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Abstract: Obesity is associated with a higher risk of advanced prostate cancer, but men with the
same body mass index (BMI) may differ in their underlying metabolic health. Using metabolomics
data from nested case-control studies in the Health Professionals Follow-Up Study, we calculated
Pearson correlations between 165 circulating metabolites and three adiposity measures (BMI,
waist circumference, and derived fat mass from a validated prediction equation) to identify
adiposity-associated metabolites. We used Lasso to further select metabolites for prediction models of
adiposity measures, which we used to calculate metabolic scores representing metabolic obesity. In an
independent set of 212 advanced prostate cancer cases (T3b/T4/N1/M1 or lethal during follow-up) and
212 controls, we used logistic regression to evaluate the associations between adiposity measures and
metabolic scores with risk of advanced disease. All adiposity measures were associated with higher
blood levels of carnitines (Pearson r range, 0.16 to 0.18) and lower levels of glutamine (r = −0.19)
and glycine (r, −0.29 to −0.20), in addition to alterations in various lipids. No adiposity measure or
metabolic score was associated with risk of advanced prostate cancer (e.g., odds ratio for a 5 kg/m2

increase in BMI 0.96 (95% CI: 0.73, 1.27) and BMI metabolic score 1.18 (95% CI: 0.57, 2.48)). BMI, waist
circumference, and derived fat mass were associated with a broad range of metabolic alterations.
Neither adiposity nor metabolic scores were associated with risk of advanced prostate cancer.

Keywords: adiposity; epidemiology; fat mass; metabolomics; obesity; advanced prostate cancer;
waist circumference
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1. Introduction

Obesity is associated with a higher risk of advanced prostate cancer [1]. However, men with
the same body mass index (BMI) may differ in their underlying metabolic health and subsequent
disease risk [2–5]. The integration of metabolomics and anthropometric data offers the potential to
better identify men at highest risk of prostate cancer, elucidate underlying mechanisms, and inform
the development of targeted intervention strategies.

Previous metabolomics-based studies have identified the metabolic alterations associated with
BMI and waist circumference [4,6–10], but few have evaluated fat mass [11,12]. Some of these studies
further examined how the identified metabolites individually related to later risk of diabetes and
breast cancer [6,8]. No study to date has examined whether obesity-related metabolic alterations could,
collectively as a metabolic signature of obesity, facilitate the identification of men at risk of advanced
prostate cancer by adding information beyond standard measures of obesity, such as BMI.

Here we evaluate associations between metabolites, adiposity, and advanced prostate cancer.
First, we identify the plasma metabolites associated with various adiposity measures (BMI, waist
circumference, and derived fat mass). Second, we use selected metabolites to evaluate the association
between metabolically defined obesity and risk of advanced prostate cancer, among all men and within
subgroups defined by self-reported adiposity measures.

2. Results

2.1. Population Characteristics

Table 1 shows the baseline characteristics of the 660 eligible men. The mean age at blood draw
was 65 years, the mean BMI was 26 kg/m2, the mean waist circumference was 96 cm, and the mean
derived fat mass was 22 kg. Controls in the Parkinson’s disease study were more likely to be former
smokers compared with men in the amyotrophic lateral sclerosis (ALS) and prostate cancer studies.
Advanced prostate cancer cases were more likely to be current smokers than their matched controls.

Table 1. Baseline characteristics of eligible participants from nested-case control studies of various
outcomes, Health Professionals Follow-Up Study, 1993–1996 a.

Characteristic, Mean (SD) or %
Amyotrophic Lateral

Sclerosis Study
Parkinson’s

Disease Study Prostate Cancer Study

Controls
(n = 52)

Controls
(n = 184)

Controls
(n = 212)

Advanced Cases
(n = 212)

Age (years) 62.7 (8.3) 65.3 (8.0) 65.3 (8.4) 65.4 (8.5)
Body mass index (kg/m2) 25.9 (2.5) 25.5 (2.8) 25.8 (3.6) 25.8 (4.1)
Waist circumference (cm) 94.7 (8.1) 95.5 (8.5) 96.5 (10.3) 95.7 (9.8)
Derived fat mass (kg) b 21.9 (4.3) 21.6 (5.2) 22.5 (6.4) 21.7 (5.9)

