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S.1. Correlations between Adjusted -Omic Data and Phenotype  

Before applying SmCCNet to proteomic and metabolic data, we explored the range of 

correlations between data sets (e.g., between proteomic and metabolomic features) and between -

omic data and phenotype of interest (e.g., metabolite to FEV1%). This initial analysis is important to 

identify parameter options for SmCCNet, specifically the scaling constants a, b, and c of SmCCNet’s 

objective function.  Increasing the value of a prioritizes the canonical correlation between the 

metabolomic data set and the proteomic data set, while increasing the value of scaling constants b 

and c prioritize the canonical correlation between the metabolomic data (b) and proteomic data (c) 

with the phenotype of interest respectively. -Omic features that only have a correlation to other -omic 

features and not to the phenotype could be lost from the identified network if scaling constants b and 

c are not increased [15]. Alternately, features that have correlations to the phenotype as well as 

correlations to other -omic features could be included in the identified network due to the extra 

prioritization an increase in scaling constants b and c puts on the canonical correlations. 

The range of correlations between the adjusted proteomic data and the adjusted metabolomic 

data was -0.51 to 0.67, but the range of correlations between the adjusted metabolomic or adjusted 

proteomic data with either of the phenotypes was smaller and in the -0.21 to 0.24 range (Figure S1). 

Therefore, scaled SmCCNet was applied to the proteomic and metabolomic data. In particular, scaled 

SmCCNet occurs when the scaling constant of a (for the two -omics data sets) is set to 1 and the scaling 

constants of b and c (for the phenotype correlations) are increased (e.g., we explored values up to 20, 

see Methods). 

A. 

  

B.  



 

Figure S1. Range of correlations between adjusted proteomic data, adjusted metabolomic data, and 

FEV1% (A) and range of correlations between adjusted proteomic data, adjusted metabolomic data, 

and percent emphysema (B). 

 

S.2. Parameter Selection for FEV1% Modules using Adjusted -Omic Datasets 

We tried different scaling constants for b and c where b = c. After analyzing the results from each 

scaling constant change, a final value for the scaling constants was selected. This selection was made 

by a variety of diagnostics including the correlation of each resulting network module’s first principal 

component to FEV1%, ratio of protein to metabolite nodes, and strength of module edges. We aimed 

for a network with a high correlation to FEV1% (|rho| ≥ 0.20), close to a 1:1 ratio between proteins 

and metabolites, and the strongest edges amongst all derived modules. We initially applied scaling 

constant values of 5, 10, 15, and 20 as a first pass to decrease computational time. The diagnostics 

listed above indicated that we should further analyze scaling constant values between 10 and 15 to 

determine the scaling constant for which the network module results ceased to have a substantial 

change. 

The different scaling constants can have a strong effect on module results and the number of 

modules correlated with FEV1% (Table S1). However, after scaling constant of 12, the number of 

proteins, metabolites and modules do not change much. The scaling constant of 11 was selected 

because it results in a module that has a high correlation to FEV1% (rho = 0.33, p-value = 3.9 × 10-26) 

and a balanced ratio between proteins and metabolites in the module. Results with scaling constants 

below 11 have lower correlation to FEV1% (e.g., scaling constant of 10 gives a maximum correlation 

between a module and FEV1% of rho = -0.18, p-value = 2.3 × 10-8). Because not all proteins and 

metabolites will contribute to the canonical correlation of SmCCNet, sparsity is imposed by adding 

penalties for the number of metabolites and proteins influencing the canonical weights (see Methods). 

The optimal metabolite and protein penalty parameters are (0.05, 0.05) when the scaling constant of 

11 was applied to the SmCCNet.  

Finalizing the use of scaling constant 11 (penalty parameters = (0.05, 0.05)) and applying 

SmCCNet to adjusted proteomic and metabolomic data and FEV1% results in one protein-metabolite 

module with seven metabolites and fifteen proteins. It is important to examine not only the overall 

correlation of the module with FEV1% (based on the first principal component summary), but also 

the individual correlations of the metabolites and proteins in the module with FEV1% (Figure S2).   

 

 

Table S1: Different Scaling Constants for SmCCNet Applied to FEV1% and Adjusted -Omic Data 

Scaling Constant  

(a, b, c) 

Network 

Module 

Correlation  

(p-value) 

Number of 

Proteins 

Number of 

Metabolites 

Total 

Nodes 

(1, 5, 5) 
1 -0.12 (0.00027) 172 139 311 

2 0.16 (5.3 × 10-7) 40 21 61 



3 0.20 (3.2 × 10-10) 19 25 44 

4 0.14 (9.20 × 10-6) 98 136 234 

5 -0.13 (5.2 × 10-5) 7 5 12 

6 0.06 (0.053) 1 6 7 

7 0.13 (7.0 × 10-5) 12 6 18 

8 0.11 (0.00033) 1 2 3 

9 0.05 (0.1) 1 1 2 

(1, 10, 10) 

1 -0.18 (2.3 × 10-8) 145 351 496 

2 0.17 (6.0 × 10-8) 3 25 28 

3 0.08 (0.011) 1 1 2 

4 0.18 (1.9 × 10-8) 8 21 29 

5 0.03 (0.34) 8 1 9 

(1, 11, 11) 1 0.33 (3.9 × 10-26) 15 7 22 

(1, 12, 12) 1 0.33 (3.9 × 10-26) 15 7 22 

(1, 13, 13) 1 0.33 (3.9 × 10-26) 15 7 22 

(1, 15, 15) 1 0.33 (3.9 × 10-26) 15 7 22 

(1, 20, 20) 1 -0.26 (3.7 × 10-17) 4 8 12 

For each scaling weight change, the module diagnostics are reported. Correlation refers to the module’s 

first principal component correlation to FEV1%.  

