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Abstract: Stable isotope resolved metabolomics (SIRM) experiments use stable isotope tracers to
provide superior metabolomics datasets for metabolic flux analysis and metabolic modeling. Since
assumptions of model correctness can seriously compromise interpretation of metabolic flux results,
we have developed a metabolic modeling software package specifically designed for moiety model
comparison and selection based on the metabolomics data provided. Here, we tested the effectiveness
of model selection with two time-series mass spectrometry (MS) isotopologue datasets for uridine
diphosphate N-acetyl-d-glucosamine (UDP-GlcNAc) generated from different platforms utilizing
direct infusion nanoelectrospray and liquid chromatography. Analysis results demonstrate the
robustness of our model selection methods by the successful selection of the optimal model from over
40 models provided. Moreover, the effects of specific optimization methods, degree of optimization,
selection criteria, and specific objective functions on model selection are illustrated. Overall, these
results indicate that over-optimization can lead to model selection failure, but combining multiple
datasets can help control this overfitting effect. The implication is that SIRM datasets in public
repositories of reasonable quality can be combined with newly acquired datasets to improve model
selection. Furthermore, curation efforts of public metabolomics repositories to maintain high data
quality could have a huge impact on future metabolic modeling efforts.

Keywords: stable isotope resolved metabolomics (SIRM); moiety modeling; model selection;
isotopologue deconvolution; overfitting; nonlinear inverse problem

1. Introduction

While the first observations of metabolic alterations in cancer were made about a century ago [1],
metabolomics is a relatively new field of ‘omics’ technology aiming to systematically characterize
metabolites being created and/or utilized in cells, tissues, organisms, and ecosystems [2]. This combined
consumption and biosynthesis of metabolites can be represented as flux through specific metabolic paths
within cellular metabolism, reflecting specific physiological and pathological states in biomedically
useful detail and in ways that are distinct and often more sensitive than other omics methods.
It is increasingly recognized that metabolomics biomarkers have great utility in characterizing and
monitoring diseases with significant metabolic reprogramming like cancer [3]. Therefore, better
regulatory understanding of specific metabolic flux phenotypes of metabolic diseases will aid in
developing new therapeutic strategies.
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Stable isotope resolved metabolomics (SIRM) experiments utilize stable isotopes from a labeling
source to isotopically enrich detected metabolite analytical features, providing more complex but
data-rich metabolomics datasets for metabolic flux analysis. Advances in mass spectrometry (MS) and
nuclear magnetic resonance spectroscopy (NMR) greatly contribute to the generation of high-quality
SIRM datasets [4]. However, computational methods are required to gain biologically meaningful
interpretation from such complex datasets, especially in terms of metabolic flux through specific
metabolic paths in cellular metabolism. Most current metabolic flux analysis methods heavily
depend on a predetermined metabolic network and are mostly focused on the analysis of 13C tracer
experiments [5–8]. However, large numbers of ‘unknown’ metabolites in the metabolomics datasets
strongly indicate that current metabolic networks are far from complete, especially for secondary
metabolism and central metabolism of non-model organisms [9–11]. Without an accurate and reasonably
defined metabolic network, it is challenging to conduct meaningful metabolic flux analyses. Even
worse, assuming that a metabolic model is accurate compromises the scientific rigor of the metabolic
modeling and can lead to misinterpretation of results [12].

Our newly developed moiety deconvolution package called moiety_modeling is a novel method
for analyzing time series SIRM MS isotopologue profiles that can involve single or multiple isotope
tracers [13]. This package integrates facilities for moiety (i.e., biochemical functional group) model
and data representation, model (parameter) optimization, analysis of optimization results, and model
selection under a single moiety modeling framework. A typical data analysis workflow for this moiety
modeling framework is shown in Figure 1. Moiety modeling deconvolutes isotopologue intensity data
of a metabolite into pseudo-isotopomers based on a given moiety description of the metabolite. Moiety
modeling is an early step in certain metabolic flux analysis approaches that can allow the comparison
of different moiety models for model selection. First, plausible and hypothetical moiety models of
an interesting metabolite are provided by a user based on a relevant metabolic network. After the
optimization of each moiety model during isotopologue deconvolution, the best model provided
can be selected based on the optimized results of model parameters, which can be directly used for
downstream metabolic flux analysis and interpretation.
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Figure 1. Workflow for Moiety Modeling.