Total physical activity (MET hours/week) 39.7 (29.3) 34.4 (27.4) 32.5 (25.6) 31.1 (28.9)
Year of blood donation

1993–1994 87 94 97 97
1995–1996 14 6 3 3

Fasting ≥ 8 h 50 55 62 67
Race/ethnicity, White 94 98 97 99

Smoking status
Never 50 39 46 43

Former 46 58 50 51
Current 4 3 4 7

History of diabetes mellitus 4 4 6 7
Family history of prostate cancer – – 9 9

Recent prostate-specific antigen testing c – – 60 62

Abbreviation: MET, Metabolic equivalent of task. Frequencies of polytomous variables may not add up to 100%
due to rounding. a Baseline characteristics were measured at the time of blood draw when possible, and otherwise
in the questionnaire preceding blood draw. b Derived fat mass from validated anthropometric prediction models
developed in the National Health and Nutrition Examination Survey (NHANES). c Prostate-specific antigen testing
since January 1, 1992.
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The mean age at advanced prostate cancer diagnosis was 72 years (range, 50–92). Among the
212 men with advanced prostate cancer, 53% had T3b/T4/N1/M1 tumors at diagnosis and the remaining
47% were classified as such because of metastasis or fatal disease. Among the 88% of cases for whom
the grade was available, 37% had high-grade tumors (Gleason grade ≥ 8). Among the 85% of cases for
whom prostate-specific antigen (PSA) level at diagnosis was available, the median PSA was 8.5 ng/mL.
The median time between the blood draw and prostate cancer diagnosis was 5.5 years (range, 0.1–16.2).

2.2. Metabolites Associated with Adiposity

We identified 43 metabolites associated (false discovery rate (FDR) p-value < 0.05 and |r| ≥ 0.15)
with BMI, 38 with waist circumference, and 33 with derived fat mass (Table 2). There was considerable
overlap in identified metabolites across adiposity measures; 28 metabolites were associated with all
three measures (in the same direction) (Figure S3). All adiposity measures were associated with higher
levels of carnitines (r, 0.16 to 0.18) and specific diacylglycerol (DAG) and triacylglycerol (TAG) lipid
species (r, 0.16 to 0.24). All were associated with lower levels of glycine (r, −0.29 to −0.20), glutamine
(r = −0.19), as well as some cholesterol ester (CE) (r, −0.23 to −0.19), lysophosphatidylcholine (LPC)
(r, −0.34 to −0.18), and lysophosphatidylethanolamine (LPE) (r, −0.29 to −0.17). Mixed associations
were found for phosphatidylcholine (PC) (r, −0.18 to 0.20).

Associations were similar when restricted to men with information on all three adiposity measures
(Table S1). When restricted to fasting samples, only BMI and derived fat mass were associated with
lower glycine (r, −0.32 to −0.31) and LPE (r, −0.26 to −0.25), BMI was associated with higher valine
(r = 0.23), waist circumference was associated with higher ceramides (r, 0.23 to 0.24), all adiposity
measures were associated with higher PC (r, 0.25 to 0.28), and neither glutamine nor carnitines were
identified as adiposity-associated metabolites; patterns of associations were otherwise similar, with
stronger correlations observed for various DAG and TAG lipid species (r, 0.24 to 0.36) (Table S2).

In Lasso models to derive metabolic scores, there were 15 metabolites with a non-zero coefficient
in models for BMI, 15 for waist circumference, and 21 for derived fat mass (File S2). Each model
retained at least one of the identified amino acids and the top hit for carnitines, LPC, LPE, and PC,
in addition to a selection of lipids.
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Table 2. Metabolites associated with adiposity measures (FDR p-value < 0.05 and |r| ≥ 0.15) among controls (n = 219–234) a from nested case-control studies, Health
Professionals Follow-Up Study, 1993–1996.