 

. 

Figure S2: Module node correlations with FEV1%. All proteins and metabolites not included in Module 

1 are represented as Module 0. The proteins are blue and the metabolites are red. Module 0 has a 0.08 (p-

value = 0.011) correlation with FEV1%. Module 1 has a 0.33 (p-value = 3.9 × 10-26) correlation with FEV1%. 
 

S.3. Identified Network Associated with FEV1%  

The initial module from SmCCNet provides a candidate network but may contain some weak 

edges between metabolites and proteins. By removing weaker edges, we focus on the strongest 

connections in the network and most informative proteins and metabolites, as they may be removed 

if they are weakly connected to other features. All edges are scaled based on the most heavily 

weighted edge on a 0 to 1 scale. The edge between troponin T and phosphocholine was so heavily 

weighted compared to the other edge weights, most of the edge weights were very small, or less than 



0.1. Therefore, we evaluated different edge thresholds to keep the strongest connections within the 

network and tried values between 0 (no edges cut, keeping original module) to 0.01 in increments of 

0.001. The resulting networks were summarized by the number of proteins and metabolites, in 

addition to the network’s first principal component correlation with the phenotype (Figure S3). Edge 

threshold value of 0.004 was chosen because it resulted in a network with the strongest edges that 

still yielded the highest correlation to FEV1% (rho = -0.34, p-value = 2.5 × 10-28).  

 

 
Figure S3: Effect of varying the edge threshold on the FEV1% network constructed on adjusted -omic data. 

Bottom axis displays the values for edge thresholds. Number of proteins for each module are in blue and the 

number of metabolites for each module are in red. The correlation between the module’s first principal 

component and FEV1% is displayed as the bolded value on each bar plot. The height of the correlation 

corresponds to the absolute value of the correlation. 

 

 

 

 

 

S.4. Correlations between Unadjusted -Omic Data and Phenotype of Interest  

Similar to adjusted -omic data analysis, we explored the range of correlations between 

unadjusted -omic data sets and between -omic data sets and phenotype of interest (e.g., protein to 

percent emphysema) before applying SmCCNet to proteomic and metabolomic data (Figure S4). The 

range of correlations between the proteomic data and the metabolomic data was -0.69 to 0.74, but the 

range of correlations between unadjusted proteomic or metabolomic data with FEV1% or percent 

emphysema was smaller: in the -0.31 to 0.24 range. Therefore, scaled SmCCNet was applied to the 

proteomic and metabolomic data.  

 

A.  



 

B.  

 
Figure S4: Range of correlations between proteomic data, metabolomic data, and FEV1% (A) and range of 

correlations between proteomic data, metabolomic data, and percent emphysema (B).  

 

 

 

 

S.5. FEV1% Modules (Unadjusted -Omic Data) 

We tried different scaling constants for b and c where b = c (see Methods and the main 

manuscript about diagnostics for selecting scaling constants). Initially only scaling constant values of 

11, 15, 20, and 25 were applied to SmCCNet to decrease computational time. Our diagnostics above 

indicated that we should further analyze scaling constants between 15 and 25. 

While different scaling constant can have a strong effect on module results, after scaling 

constant of 19, the number of proteins, the number of metabolites, and the module correlation to 

FEV1% do not change much (Table S2). Scaling constant value of 18 was selected due to module 1’s 

high correlation to FEV1% (rho = -0.26, p-value = 2.3 × 10-16). This value was also the highest scaling 

constant value before a decrease in number of proteins in module 1. Scaling constant value of 19 

resulted in a network with a higher correlation to FEV1%, but the number of proteins in module 1 

was small compared to the number of metabolites (e.g., scaling constant of 18 resulted in 131 proteins 

and 352 metabolites, scaling constant of 19 resulted in 9 proteins and 115 metabolites).  

Finalizing the use of scaling constant 18 and applying SmCCNet to unadjusted proteomic 

and metabolomic data resulted in two protein-metabolite modules. The optimal penalty parameters 



were (0.45, 0.25) which favors protein-metabolite networks with more metabolites and less proteins. 

In addition to the module’s first principal component correlation to FEV1%, individual correlations 

of module metabolites and proteins to FEV1% were also reported (Figure S5). Module 0 has a much 

lower correlation (rho = 0.08, p-value = 0.005) with FEV1% compared to Module 1 (rho = -0.26, p-value 

= 2.3 × 10-16, 131 proteins, 352 metabolites) and Module 2 (rho = 0.16, p-value = 9.10 × 10-8, five proteins, 

10 metabolites) correlation with FEV1%. 