In this paper, we used this moiety modeling framework to investigate the effects of the optimization
method, optimizing degree, objective function, and selection criterion on model selection to identify
modeling criteria that promote robust model selection. To our knowledge, this is the first attempt to
investigate how all of these factors can affect model selection in metabolic modeling.
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2. Results

2.1. UDP-GlcNAc Moiety Model Construction

UDP-GlcNAc can be divided into four distinct moieties: glucose, ribose, acetyl, and uracil, in
which isotopes incorporate through a metabolic network from an isotope labeling source. The expected
(expert-derived) moiety model of 13C isotope incorporation from 13C-labeled glucose to UDP-GlcNAc
(see Figure 2B) is built based on well studied human central metabolism pathways that converge in
UDP-GlcNAc biosynthesis, which is corroborated with NMR data [14]. This expert-derived model is
labeled as 6_G1R1A1U3, representing six optimizable parameters, one for the glucose moiety (G1), one
for the ribose moiety (R1), one for the acetyl moiety (A1), and 3 for the uracil moiety (U3), for each
moiety state equation representing the fractional 13C incorporation for each moiety. For example, the
g6 state represents the incorporation of 13C6 into the glucose moiety, whereas the g0 state represents
no incorporation of 13C. Since both g0 and g6 must sum to 1, there is only one parameter that needs to
be optimized for this moiety state equation. The set of isotopologue intensity equations are derived
using the moiety model parameters and Equation (1), as illustrated for the expert-derived model in
Figure 2B. Figure 2C shows an alternative hypothetical moiety model 7_G0R3A1U3_g3R2R3_g6r5_r4
along with the isotopologue intensity equations generated from the model.

Ix,calc =
∑

ica∈ICx

ica ; ICx =
{
icv

∣∣∣isotope_content(icv) = x
}

; icv =
∏

j
moiety_state j,v j (1)

We also manually crafted 40 hypothetical moiety models to capture isotope flow from
[U-13C]-glucose into each moiety. This set of models provides a mechanism for testing how robustly
the expert-derived model can be selected from all the other models provided.
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2.2. A Simple Comparison of Two Moiety Models

Model optimization aims to minimize an objective function that compares calculated
isotopologues based on moiety state parameters from the model to the directly observed,
experimentally-derived isotopologues. Figure 3A shows the comparison of optimized model
parameters between the expert-derived moiety model (6_G1R1A1U3) and the hypothetical moiety
model (7_G0R3A1U3_g3r2r3_r4) for three time points of isotopologue intensity data, i.e., three sets
of isotopologue intensities. In these model optimizations, the SAGA-optimize method and absolute
difference objective function were used and DS0, DS1, and DS2 correspond to the 34 h, 48 h, and
72 h time points in the FT-ICR-MS UDP-GlcNAc dataset. We can easily tell that the relative intensity
of the corresponding model parameters between these two models are quite different, suggesting
that the moiety-specific 13C isotopic incorporation derived from the same MS isotopologue profile
varies from one model to another. Furthermore, experiment-derived and model parameter-calculated
isotopologue profiles are shown in Figure 3B, illustrating how much better the expert-derived model
vs. an inaccurate model is able to reflect the observed data.

Metabolites 2020, 10, x FOR PEER REVIEW 4 of 15 

 

model (7_G0R3A1U3_g3r2r3_r4) for three time points of isotopologue intensity data, i.e., three sets 
of isotopologue intensities. In these model optimizations, the SAGA-optimize method and absolute 
difference objective function were used and DS0, DS1, and DS2 correspond to the 34h, 48h, and 72h 
time points in the FT-ICR-MS UDP-GlcNAc dataset. We can easily tell that the relative intensity of 
the corresponding model parameters between these two models are quite different, suggesting that 
the moiety-specific 13C isotopic incorporation derived from the same MS isotopologue profile varies 
from one model to another. Furthermore, experiment-derived and model parameter-calculated 
isotopologue profiles are shown in Figure 3B, illustrating how much better the expert-derived model 
vs. an inaccurate model is able to reflect the observed data. 