HMDB ID b Metabolite Name
Body Mass Index Waist Circumference Derived Fat Mass

Pearson Correlation
Coefficient c

FDR
p-value

Pearson Correlation
Coefficient c

FDR
p-value

Pearson Correlation
Coefficient c

FDR
p-value

Amino acids
HMDB00123 glycine −0.29 <0.001 −0.20 0.02 −0.25 0.01
HMDB00641 glutamine −0.19 0.02 −0.19 0.03 −0.19 0.04
Carnitines

HMDB06347 C26 carnitine 0.18 0.03 0.18 0.04 – –
HMDB00688 C5 carnitine 0.18 0.03 – – – –
HMDB00705 C6 carnitine 0.18 0.03 0.18 0.03 – –
HMDB02013 C4 carnitine 0.16 0.05 – – – –
HMDB13326 C12:1 carnitine – – 0.17 0.04 – –
HMDB00222 C16 carnitine – – – – 0.18 0.04

Lipids
CE

HMDB10375 C22:5 CE −0.20 0.01 −0.22 0.01 −0.23 0.01
HMDB06733 C22:6 CE – – – – −0.19 0.03

DAG
Saturated

HMDB07098 C32:0 DAG 0.23 0.01 0.21 0.01 0.22 0.01
Unsaturated

HMDB07102 C34:1 DAG 0.24 <0.01 0.24 0.01 0.24 0.01
HMDB07099 C32:1 DAG 0.23 0.01 0.24 0.01 0.24 0.01
HMDB07103 C34:2 DAG 0.22 0.01 0.23 0.01 0.23 0.01
HMDB07132 C34:3 DAG 0.22 0.01 0.23 0.01 0.22 0.01
HMDB07218 C36:2 DAG 0.21 0.01 0.23 0.01 0.22 0.01
HMDB07216 C36:1 DAG 0.21 0.01 0.22 0.01 0.23 0.01
HMDB07219 C36:3 DAG 0.20 0.02 0.21 0.01 0.20 0.02
HMDB07248 C36:4 DAG 0.17 0.04 0.17 0.04 – –
HMDB07199 C38:5 DAG 0.16 0.05 – – – –

LPC
HMDB10386 C18:2 LPC −0.34 <0.0001 −0.23 0.01 −0.29 <0.001
HMDB10397 C20:5 LPC −0.34 <0.0001 −0.24 0.01 −0.29 <0.001
HMDB02815 C18:1 LPC −0.29 <0.001 −0.21 0.01 −0.26 0.01
HMDB10404 C22:6 LPC −0.25 <0.01 −0.18 0.03 −0.26 0.01
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Table 2. Cont.

HMDB ID b Metabolite Name
Body Mass Index Waist Circumference Derived Fat Mass

Pearson Correlation
Coefficient c

FDR
p-value

Pearson Correlation
Coefficient c

FDR
p-value

Pearson Correlation
Coefficient c

FDR
p-value

LPE
HMDB11503 C16:0 LPE −0.29 <0.001 −0.17 0.04 −0.23 0.01
HMDB11507 C18:2 LPE −0.26 <0.01 – – – –
HMDB11506 C18:1 LPE −0.22 0.01 – – −0.18 0.04
HMDB11130 C18:0 LPE −0.20 0.02 – – – –
HMDB11526 C22:6 LPE −0.19 0.02 – – – –

PC

HMDB11210 C34:2 PC
plasmalogen −0.16 0.05 – – – –

HMDB08047 C38:3 PC 0.20 0.01 0.20 0.02 – –
HMDB08057 C40:6 PC 0.19 0.02 0.19 0.03 – –
HMDB08511 C40:10 PC −0.16 0.05 – – −0.18 0.04