 

Table S2: Different Scaling Constants for SmCCNet Applied to FEV1% and Unadjusted -Omic Data 

Scaling Constant  

(a, b, c) 

Network 

Module 

Correlation  

(p-value) 

Number of 

Proteins 

Number of 

Metabolites 
Total Nodes 

(1, 11, 11) 

1 -0.23 (2.1 × 10-13) 129 224 353 

2 0.25 (2.8 × 10-15) 8 8 16 

3 0.19 (1.6 × 10-9) 1 3 4 

(1, 15, 15) 

1 -0.23 (5.3 × 10-13) 131 363 494 

2 0.22 (2.3 × 10-12) 8 5 13 

3 0.19 (2.5 × 10-9) 31 1 32 

(1, 17, 17) 

1 -0.17 (1.3 × 10-7) 9 47 56 

2 -0.24 (1.5 × 10-14) 128 326 454 

3 0.19 (1.2 × 10-9) 5 8 13 

4 0.17 (6.6 × 10-8) 28 2 30 

5 -0.051 (0.11) 1 1 2 

(1, 18, 18) 
1 -0.26 (2.3 × 10-16) 131 352 483 

2 0.17 (9.1 × 10-8) 5 10 15 

(1, 19, 19) 1 -0.31 (1.0 × 10-23) 9 115 124 

(1, 20, 20) 1 -0.31 (5.8 × 10-24) 9 114 123 

(1, 22, 22) 1 -0.31 (4.9 × 10-24) 9 114 123 

(1, 25, 25) 1 -0.31 (4.1 × 10-24) 9 122 131 

For each scaling weight change, the module diagnostics are reported. Correlation refers to the module’s 

first principal component correlation to FEV1%. 

 

 

  

 



 
Figure S5: Module node correlations with FEV1%. All proteins and metabolites not included in Module 1 or 

Module 2 are represented as Module 0. The proteins are blue and the metabolites are red. Module 0 has a 0.08 

(p-value = 0.005) correlation, Module 1 has a -0.26 (p-value = 2.3 × 10-16) correlation, and Module 2 has a 0.16 

(p-value = 9.10 × 10-8) correlation with FEV1%. 

 

S.6. Identified Network Associated with FEV1% (Unadjusted -Omic Data) 

 The initial Module 1 provides a candidate network, but we want to focus on the proteins and 

metabolites connected by the strongest edges. Therefore, weaker edges and metabolites and proteins 

which are connected by weaker edges are removed. To keep the strongest edges, we evaluated edge 

threshold values between 0.4 and 0.7 at increments of 0.05. Resulting networks were summarized by 

network correlation to FEV1% and number of proteins and metabolites (Figure S6). Module 1 was the 

only module that passed edge cuts. Edge threshold value of 0.55 was chosen as the final edge 

threshold because it resulted in an interpretable network with 27 nodes. It also had a high correlation 

(rho = -0.28, p-value = 2.7 × 10-20) and balanced ratio of proteins to metabolites. Edge thresholds higher 

than 0.55 resulted in a large reduction of metabolites from the network. The identified trimmed 

network has 16 proteins and 11 metabolites with varying range of individual feature correlations to 

FEV1% (Figure S7, Table S3). Network hubs include troponin T and epidermal growth factor receptor 

with the most heavily weighted edge connecting the two hubs. All other metabolites and proteins in 

the network are either only connected to troponin T or connected to troponin T and epidermal growth 

factor. Unlike the FEV1% network created on adjusted proteomic and metabolomic data, 

phosphocholine is not a hub, but it is still connected to troponin T.  

 



 
Figure S6: Effect of varying the edge threshold on the FEV1% network constructed on unadjusted -omic data. 

Bottom axis displays the values for edge thresholds. Module 2 did not have edges strong enough to pass an 

edge threshold. Number of proteins for each module are in blue and the number of metabolites for each 

module are in red. The correlation between the module’s first principal component and FEV1% is displayed 

as the bolded value on each bar plot. The height of the correlation corresponds with the absolute value of the 

correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S7: Identified network after applying SmCCNet to unadjusted proteomic data, metabolomic data and 

FEV1%. Proteins are blue nodes and metabolites are red nodes. Grey edges represent a negative correlation 

between the nodes. Purple edges represent a positive correlation between the nodes. Edge thickness 

corresponds to the relationships between the nodes based on canonical weights.  

 

  



Table S3: Individual Network Node Correlations to FEV1% 

  Correlation 

to FEV1% 

P
ro

te
in

s 

Troponin T -0.313 

Protein S100-A4 0.243 

Carbonic anhydrase 6 0.224 

Alpha-(1,3)-fucosyltransferase 5 -0.222 

Epidermal growth factor receptor 0.218 

C-reactive protein -0.209 

Kallistatin 0.204 

Complement component C9 -0.201 

Apolipoprotein A-I 0.187 

N-terminal pro-BNP -0.157 

Growth/differentiation factor 15 -0.156 

C-C motif chemokine 14 -0.142 

Trefoil factor 3 -0.139 

Cystatin-C -0.138 

Beta-2-microglobulin -0.123 

Tumor necrosis factor receptor superfamily 

member 1A 

-0.115 

M
et

a
b

o
li

te
s 

phosphocholine 0.248 

ergothioneine 0.220 

5-hydroxyhexanoate -0.211 

myristoleoylcarnitine (C14:1) -0.198 

(N(1) + N(8))-acetylspermidine -0.188 

X – 12026 -0.180 

C-glycosyltryptophan -0.178 

adrenate (22:4n6) -0.177 

N2,N2-dimethylguanosine -0.163 

X – 12117 -0.150 

5-acetylamino-6-amino-3-methyluracil -0.148 

Pearson correlations between FEV1% and individual metabolites 

and proteins in identified network associated with FEV1%. 