 

 

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

DS
0.

r0
DS

0.
r2

DS
0.

r3
DS

0.
r4

DS
0.

r5
DS

0.
g0

DS
0.

g3
DS

0.
g6

DS
0.

a0
DS

0.
a2

DS
0.

u0
DS

0.
u1

DS
0.

u2
DS

0.
u3

DS
1.

r0
DS

1.
r2

DS
1.

r3
DS

1.
r4

DS
1.

r5
DS

1.
g0

DS
1.

g3
DS

1.
g6

DS
1.

a0
DS

1.
a2

DS
1.

u0
DS

1.
u1

DS
1.

u2
DS

1.
u3

DS
2.

r0
DS

2.
r2

DS
2.

r3
DS

2.
r4

DS
2.

r5
DS

2.
g0

DS
2.

g3
DS

2.
g6

DS
2.

a0
DS

2.
a2

DS
2.

u0
DS

2.
u1

DS
2.

u2
DS

2.
u3

Re
la

tiv
e

In
te

ns
ity

Model Parameters

Comparison of optimized model parameters
7_G0R3A1U3_g3r2r3_g6r5_r4
6_G1R1A1U3

A 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

DS0[
13C

0]

DS0[
13C

1]

DS0[
13C

2]

DS0[
13C

3]

DS0[
13C

4]

DS0[
13C

5]

DS0[
13C

6]

DS0[
13C

7]

DS0[
13C

8]

DS0[
13C

9]

DS0[
13C

10
]

DS0[
13C

11
]

DS0[
13C

12
]

DS0[
13C

13
]

DS0[
13C

14
]

DS0[
13C

15
]

DS0[
13C

16
]

DS0[
13C

17
]

No
rm

al
ize

d 
In

te
ns

ity

UDP-GlcNAc Isotopologue

6_G1R1A1U3 observed_data 7_G0R3A1U3_g3r2r3_r4B 

Figure 3. Cont.



Metabolites 2020, 10, 118 5 of 15
Metabolites 2020, 10, x FOR PEER REVIEW 5 of 15 

 

 

 

Figure 3. Optimized results for 6_G1R1A1U3 and 7_G0R3A1U3_g3r2r3_r4 models. Each model 
optimization was conducted 100 times. (A) Comparison of mean of optimized model parameters with 
standard deviation. (B–D) Reconstruction of the isotopologue distribution of UDP-GlcNAc from 
model parameters. Observed isotopologue data were compared with the mean of calculated 
isotoplogue data with standard deviation from the optimized parameters for each model. 

2.3. Effects of Optimization Method on Model Selection 

The first question we were interested in was whether the optimization method could affect the 
model selection results. As in the previous analysis, we used three time points from the FT-ICR-MS 
dataset, the AICc criterion, and an absolute difference objective function in the initial trial. The 
optimization for each model was conducted 100 times, and we used the average of the 100 
optimization results in the analysis (see Table 1). Most optimization methods can select the expert-
derived model except for ‘SLSQP’. What interested us most was that the ‘SLSQP’ method failed in 
model selection with the lowest loss value (value returned from objective function) and is generally 
considered to be the fastest converging of the optimization methods we tested. 