TAG
Unsaturated

HMDB05369 C52:2 TAG 0.23 0.01 0.23 0.01 0.23 0.01
HMDB05360 C50:1 TAG 0.23 0.01 0.21 0.01 0.22 0.01
HMDB05384 C52:3 TAG 0.22 0.01 0.22 0.01 0.21 0.02
HMDB05433 C50:3 TAG 0.22 0.01 0.23 0.01 0.22 0.01
HMDB05377 C50:2 TAG 0.22 0.01 0.21 0.01 0.22 0.01
HMDB05367 C52:1 TAG 0.20 0.01 0.20 0.02 0.21 0.01
HMDB05376 C48:2 TAG 0.19 0.02 0.20 0.02 0.21 0.02
HMDB05432 C48:3 TAG 0.18 0.03 0.20 0.02 0.20 0.02
HMDB10412 C46:1 TAG 0.18 0.03 0.17 0.04 0.20 0.02
HMDB05403 C54:2 TAG 0.18 0.03 0.20 0.02 0.20 0.02
HMDB05363 C52:4 TAG 0.18 0.03 0.18 0.03 – –
HMDB05359 C48:1 TAG 0.17 0.04 0.17 0.04 0.18 0.04
HMDB10419 C46:2 TAG 0.17 0.05 0.17 0.04 0.19 0.04
HMDB05435 C50:4 TAG – – 0.17 0.04 – –
HMDB05405 C54:3 TAG – – 0.18 0.04 – –

Purine
nucleosides
HMDB03331 1-methyladenosine – – 0.18 0.03 0.18 0.04

Abbreviations: CE, cholesterol ester; DAG, diacylglycerol; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; TAG, triacylglycerol. Boldface
indicates a metabolite with a non-zero coefficient when all metabolites associated with that adiposity measure were entered into Lasso. a The number of men contributing to each analysis
was 234 for BMI, 233 for waist circumference, 219 for derived fat mass. b Representative HMDB IDs provided for PC, DAG, and TAG lipids. c Estimates from partial Pearson correlation,
adjusted for age (continuous) and smoking status (ever/never).
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2.3. Metabolically Defined Obesity and Advanced Prostate Cancer Risk

Table 3 shows estimated odds ratios for advanced prostate cancer by self-reported or derived
adiposity measures and metabolic scores (predicted adiposity given an individual’s metabolites).
Estimates for all continuously modeled measures were close to null, though confidence intervals were
wide. No trends were observed across increasing quartiles of these measures. Estimates were similar
in sensitivity analyses excluding men diagnosed in the first two years after the blood draw (data
not shown).

Figure 1 shows estimated odds ratios for men cross-classified by self-reported or derived adiposity
measures and metabolic scores. For waist circumference and derived fat mass, the estimated odds ratio
for advanced prostate cancer was highest among men with a low self-reported or derived adiposity
measure but a high metabolic score. However, confidence intervals were wide and overlapping.

Table 3. Estimated odds ratios a for advanced prostate cancers by self-reported or derived adiposity
and metabolic scores (predicted adiposity given an individual’s metabolites), Health Professionals
Follow-Up Study.

Adiposity Measure
Self-reported or Derived Metabolic Score

Cases/
Total

Odds
Ratio 95% CI Cases/

Total
Odds
Ratio 95% CI

Body mass index (kg/m2) b

per 5 kg/m2 increase 201/409 0.96 (0.73, 1.27) 201/409 1.18 (0.57, 2.48)
Quartile 1 46/104 1.00 – 49/103 1.00 –
Quartile 2 60/102 1.78 (1.02, 3.13) 40/102 0.71 (0.40, 1.23)
Quartile 3 49/102 1.14 (0.65, 1.98) 60/102 1.57 (0.90, 2.75)
Quartile 4 46/101 1.04 (0.60, 1.82) 52/102 1.12 (0.64, 1.97)

p-trend 0.72 0.20
Waist circumference (cm) c

per 1 SD increase 200/408 0.90 (0.73, 1.10) 200/408 0.99 (0.81, 1.21)
Quartile 1 53/110 1.00 – 45/102 1.00 –
Quartile 2 52/96 1.25 (0.72, 2.19) 52/102 1.35 (0.77, 2.36)
Quartile 3 52/110 0.93 (0.54, 1.60) 53/102 1.38 (0.79, 2.43)
Quartile 4 43/92 0.90 (0.50, 1.59) 50/102 1.19 (0.67, 2.12)

p-trend 0.52 0.54
Derived fat mass (kg) d

per 1 SD increase 193/388 0.89 (0.73, 1.10) 193/388 1.07 (0.82, 1.39)
Quartile 1 49/97 1.00 – 42/97 1.00 –
Quartile 2 54/97 1.20 (0.68, 2.13) 51/97 1.45 (0.82, 2.58)
Quartile 3 44/97 0.78 (0.44, 1.38) 54/97 1.63 (0.92, 2.91)
Quartile 4 46/97 0.84 (0.47, 1.50) 46/97 1.15 (0.64, 2.06)