 

 

 

S.7. Network Comparison between Adjusted and Unadjusted -Omic Data with FEV1% 

 

When comparing the FEV1% protein-metabolite network constructed on the adjusted -omic data with 

the network from the unadjusted -omic data, there was a significant number of protein and metabolite 

nodes consistent between the two networks (Fisher’s exact test p-value = 8.2 × 10-20) (Table S4).  

 

 

 

Table S4. FEV1% Network Nodes using Adjusted and Unadjusted Data. 

Nodes in Adjusted Network Nodes in Both Networks Nodes in Unadjusted Network 



RGMA* 
Hemojuvelin 

Macrophage mannose receptor 1 
Angiopoietin-2 

RBP 
Palmitoleoylcarnitine(C16:1)* 
Myristoleylcarnitine(C14:1)* 

Cis-4-decenoylcarnitine(C10:1)* 

Troponin T* † 
Protein S100-A4*† 

Carbonic anhydrase 6*† 
Alpha-(1,3)-fucosytransferase 5*† 
Epidermal growth factor receptor*† 

C-reactive protein† 
Kallistatin† 

Complement component C9 † 
Phosphocholine* † 
Ergothioneine* † 

5-hydroxyhexanoate* † 
(N (1) + N (8))- acetylspermidine* † 

Apolipoprotein A-I † 
N-terminal pro-BNP † 

Growth/differentiation factor 15 † 
C-C motif chemokine 14 

Trefoil factor 3 
Cystatin C 

Beta-2-microglobulin 
Tumor necrosis factor receptor super family member 1A 

Myristoleoylcarnitine (C14:1) † 
C-glycosyltryptophan † 

Adrenate (22:4n6) † 
N2, N2-dimethylguanosine † 

5-acetylamino-6-amino-3-methyluracil 
X-12026 † 
X-12117 

Protein and metabolite nodes (italicized) in identified FEV1% networks when SmCCNet was applied to adjusted and unadjusted -omic data. Middle, shaded column lists nodes in both 
networks. There was a significant number of protein and metabolite nodes consistent between the two networks (Fisher’s exact test p-value = 8.2 × 10-20).  Proteins and metabolites 
(adjusted for blood cell count) that have greater than a 0.15 correlation to FEV1% (FDR adjusted p-value < 0.001) are denoted with *. Unadjusted proteins and metabolites that have 

greater than a 0.15 correlation to FEV1% (FDR adjusted p-value < 0.001) are denoted with †. 

 

 

S.8. Parameter Selection for Percent Emphysema Modules using Adjusted -Omic Datasets 

Similar to methods used to construct protein-metabolite networks correlated for FEV1%, we tried 

different scaling constants for b and c where b = c when applying scaled SmCCNet to adjusted 

proteomic and metabolomic data and percent emphysema. First, scaling constant values of 5, 10, 15, 

and 20 were applied to SmCCNet. Next, further analysis of scaling constant values between 10 and 

20 was performed to determine the scaling constant for which module results ceased to have 

substantial changes in the diagnostics mentioned above. After analyzing the results from each scaling 

constant change, a final value was selected based on each module’s first principal component 

correlation to percent emphysema, number of metabolites and proteins and strength of module edges 

for each module. 

While all scaling constant changes resulted in a similar maximum module correlation to percent 

emphysema (rho = -0.29), after the scaling constant value of 15, the number of proteins and 

metabolites do not change much (Table S5). Scaling constant value of 15 was selected because it had 

the same correlation to percent emphysema as other modules from different scaling constants. 

However, it was the largest scaling constant that provided a large number of nodes for which to build 

a network before a sharp decrease in number of nodes. The largest module (Module 1) derived from 

SmCCNet with scaling constant of 15 is comprised of 258 nodes, while scaling constant of 16 gives a 

single module with 17 nodes.   

Finalizing the use of scaling constant 15 and applying scaled SmCCNet to adjusted proteomic 

and metabolomic data resulted in three protein-metabolite modules correlated with percent 

emphysema. The optimal penalty parameters were (0.35, 0.15) which favors networks with more 

metabolites and fewer proteins. Not only did we examine the full module’s correlation to percent 

emphysema, but it was important to inspect the individual correlations of proteins and metabolites 

in each module to percent emphysema (Figure S8). All proteins and metabolites not included in 

Module 1, 2 or 3 are represented as Module 0. Module 0 has a lower correlation with percent 

emphysema  (rho = -0.068, p-value = 0.038) compared to Module 1 (rho = -0.29, p-value = 5.6 × 10-22, 

42 proteins, 216 metabolites), Module 2 (rho = -0.13, p-value = 0.00011, two proteins, one metabolite), 

or Module 3 (rho = -0.18, p-value = 3 × 10-8, 23 proteins, one metabolite) correlation to percent 

emphysema.  