We repeated the experiment with the ‘SLSQP’ method 10 times and found that model selection 
fails when the loss value approaches 0.3 (Supplementary Figure S1), suggesting strong instability of 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

DS1[
13C

0]

DS1[
13C

1]

DS1[
13C

2]

DS1[
13C

3]

DS1[
13C

4]

DS1[
13C

5]

DS1[
13C

6]

DS1[
13C

7]

DS1[
13C

8]

DS1[
13C

9]

DS1[
13C

10
]

DS1[
13C

11
]

DS1[
13C

12
]

DS1[
13C

13
]

DS1[
13C

14
]

 DS1[
13C

15]

DS1[
13C

16
]

DS1[
13C

17
]

No
rm

al
ize

d 
In

te
ns

ity

UDP-GlcNAc Isotopologue

6_G1R1A1U3 observed_data 7_G0R3A1U3_g3r2r3_r4C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

DS2[
13C

0]

DS2[
13C

1]

DS2[
13C

2]

DS2[
13C

3]

DS2[
13C

4]

DS2[
13C

5]

DS2[
13C

6]

DS2[
13C

7]

DS2[
13C

8]

DS2[
13C

9]

DS2[
13C

10
]

DS2[
13C

11
]

DS2[
13C

12
]

DS2[
13C

13
]

DS2[
13C

14
]

 DS2[
13C

15]

DS2[
13C

16
]

DS2[
13C

17
]

No
rm

al
ize

d 
In

te
ns

ity

UDP-GlcNAc Isotopologue

6_G1R1A1U3 observed_data 7_G0R3A1U3_g3r2r3_r4D 

Figure 3. Optimized results for 6_G1R1A1U3 and 7_G0R3A1U3_g3r2r3_r4 models. Each model
optimization was conducted 100 times. (A) Comparison of mean of optimized model parameters with
standard deviation. (B–D) Reconstruction of the isotopologue distribution of UDP-GlcNAc from model
parameters. Observed isotopologue data were compared with the mean of calculated isotoplogue data
with standard deviation from the optimized parameters for each model.

2.3. Effects of Optimization Method on Model Selection

The first question we were interested in was whether the optimization method could affect
the model selection results. As in the previous analysis, we used three time points from the
FT-ICR-MS dataset, the AICc criterion, and an absolute difference objective function in the initial
trial. The optimization for each model was conducted 100 times, and we used the average of the
100 optimization results in the analysis (see Table 1). Most optimization methods can select the
expert-derived model except for ‘SLSQP’. What interested us most was that the ‘SLSQP’ method failed
in model selection with the lowest loss value (value returned from objective function) and is generally
considered to be the fastest converging of the optimization methods we tested.

We repeated the experiment with the ‘SLSQP’ method 10 times and found that model selection
fails when the loss value approaches 0.3 (Supplementary Figure S1), suggesting strong instability
of model selection at a critical point. Model optimization aims to minimize the objective function,
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which is actually a non-linear inverse problem and one inherited issue in solving a non-linear inverse
problem is overfitting (i.e., fitting to error in the data). Therefore, we developed the hypothesis that
over-optimization of model parameters can lead to failure in model selection.

Table 1. Comparison of optimization methods in model selection.

Optimization Method Loss Value AICc Selected Model

SAGA 0.469 −401.760 Expert-derived model
SLSQP 0.320 −408.341 7_G2R1A1U3_g5

L-BFGS-B 0.763 −342.164 Expert-derived model
TNC 0.870 −327.344 Expert-derived model

Dataset: FT-ICR-MS (combined); Selection criterion: AICc; Objective function: Absolute difference. Bolded line
indicates incorrect selection of the expert-derived model.

2.4. Over-optimization Leads to Failure in Model Selection

To test the above hypothesis, we first tried to increase the stop criterion of the ‘SLSQP’ method
to control over-optimization. The results are shown in Table 2. When optimization stops earlier,
the expert-derived model can be selected, which supports our hypothesis.

The SAGA-optimize method is more flexible in controlling the degree of optimization simply by
adjusting the number of optimization steps. The more steps, the lower the average loss value reached
by the optimization. Next, we performed a set of experiments using the SAGA-optimize method with
increasing number of optimization steps to further validate the hypothesis. The results are summarized
in Table 3. We can see that the loss value decreases as optimization step increases. When the loss value
reaches a certain critical point, the expert-derived model cannot be selected, further supporting the
hypothesis that over-optimization can lead to failure in model selection. Furthermore, the selected
model can change with increasing degrees of over-optimization.