p-trend 0.30 0.54

Abbreviation: CI, confidence interval. a Estimates from unconditional logistic regression models adjusted for age
(years, continuous), history of diabetes (yes/no), physical activity (MET hours/week, continuous), smoking status
(ever/never), family history of prostate cancer (yes/no), and recent PSA testing (yes/no). Self-reported/derived
adiposity measures and metabolic scores were fit in separate models. b Quartiles of self-reported BMI: [18.6, 23.2],
(23.2, 25.2], (25.2, 27.5], (27.5, 42.4]. The fourth quartile (101 men, of whom 46 had advanced prostate cancer)
includes 45 men with a BMI >30 kg/m2, of whom 22 had advanced prostate cancer. Quartiles of BMI metabolic score:
[20.8, 24.6], (24.6, 25.5], (25.5, 26.3], (26.3, 29.7]. c Standard deviation of self-reported waist circumference: 10.1 cm.
Standard deviation of waist circumference metabolic score: 3.4 cm. Quartiles of self-reported waist circumference:
[73.7, 88.9], (88.9, 94.6], (94.6, 102.0], (102.0, 135.0]. Quartiles of waist circumference metabolic score: [82.7, 92.9],
(92.9, 95.3], (95.3, 97.2], (97.2, 106.0]. d Standard deviation of derived fat mass: 6.1 kg. Standard deviation of fat mass
metabolic score: 2.9 kg. Quartiles of derived fat mass: [7.9, 17.8], (17.8, 21.3], (21.3, 25.1], (25.1, 45.9]. Quartiles of fat
mass metabolic score: [13.7, 19.9], (19.9, 21.7], (21.7, 23.5], (23.5, 30.8].
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BMI-metabolic, (b) waist circumference-metabolic, and (c) fat mass-metabolic groups. Men were 
classified into one of four groups based on having a self-reported/derived adiposity measure above 
versus below the median and a metabolic score (predicted adiposity based on metabolites) above 
versus below the median. Estimates were adjusted for age, history of diabetes, physical activity, 
smoking status, family history of prostate cancer, and recent PSA testing. 

3. Discussion 

In this analysis of 165 measured metabolites, we identified a substantial number of metabolites 
associated with BMI, waist circumference, and derived fat mass, with considerable overlap of 
metabolites across adiposity measures. In an independent set of men, neither adiposity measures 
nor metabolic scores representing metabolic obesity were independently associated with the risk of 

Figure 1. Odds ratios and 95% confidence intervals for advanced prostate cancer by (a) BMI-metabolic,
(b) waist circumference-metabolic, and (c) fat mass-metabolic groups. Men were classified into one of
four groups based on having a self-reported/derived adiposity measure above versus below the median
and a metabolic score (predicted adiposity based on metabolites) above versus below the median.
Estimates were adjusted for age, history of diabetes, physical activity, smoking status, family history of
prostate cancer, and recent PSA testing.

3. Discussion

In this analysis of 165 measured metabolites, we identified a substantial number of metabolites
associated with BMI, waist circumference, and derived fat mass, with considerable overlap of
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metabolites across adiposity measures. In an independent set of men, neither adiposity measures
nor metabolic scores representing metabolic obesity were independently associated with the risk
of advanced prostate cancer. However, we found suggestive evidence that men with a low waist
circumference or fat mass but high metabolic obesity score were at the highest risk of advanced disease,
although the power for these analyses was lower.

Among lipid metabolites, we identified inverse associations for CE, LPC, and LPE, positive
associations for DAG and TAG lipid species, and mixed associations for PC with adiposity measures.
These findings are largely consistent with a cross-sectional study of 217 metabolites among 2383
Framingham Offspring participants, with the exception of CE and TAG, which showed positive and
mixed associations in that study, respectively [4]. That study also found that LPC containing an 18:2
fatty acid was the lipid most strongly associated with BMI and waist circumference [4], in line with
our findings. A prospective study identified low LPC 18:2 as a predictor of incident pre-diabetes and
diabetes over a seven-year period, independent of BMI [13].

