Materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/156/s1.
Figure S1: (a) This graphical output from MS_FBA shows all 1097 significant features from the XCMS Online
results for the reverse phase positive mode run. The red dots show the intensity difference between the late (L)
and mid (M) sample points, and the blue shows the intensity difference between stationary (S) to late (L); (b) This
graph shows all features that were not matched to the compounds from the predicted compound list, Table S1:
Features matched to the PyFBA predicted metabolites in the reverse phase run with data acquisition in positive
mode, Table S2: Features matched to PyFBA predicted metabolites in the HILIC run with data acquisition in
negative mode, Table S3: Adducts with the ionization mode that they are present in and the mass change that
occurs to the compounds mass (M), Table S4: XCMS Online method parameters “UPLC/Bruker Q-TOF pos”
method for each LCMS condition.

Author Contributions: This research included significant contributions from all the authors. MS_FBA
conceptualization, E.M.F. and R.A.E.; cell culture methodology, E.K. and E.M.F.; software, M.M., D.C., and
R.A.E.; resources, E.M.F., R.A.E., and D.C.; validation, M.M. and E.M.F.; data curation, M.M. and E.M.F.;
writing—original draft preparation, E.K., M.M., and E.M.F.; writing—review and editing, E.K., R.A.E., and E.M.F.;
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read and agreed to the published version of the manuscript.
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