 

Table S5: Different Scaling Constants for SmCCNet Applied to Percent Emphysema and Adjusted -Omic Data 

Scaling Constant 

(a, b, c) 

Network 

Module 

Correlation 

(p-value) 

Number of 

Proteins 

Number of 

Metabolites 

Total 

Nodes 

(1, 10, 10) 
1 -0.29 (3.0 × 10-19) 39 232 271 

2 -0.14 (1.5 × 10-5) 4 2 6 

(1, 13, 13) 1 -0.29 (6.6 × 10-20) 37 216 253 



2 -0.13 (5.4 × 10-5) 2 2 4 

(1, 15, 15) 

1 -0.29 (5.6 × 10-20) 42 216 258 

2 -0.13 (0.00011) 2 1 3 

3 -0.18 (3.0 × 10-8) 23 1 24 

(1, 16, 16) 1 -0.29 (3.6 × 10-20) 11 6 17 

(1, 17, 17) 1 -0.29 (3.6 × 10-20) 11 6 17 

(1, 20, 20) 1 -0.27 (5.1 × 10-17) 4 7 11 

For each scaling weight change, the module diagnostics are reported. Correlation refers to the module’s 

first principal component correlation to percent emphysema. 

 

 

Figure S8. Correlations with percent emphysema for full module. All proteins and metabolites not 

included in Module 1, 2 or 3 are represented as Module 0. The proteins are blue and the metabolites 

are red. Module 0 has a -0.068 (p-value = 0.038) correlation, Module 1 has a -0.29 (p-value = 5.6 × 

10-20) correlation, Module 2 has a -0.13 (p-value = 0.00011) correlation, and Module 3 has a -0.18 (p-

value = 3 × 10-8) correlation to percent emphysema. 

 

  



S.9. Identified Network Associated with Percent Emphysema  

While the initial Module 1 provides a candidate network, it is very large (42 proteins, 216 metabolites) 

and may contain weak edges between features. To focus on the strongest connections within the 

network, edges that do not meet a specified edge threshold were removed from the network thereby 

removing metabolites and proteins that are weakly connected to other proteins and metabolites. Edge 

thresholds between 0.3 and 0.6 were evaluated. The resulting networks were summarized by the 

network’s correlation to percent emphysema and the number of proteins and metabolites (Figure S9). 

Module 1 was the only module that passed edge cuts. Edge threshold value of 0.5 was chosen as the 

final edge threshold because it resulted in an interpretable network with 23 nodes. It also had the 

strongest edges and a balanced metabolite to protein ratio while still yielding a high correlation to 

percent emphysema (rho = -0.27, p-value = 2.6 × 10-17). 

  

Figure S9: Effect of varying the edge threshold on the percent emphysema network constructed on adjusted 

-omic data. Bottom axis displays the values for edge thresholds. Module 2 and Module 3 did not have edges 

strong enough to pass an edge threshold. Number of proteins for each module are in blue and the number of 

metabolites for each module are in red. The correlation between the module first principal component and 

percent emphysema is displayed as the bolded value on each bar plot. The height of the correlation 

corresponds with the absolute value of the correlation. 

 

S.10 Percent Emphysema Modules (Unadjusted -Omic Data) 

Similar to methods used to construct previous protein-metabolite networks, we tried 

different scaling constants for b and c when applying scaled SmCCNet to unadjusted -omic data sets 

and percent emphysema (see Methods and the main manuscript about diagnostics for selecting 

constants). First, scaling constant values of 5, 10, 15, and 20 were applied to SmCCNet. Next, further 



analysis of scaling constant values between 2 and 10 was performed to determine the scaling constant 

for which module results ceased to have substantial changes in previously mentioned diagnostics.  

After scaling constant value of 7, the number of proteins and metabolites and the module 

correlation to percent emphysema did not change much (Table S6). Scaling constant value of 7 was 

selected as the final scaling constant for SmCCNet applied to percent emphysema and unadjusted 

proteomic and metabolomic data. Although the resulting Module 1 has a small number of proteins 

compared to number of metabolites (six proteins, 193 metabolites), the correlation to percent 

emphysema is high (rho = -0.30, p-value = 8.6 × 10-22). Scaling constant values between 2 and 6 did 

yield modules with high correlations to percent emphysema and a more equal ratio between number 

of proteins and number of metabolites (e.g., scaling constant = 5, module 2). However, after further 

investigation, the modules’ edges were weak and did not pass a high enough edge threshold. 

Finalizing the use of scaling constant 7 and applying SmCCNet to unadjusted proteomic and 

metabolomic data and percent emphysema resulted in six modules. The optimal penalty parameters 

were (0.35, 0.55) which favors protein-metabolite networks with more metabolites and less proteins. 

In addition to the module’s first principal component correlation to percent emphysema, the 

individual correlations of module metabolites and proteins to percent emphysema were also 

examined (Figure S10). Module 0 has a much lower correlation (rho = -0.08, p-value = 0.011) with 

percent emphysema compared to Module 1 (rho = -0.26, p-value = 8.6 × 10-22, six proteins, 193 

metabolites) correlation, Module 2 (rho = 0.20, p-value = 1.4 × 10-10, three proteins, fourteen 

metabolites) correlation, Module 3 (rho = -0.13, p-value = 2.1 × 10-05, one protein, 30 metabolites) 

correlation, Module 4 (rho = -0.20, p-value = 5.1 × 10-10, one protein, eleven metabolites) correlation, 

Module 5 (rho = -0.11, p-value = 9.3 × 10-4, two proteins, eleven metabolites) correlation, and Module 

6 (rho = 0.16, p-value = 2.3 × 10-5, one protein, one metabolite) to percent emphysema.   