We found that carnitines were positively associated with all adiposity measures. Carnitine,
which can be endogenously synthesized or absorbed from dietary sources such as meat, plays an
important role in metabolism by transporting long-chain fatty acids across mitochondrial membranes,
making them essential for fatty acid β-oxidation [14,15]. Acylcarnitine accumulation may result
from fatty acid oxidation defects in obese and insulin resistant individuals [16]. We found that waist
circumference and derived fat mass were associated with two acylcarnitines not associated with BMI:
C16 (L-palmitoylcarnitine) and C12:1 (trans-2-dodecenoylcarnitine). A recent cross-sectional study
reported that higher levels of these two metabolites may help to distinguish overweight individuals
with high versus low visceral fat area (≥100 versus <100 cm2 at L4) [17].

Among amino acids, we identified inverse associations for glutamine and glycine with all adiposity
measures, which is consistent with previous findings [4,6–10]. Several studies have also identified
positive associations between branched chain amino acids (valine, leucine, and isoleucine) and aromatic
amino acids (tyrosine and phenylalanine) with BMI and/or waist circumference [4,6,7,9]. All but
isoleucine were included in our study, but we only identified a positive association between BMI
and valine when restricting to fasting samples. This may be due to a different distribution of BMI or
modifiers, such as diet and physical activity, in our study population compared with others.

Prospective studies have reported associations between glutamine, glycine, and glutamate with
future diabetes risk [6,18], and experimental studies have demonstrated that glutamine supplementation
in humans and mice leads to improved glucose tolerance [6,19]. This suggests that some of these
metabolites may not only be biomarkers of obesity but also effectors of its later sequelae. While we
found no evidence for an association between metabolically defined obesity and advanced prostate
cancer in our study, the identified metabolites may prove relevant for other disease outcomes.

Prior meta-analyses reported an advanced prostate cancer relative risk of 1.09 (95% CI: 1.02, 1.16;
13 studies) and a prostate cancer-specific mortality relative risk of 1.15 (95% CI: 1.06, 1.25; 6 studies)
per 5 kg/m2 increase in BMI [1,20]. These estimates are higher than our findings for advanced/fatal
prostate cancer (odds ratio 0.96, 95% CI: 0.73, 1.27), but our power was limited by a small sample.
Different estimates across studies may also be related to differences in BMI assessment (i.e., timing,
self-reported versus measured), definition of advanced disease, and participant characteristics.

Individuals with the same measured obesity may differ in their underlying metabolic health [2–4],
which could be relevant for later disease risk. We took a novel approach to address this by
calculating metabolic scores to summarize underlying metabolic obesity. After cross-classifying
men by self-reported and metabolically defined obesity, we found that men at the highest risk of
advanced prostate cancer had a low adiposity measure but a high metabolic score. The determinants
of a normal weight, metabolically obese profile are unknown but may be related to genetic factors
influencing adipocyte function, body fat distribution, and insulin resistance and/or lifestyle factors such
as physical activity and diet [5,21]. Men in this group may have a strong propensity for dysregulated
metabolism, given their unfavorable metabolic factors despite normal weight, which may contribute
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to the development and progression of advanced prostate cancer [22]. Further investigation of this
phenotype may provide additional insight into the underlying mechanisms and potential intervention
targets for clinically important prostate cancer.

The major strength of our study is the integration of metabolomics with detailed clinical and
lifestyle data within a well-characterized prospective cohort. This allowed us to investigate several
adiposity measures and many metabolites while adjusting for important covariates. It also allowed us
to assess adiposity and metabolites before advanced prostate cancer diagnosis to establish a temporal
relationship and eliminate the potential for recall bias.