Table 2. Over optimization experiments with the ‘SLSQP’ method.

Optimization Method Loss Value AICc Selected Model Stop Criterion

SLSQP 0.320 −408.341 7_G2R1A1U3_g5 ‘ftol’: 1e-06
SLSQP 0.514 −393.934 Expert-derived model ‘ftol’: 1e-05

Dataset: FT-ICR-MS (combined); Selection criterion: AICc; Objective function: Absolute difference.

Table 3. Over optimization experiments with SAGA-optimize method.

Optimization Steps Loss Value AICc Selected Model

500 2.070 −219.488 Expert-derived model
1000 1.754 −235.728 Expert-derived model
2000 1.377 −260.654 Expert-derived model
5000 0.941 −305.651 Expert-derived model

10000 0.664 −375.192 Expert-derived model
25000 0.469 −401.760 Expert-derived model
50000 0.408 −414.737 Expert-derived model
75000 0.328 −418.228 7_G2R1A1U3_g5

100000 0.316 −424.924 7_G1R2A1U3_r4

Dataset: FT-ICR-MS (combined); Selection criterion: AICc; Objective function: Absolute difference. Bolded line
indicates the start of incorrect selection of the expert-derived model.

Based on the above results, we conclude that it is not the optimization method but the degree of
optimization that affects model selection, which is explained by overfitting to error in the data when
solving a non-linear inverse problem. When optimization reaches a certain critical point, successful
model selection cannot be guaranteed. Therefore, proper control of the degree of optimization is of
great importance in model selection.
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2.5. Effects of Selection Criterion on Model Selection

Next, we investigated whether selection criterion could affect model selection. We compared
the model selection results generated by SAGA-optimize with different model selection criteria (see
Table 4, see Supplementary Table S1 for complete results). From these results, we can see that the
rank of top models is quite consistent across different selection criteria, suggesting that these model
selection criteria have little effect on robust model selection, at least under this model selection context.
Since our previous experiments used AICc as the selection criterion, we will stick with AICc in the
following experiments.

Table 4. Comparison of mode rank based on different model selection criteria.

Models AICc Rank AIC Rank BIC Rank

Expert-derived model −401.7597 1 −421.3026 1 −385.5009 1
7_G1R1A2U3 −384.3075 2 −413.1825 2 −371.4139 2

7_G2R1A1U3_g5 −381.2868 3 −410.1618 3 −368.3932 3
7_G1R2A1U3_r3 −379.2657 4 −408.1407 4 −366.3720 4
7_G1R2A1U3_r4 −378.8969 5 −407.7719 5 −366.0033 5
7_G2R1A1U3_g4 −375.9538 6 −404.8288 6 −363.0601 6

9_G2R2A2U3_r2r3_g5 −254.4087 37 −312.5625 36 −258.8599 37
9_G2R2A2U3_r2r3_g3 −248.2277 38 −306.3815 38 −252.6789 38
9_G2R2A2U3_r2r3_g2 −242.9984 39 −301.1522 39 −247.4497 39
9_G2R2A2U3_r2r3_g1 −242.4110 40 −300.5648 40 −246.8623 40

7_G0R3A1U3_g3r2r3_g6r5_r4 −226.7271 41 −255.6021 41 −213.8334 41

Dataset: FT-ICR-MS (combined); Optimization method: SAGA-optimize (25,000 steps); Objective function: Absolute
difference. Bolded line indicates the start of incorrect selection of the expert-derived model.

2.6. Effects of Selection Criterion on Model Selection

Considering that the dominant type of error existing in metabolomics datasets may vary from
dataset to dataset, different forms of an objective function may affect model optimization and then
influence the results of model selection. Here, we tested the effects of four objective functions in the
context of model selection: absolute difference, absolute difference of logs, square difference, and
difference of AIC. To speed up optimization, we first split the FT-ICR-MS dataset based on time point
(34 h, 48 h, 72 h) into separate model optimizations executed on their own CPU core, and then combine
the optimization results for the model selection. This functionality is provided by the moiety_modeling
package. We set a series of experiments for each objective function with the SAGA-optimize method.
The results are shown in Tables 5–8. In comparing Table 5 to Table 3, the number of optimizations per
time point provides roughly the same degree of optimization as three times the number of optimization
steps used on a combined optimization.