 

S.11. Identified Network associated with Percent Emphysema (Unadjusted -Omic Data) 

 While Module 1 is a candidate network, it contains weak edges and features only connected 

by weak edges. To focus on the strongest edges, we evaluated different edge thresholds values 

between 0.2 and 0.45. Resulting networks were summarized by network correlation to percent 

emphysema and number of proteins and metabolites (Figure S11). Module 1 was the only network 

that passed edge cuts. Edge threshold value of 0.4 was chosen as the final edge threshold because it 

resulted in a network with an interpretable number of 24 nodes while maintaining a high correlation 

to percent emphysema (rho = -0.26, p-value = 3.9 × 10-16).  The identified network has three proteins 

and 21 metabolites with a range of individual feature correlations to percent emphysema (Figure S12, 

Table S7). Although there are a low number of proteins in this network, the proteins are connected 

by highly weighted edges and have high connectivity. Growth hormone receptor, a protein, is the 

largest network hub with every other metabolite and protein connected to growth hormone receptor. 

The two most heavily weighted edges connect growth hormone receptor to apolipoprotein E and to 

proto-oncogene tyrosine-protein kinase receptor, both of which are proteins.  

 

Table S6: Different Scaling Constants for SmCCNet Applied to Percent Emphysema and Unadjusted -Omic 

Data  

Scaling Constant 

(a, b, c) 

Network 

Module 

Correlation 

(p-value) 

Number of 

Proteins 

Number of 

Metabolites 
Total Nodes 

(1, 2, 2) 

1 0.26 (7.5 × 10-16) 27 63 90 

2 -0.06 (0.048) 36 34 70 

3 -0.22 (1.3 × 10-11) 10 29 39 

4 -0.09 (0.0055) 12 20 32 

5 -0.04 (0.23) 140 217 357 

6 -0.11 (0.00097) 5 9 14 

7 -0.15 (5.3 × 10-6) 2 5 7 



8 -0.13 (5.9 × 10-5) 3 1 4 

(1, 3, 3) 

1 -0.06 (0.051) 127 326 453 

2 0.26 (1.9 × 10-16) 47 178 225 

3 -0.08 (0.014) 18 13 31 

4 -0.13 (3.3 × 10-5) 2 3 5 

5 -0.14 (1.7 × 10-5) 19 1 20 

6 -0.10 (0.0017) 10 2 12 

7 0.05 (0.099) 1 1 2 

(1, 4, 4) 

1 0.05 (0.16) 280 88 368 

2 -0.10 (0.0013) 218 112 330 

3 -0.20 (6.5 × 10-10) 7 8 15 

4 -0.12 (0.00034) 64 20 84 

5 0.13 (4.4 × 10-5) 2 3 5 

(1, 5, 5) 

1 0.08 (0.0096) 141 75 216 

2 -0.24 (1.4 × 10-13) 10 10 20 

3 -0.11 (0.00048) 116 124 240 

4 -0.02 (0.5) 10 29 39 

5 -0.18 (1.4 × 10-8) 2 6 8 

6 -0.11 (0.00059) 4 1 5 

7 -0.12 (0.00019) 22 15 37 

8 -0.16 (4.8 × 10-7) 2 6 8 

9 -0.09 (0.0081) 2 3 5 

(1, 6, 6) 

1 0.05 (0.11) 374 84 458 

2 -0.20 (6.6 × 10-10) 13 25 38 

3 -0.12 (0.00026) 382 116 498 

4 -0.20 (7.1 × 10-10) 2 6 8 

5 -0.12 (0.00018) 19 11 30 

6 -0.11 (0.00048) 19 13 32 

7 -0.10 (0.0015) 22 4 26 

8 -0.03 (0.3) 12 2 14 

9 -0.07 (0.035) 2 3 5 

10 0.03 (0.28) 5 1 6 

(1, 7, 7) 

1 -0.30 (8.6 × 10-22) 6 193 199 

2 0.21 (1.4 × 10-10) 3 14 17 

3 -0.14 (2.1 × 10-10) 1 30 31 

4 -0.20 (5.1 × 10-10) 1 11 12 

5 -0.11 (0.00093) 2 11 13 

6 -0.14 (2.3 × 10-5) 1 1 2 

(1, 10, 10) 

1 -0.31 (3.8 × 10-22) 6 203 209 

2 0.15 (5.0 × 10-6) 2 5 7 

3 -0.14 (7.8 × 10-6) 1 1 2 

4 -0.21 (3.6 × 10-11) 3 10 13 

5 0.13 (6.3 × 10-5) 1 1 2 

(1, 13, 13) 

1 -0.31 (1.7 × 10-22) 8 219 227 

2 -0.26 (1.1 × 10-16) 4 3 7 

3 -0.15 (3.4 × 10-6) 1 2 3 

(1, 15, 15) 

1 -0.31 (5.5 × 10-23) 4 216 220 

2 -0.25 (4.1 × 10-15) 9 14 23 

3 -0.15 (1.9 × 10-6) 1 1 2 

(1, 20, 20) 
1 -0.31 (4.3 × 10-23) 9 225 234 

2 -0.25 (2.0 × 10-14) 5 2 7 

For each scaling weight change, the module diagnostics are reported. Correlation refers to the module’s first 

principal component correlation to percent emphysema. 