Our study also has some limitations. We relied on self-reported adiposity measures, which are
subject to measurement error. However, a previous validation study in the Health Professionals
Follow-up Study (HPFS) showed that self-reported weights and waist circumferences were highly
correlated with technician-measured values [23]. We also relied on a single measurement of adiposity
and metabolites in midlife, and it is possible that long-term average measures are the most biologically
relevant for prostate cancer risk. Nonetheless, a pilot study showed that approximately 90% of
metabolites were reproducible over two years within individuals [24], and we estimated Pearson
correlation coefficients > 0.90 for BMI reports up to six years apart among men in the prostate cancer
nested case-control study (data not shown). This suggests that a single measure may be reasonably
representative of average values over midlife. Any error in assessing these average values is expected to
be independent from the rate of prostate cancer and, therefore, attenuate our estimates. Our power for
the analyses of advanced prostate cancer was limited by the sample size. Lastly, our study population
consisted of middle-aged or older health professionals of predominantly European ancestry, so our
estimates may not be generalizable to other populations with different distributions of adiposity or
risk factors.

In summary, we found that BMI, waist circumference, and derived fat mass were associated with
a broad range of metabolic alterations, involving lipids, amino acids, and amino acid derivatives.
Neither adiposity nor metabolic scores were associated with risk of advanced prostate cancer in this
population of men. However, there was suggestive evidence that a subgroup of men with higher
measures of metabolic obesity underlying lower measures of waist circumference and fat mass are at a
higher risk. The obesity-identified metabolites may inform future integrative-metabolomics research
to better identify individuals at the highest risk of disease.

4. Materials and Methods

4.1. Study Population

The HPFS is an ongoing prospective cohort study of 51,529 US male health professionals aged
40–75 years at enrollment in 1986. The participants reported detailed clinical and lifestyle information at
enrollment and every two years thereafter. Blood samples were collected from 18,225 (35%) participants
from 1993–1995. The samples were mailed to our laboratory overnight on cold packs and then
centrifuged to collect and store plasma in liquid nitrogen freezers. Participants reported the timing of
blood collection and fasting status on a questionnaire returned with the samples.

For the current study, we included participants who had provided a blood sample and been
previously selected for nested metabolomic case-control analyses in the HPFS. For the identification of
adiposity-associated metabolites, we included 236 controls from case-control analyses of amyotrophic
lateral sclerosis (ALS) and Parkinson’s disease who had measures of the same metabolites (see also
File S1). We selected controls only to minimize the possibility that latent ALS or Parkinson’s disease
influenced the metabolite or adiposity measures.

To evaluate metabolically defined obesity and advanced prostate cancer risk, we included an
independent set of 212 advanced prostate cancer cases (stage T3b/T4/N1/M1 at diagnosis or development
of metastasis or death due to prostate cancer during follow-up) and 212 matched controls. The cases
were all men diagnosed with advanced prostate cancer between the time of the blood draw and
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September 2010. For each case, one control was selected who was alive and cancer-free at the time of
the case’s diagnosis. The matching criteria were age (±1 year), recent PSA testing prior to the blood
draw (since January 1, 1992; yes/no), and the time of day, season, and year of blood collection.

Prostate cancer diagnoses were self-reported on biennial questionnaires and verified in a
standardized review of medical records and pathology reports. We obtained information on subsequent
metastasis from prostate-cancer-specific biennial questionnaires sent to all prostate cancer survivors
and their physicians. Prostate-cancer-specific deaths were verified through review of medical records
and death certificates.

4.2. Adiposity Measures and Covariates

We assessed BMI, waist circumference, and derived fat mass in the questionnaire preceding blood
collection. Participants reported their weight and height in 1986 and updated their weight every two
years thereafter. They reported their waist circumference in 1987 and 1996. A previous validation
study in HPFS showed that self-reported weights and waist circumferences were highly correlated
with technician-measured values (Pearson r = 0.97 and r = 0.95, respectively) [23]. We derived fat
mass using a prediction equation developed in the National Health and Nutrition Examination Survey
(NHANES) [25]. Previous validation in NHANES showed that this equation is highly predictive of
dual-energy x-ray absorptiometry (DXA)-measured fat mass (R2 = 0.90) [25]. We excluded participants
missing adiposity measures for the respective analyses (Figure S1). We also excluded one participant
with a BMI > 55 kg/m2 from the BMI analyses to prevent this outlier from affecting our analyses.
We assessed cigarette smoking, physical activity, and history of diabetes in the questionnaire before
blood collection.