 

 



 
Figure S10: Correlations with percent emphysema for full module. All proteins and metabolites not included 

in modules 1 through 6 are represented as Module 0. The proteins are blue and the metabolites are red.  

 

 

 
Figure S11: Effect of varying the edge threshold on the percent emphysema network constructed on 

unadjusted -omic data. Bottom axis displays the values for edge thresholds. Number of proteins for each 

module are in blue and the number of metabolites for each module are in red. The correlation between the 

module first principal component and percent emphysema is displayed as the bolded value on each bar plot. 

The height of the correlation corresponds to the absolute value of the correlation. 

 



Figure S12: Identified network after applying SmCCNet to unadjusted proteomic data, metabolomic data and 

percent emphysema. Proteins are blue nodes and metabolites are red nodes. Grey edges represent a negative 

correlation between the nodes. Purple edges represent a positive correlation between the nodes. Edge 

thickness corresponds to the product of the canonical weights of the two nodes. Node size corresponds with 

connectivity.  

 

 

 

 

Table S7: Individual Network Node Correlations to Percent Emphysema  

  Correlation 

to Percent 

Emphysema 

P
ro

te
in

s Growth hormone receptor -0.206 

Proto-oncogene tyrosine-protein kinase receptor Ret -0.177 

Apolipoprotein E -0.154 

M
e

ta
b

o
li

te
s 

androsterone glucuronide -0.211 

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) -0.207 

1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) -0.201 

vanillylmandelate (VMA) 0.195 

1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) -0.188 

Ergothioneine -0.187 

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) -0.186 

Phosphocholine -0.181 

Homostachydrine 0.176 

1-ribosyl-imidazoleacetate* -0.173 

Valine -0.172 

palmitoyl-linoleoyl-glycerol (16:0/18:2) [2] -0.168 

X – 12707 0.164 

1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) -0.159 

Leucine -0.157 

Glutamate -0.156 



palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2] -0.153 

palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [1] -0.141 

diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1]) -0.138 

palmitoyl-oleoyl-glycerol (16:0/18:1) [2] -0.138 

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) 0.135 

Pearson correlations between percent emphysema and individual metabolites and 

proteins in identified network associated with percent emphysema. 

 

 

 

  



S.12. Network Comparison between Adjusted and Unadjusted -Omic Data with Percent Emphysema  

 

When comparing the percent emphysema protein-metabolite network constructed on the adjusted -

omic data with the network from the unadjusted -omic data, there was a significant number of protein 

and metabolite nodes consistent between the two networks (Fisher’s exact test p-value = 7.8 × 10-20) 

(Table S8). 

 

Table S8. Nodes of Percent Emphysema Networks using Adjusted and Unadjusted Data. 

Nodes in Adjusted Network Nodes in Both Networks Nodes in Unadjusted Network 

Troponin T* 
Leptin* 

Glucagon* 
Chordin-like protein 1 

Hemojuvelin 
Sex hormone-binding 

globulin 
Aminoacylase-1 

Adiponectin 
IGFBP-2 
QORL1 

1-ribosyl-imidazoleacetate* 

Growth hormone receptor*† 
Proto-onogene tyrosine-protein kinase receptor 

Ret† 
Apolipoprotein E† 

1-stearoyl-2-linoleoyl-GPI (18:0/18:2)* † 
Androsterone glucuronide*† 

1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6)* 
† 

1-palmitoyl-2-docosahexaenoyl-GPE 
(18:0/22:6)* † 

1-palmitoyl-2-linoleoyl-GPI (16:0/18:2)* † 
Valine* † 

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]* † 
1-stearoyl-2-arachidonoyl-GPI (18:0/20:4)* † 

Glutamate* † 

Vanillylmandelate (VMA) † 
Ergotioneine† 

Phosphocholine† 
Homostachydrine† 

1-ribosyl-imidazoleacetate† 
Leucine† 

Palmitoyl-arachidonoyl-glycerol (16:0/20:4) 
[2] † 

Palmitoleoyl-lineoleoyl-glycerol (16:1/18:2) 
[1] 

Diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1]) 
Palmitoyl-oleoyl-glycerol (16:0/18:1) [2] 
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-

16:0/18:2) 
X-12707† 

Protein nodes and metabolite nodes (italicized) in identified percent emphysema networks when 

SmCCNet was applied to adjusted and unadjusted -omic data. Middle, shaded column lists nodes in 

both networks. There is a significant number of protein and metabolite nodes consistent between the 

two networks (Fisher’s exact test p-value = 7.8 × 10-20).  Proteins and metabolites (adjusted for blood 

cell count) that have greater than a 0.15 correlation to percent emphysema (FDR adjusted p-value < 

0.001) are denoted with *. Unadjusted proteins and metabolites that have greater than a 0.15 

correlation to percent emphysema (FDR adjusted p-value < 0.001) are denoted with †. 

S.13. Secondary Network Analysis  

Secondary analysis was calculated on the subjects to look at trends with each network constructed 

on adjusted -omic data by different clinical subsets (Figure S13, Figure S14). There was a significant 

difference (p-value < 0.0001) between subjects who had zero or at least one exacerbation for the 

FEV1% network, but there was no significant difference for the percent emphysema network 

(Figure S13). There was a significant difference (p-value < 0.0001) between subjects with and 

without cardiovascular comorbidity for the FEV1% network but not within the network associated 

with percent emphysema (Figure S14).  