4.3. Metabolite Profiling

Plasma metabolites were profiled at the Broad Institute (Cambridge, MA, USA) using the liquid
chromatography tandem mass spectrometry (LC-MS) methods described previously (see also File
S1) [24,26]. A total of 165 known metabolites were analyzed in this study, including lipids (6 cholesterol
ester (CE), 11 diacylglycerol (DAG), 8 lysophosphatidylcholine (LPC), 6 lysophosphatidylethanolamine
(LPE), 19 phosphatidylcholine (PC), 19 phosphatidylethanolamine (PE), 3 sphingomyelin (SM), and
42 triacylglycerol (TAG)), amino acids, and other small molecules (see File S1 and Figure S2 for details
on the metabolite selection). The metabolite peak areas were ln-transformed to improve normality and
then standardized (to mean = 0, SD = 1) within each project to facilitate analyses across projects.

4.4. Statistical Analysis

Among the 236 controls in the ALS and Parkinson’s disease studies, we identified metabolites
associated with adiposity by calculating partial Pearson correlations between the 165 metabolites
and each adiposity measure, adjusting for age and smoking status at the time of the blood draw. We
obtained conservative estimates of false discovery rate (FDR) via the Benjamini-Hochberg procedure [27].
We carried forward metabolites with an FDR p-value < 0.05 and |r| ≥ 0.15. Lasso regression models
were used to further select metabolites for prediction models of metabolic scores, which represented
predicted adiposity (the dependent variable) given men’s levels of adiposity-associated metabolites
(the independent variables). This approach allowed us to account for the relative importance of each
identified metabolite in the presence of the others and generate a parsimonious model.

In an independent set of 212 advanced prostate cancer cases and 212 matched controls, we applied
these models to predict metabolic scores. For example, the BMI metabolic score ranks men by their
expected BMI based on their underlying levels of BMI-associated metabolites. These metabolic scores
were not intended to be surrogates of obesity, but rather to provide information about metabolic
obesity that may be relevant in the pathophysiology of disease. Their estimation was informed by the
relationships between adiposity measures and metabolic profiles observed in the reference population,
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which are shaped by upstream lifestyle and genetic factors. A high metabolic score can be interpreted as
having a metabolic profile consistent with an average man of high adiposity in the reference population.

We used logistic regression to estimate odds ratios and 95% confidence intervals for advanced
prostate cancer comparing different levels of each self-reported or derived adiposity measure and
metabolic score, fit in separate models. We used unconditional logistic regression for statistical
efficiency, adjusting for age, diabetes, physical activity, smoking status, family history of prostate
cancer, and recent PSA testing. Additionally adjusting all models for fasting status (≥8 versus <8 h)
and adjusting fat mass models for height did not influence our estimates (data not shown).

4.4.1. Subgroup Analyses

We estimated the risk for men cross-classified by their self-reported or derived adiposity measures
and metabolic scores, each dichotomized at its median.

4.4.2. Sensitivity Analyses

We repeated the analyses to identify adiposity-associated metabolites after restricting to men with
(1) complete information on all adiposity measures and (2) fasting blood samples. We repeated the
analyses for advanced prostate cancer after excluding men diagnosed in the first two years after the
blood draw to minimize the chance that latent disease influenced their metabolite or adiposity measures.

The study protocol was approved by the institutional review boards of the Brigham and Women’s
Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as
required. The analyses were conducted using R, version 3.6.0, and SAS, version 9.4 (SAS Institute, Inc.
Cary, NC, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/99/s1,
File S1. Detail on metabolite profiling, excluded metabolites, included metabolites, File S2. Lasso models used
for predicting adiposity using associated metabolites, Figure S1. Flowchart of participant selection, Figure S2.
Flowchart of metabolite selection, Figure S3. Overlap in identified metabolites across adiposity measures (from
Main Table 2), Table S1. Metabolites associated with adiposity measures (FDR p-value < 0.05 and |r| ≥ 0.15) among
217 controls from nested case-control studies with data on all three adiposity measures, Health Professionals
Follow-Up Study, 1993–1996, Table S2. Metabolites associated with adiposity measures (FDR p-value < 0.05 and |r|
≥ 0.15) among controls (n = 118–126) a from nested case-control studies with fasting (≥8 h) blood samples, Health
Professionals Follow-Up Study, 1993–1996.
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