 



 

Figure S13.Association of network first principal component (PC1) with exacerbations. Subjects 

were separated by those who had zero and those who has at least one exacerbation and evaluated 

for trends within the A) FEV1% or B) percent emphysema networks. 

 

 

Figure S14.  Association of network PC1 with cardiovascular comorbidity. Subjects were separated 

by those with or without cardiovascular comorbidities and evaluated for trends within the A) 

FEV1% or B) percent emphysema networks.  

 



S.14. Methods Supplement  

Protein-metabolite networks correlated to FEV1% and percent emphysema were constructed 

using SmCCNet (Figure S15), a technique developed by Shi et al [15] that uses multiple canonical 

correlation network analysis to integrate multiple -omics data types with a phenotype of interest. The 

objective function is (w1, w2) = max [ aw1 X1T X2 w2 + bw1 X1 Y + cw2 X2 Y] subject to ||ws||2 = 1, Ps(ws) ≤ 

cs, s = 1, 2 where X1 and X2 are -omic data sets (metabolites and proteins respectively), Y is a phenotype 

of interest (FEV1% or percent emphysema), w1 and w2 are canonical weights, a, b, and c are scaling 

constants, and c1, c2  are penalty parameters under the l1 – norm function.  The sparse penalty 

parameters were chosen through a 5-fold cross validation (Figure S15, Step 1) to find the penalty pair 

that minimized prediction error. All penalty pairs from the set (0.05, 0.15, 0.25, 0.35, 0.45, 0.55) were 

tested in a grid search to find the optimal (c1, c2). The c1 penalty is imposed on the metabolic data 

while the c2 penalty is imposed on the proteomic data. Small penalties correspond with less of that 

particular -omic type contributing to the network. Conversely, a high penalty parameter should result 

in more of that -omic type included in the network. Canonical weights indicate the contribution of 

metabolites and proteins to the canonical correlations and were generated through sparse multiple 

canonical correlation analysis (Figure S15, Step 2).  

An important step in SmCCNet is the feature subsampling step to create robust network 

construction. The proteomic and metabolomic data was subsampled 500 times and a relationship 

matrix was created for each subsample based on the canonical weights. The proportions of 

subsampled protein and metabolite features were 70% for both feature sets. To find the similarity 

matrix, all 500 relationship matrices were averaged and rescaled to have a maximum relatedness of 

one. A hierarchical tree was constructed based on the averaged and rescaled relationship matrix 

(Figure S15, Step 3). A height threshold of one was applied to the tree, resulting in protein-metabolite 

modules correlated to the phenotype of interest. A more complete description of SmCCNet can be 

found in Shi et al 2019 [15]. 

 

 

 

Figure S15: SmCCNet workflow [15]. Step 1: Find the best sparse penalty parameters through a 5-Fold cross 

validation. Step 2: Subsample the proteomic and metabolomic data, find the canonical weights using the 

penalty pair found in step 1, create a relationship matrix, repeat 500 times. Compute similarity matrix by 



averaging and scaling all 500 relationship matrices. Step 3: Find protein-metabolite modules by applying a 

hierarchical tree cut to similarity matrix.  

 

 

S.15. Metabolon and Data Processing  

 

Samples were extracted with methanol under vigorous shaking for two minutes (Glen Mills 

GenoGrinder 2000) followed by centrifugation to remove protein, dissociate small molecules bound 

to protein or trapped in the precipitated protein matrix, and to recover chemically diverse 

metabolites. The resulting extract is divided into five fractions: two for analysis by two separate 

reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one 

for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-

MS/MS with negative ion mode ESI, and one sample is reserved for backup. Metabolon has 

developed peak detection and integration software to generate a list of m/z ratios, retention indices 

and area under the curve (AUC) values for each detected metabolite, as described in detail [49-51]. 

User specified criteria for peak detection included thresholds for signal to noise ratio, area and width. 

Relative standard deviations (RSDs) of peak area were determined for internal and recovery 

standards to confirm extraction efficiency, instrument performance, column integrity, 

chromatography and mass calibration. The biological data sets, including QC samples, were 

chromatographically aligned based on a retention index that utilized internal standards assigned a 

fixed RI value. The RI of the experimental peak was determined by assuming a linear fit between 

flanking RI markers whose RI values are set. Peaks were matched against an in-house library of 

authentic standards and routinely detected unknown compounds specific to the respective method. 

Identifications were based on retention index values, experimental precursor mass match to the 

library authentic standard within 10 ppm, and quality of MS/MS match. All proposed identifications 

were then manually reviewed and curated by an analyst who approved or rejected each identification 

based on the criteria above. The platform reported 1,392 features, including 1,064 annotated features 

which were grouped by Metabolon into “Super Pathways” including: 436 lipids, 261 xenobiotics, 207 

amino acids, 40 peptides, 38 cofactors and enzymes, 35 nucleotides, 25 carbohydrates, 11 energy 

pathway compounds, and 11 partially characterized molecules. All compounds are further annotated 

by “Sub Pathway” (e.g. “sphingomyelins”, “carnitine metabolism”, “lysine metabolism”). 
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