Table 5. Model selection test with absolute difference objective function.

Optimization Steps Loss Value AICc Selected Model

500 1.045 −293.540 Expert-derived model
1000 0.819 −330.411 Expert-derived model
2000 0.651 −361.038 Expert-derived model
5000 0.459 −408.167 Expert-derived model

10000 0.392 −422.516 Expert-derived model
15000 0.359 −431.276 Expert-derived model
20000 0.290 −434.468 7_G1R1A2U3
25000 0.285 −436.909 7_G1R1A2U3

Dataset: FT-ICR-MS (split); Selection criterion: AICc; Objective function: absolute difference; Bolded line indicates
the start of incorrect selection of the expert-derived model.
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Table 6. Model selection test with square difference objective function.

Optimization Steps Loss Value AICc Selected Model

500 0.085 −298.516 Expert-derived model
1000 0.047 −330.096 Expert-derived model
2000 0.023 −367.279 Expert-derived model
5000 0.011 −404.509 Expert-derived model

10000 0.007 −425.695 Expert-derived model
15000 0.005 −429.869 7_G2R1A1U3_g5
20000 0.005 −435.348 7_G1R2A1U3_r4

Dataset: FT-ICR-MS (split); Selection criterion: AICc; Objective function: square difference. Bolded line indicates
the start of incorrect selection of the expert-derived model.

Table 7. Model selection test with difference of AIC objective function.

Optimization Steps Loss Value Selected Model

500 −345.559 Expert-derived model
1000 −371.852 Expert-derived model
2000 −398.570 Expert-derived model
5000 −436.582 Expert-derived model

10000 −458.064 7_G1R1A2U3
15000 −467.960 7_G2R1A1U3_g5

Dataset: FT-ICR-MS (split); Selection criterion: AICc; Objective function: difference of AIC. Bolded line indicates the
start of incorrect selection of the expert-derived model.

Table 8. Model selection test with absolute difference of logs objective function.

Optimization Steps Loss Value AICc Selected Model

500 31.647 −221.501 Expert-derived model
1000 29.628 −223.363 Expert-derived model
2000 28.164 −224.330 Expert-derived model
5000 27.096 −225.911 Expert-derived model

10000 26.631 −227.499 Expert-derived model
15000 26.469 −227.690 Expert-derived model
20000 26.398 −227.780 Expert-derived model
25000 26.271 −228.178 Expert-derived model
50000 26.126 −228.892 Expert-derived model

100000 25.949 −228.926 Expert-derived model
150000 25.865 −229.926 Expert-derived model
250000 25.777 −230.232 Expert-derived model

Dataset: FT-ICR-MS (split); Selection criterion: AICc; Objective function: absolute difference of logs.

From these tables, we can see that optimization with the absolute difference of logs objective
function is less likely to fail (>250,000 steps) in the model selection compared to the other three objective
functions (10,000–20,000 steps). One interpretation from these results is that the FT-ICR-MS dataset
is dominated by proportional error instead of additive error. However, the AICc produced with the
absolute difference of logs is significantly higher (less negative) than that produced by the other objective
functions. Therefore, this objective function may simply be hindering efficient optimization, especially
if the dataset is dominated by an error structure that is not as compatible with this objective function.
From this alternative viewpoint, additive error may actually dominate this dataset. We used a graphical
method to visualize errors in both FT-ICR-MS and LC-MS datasets (Figures 4 and 5). For the plots of
FT-ICR-MS datasets, we used another dataset generated from the same procedure, which included two
replicates at 0, 3 h, 6 h, 11 h, 24 h, 34 h, and 48 h time points. For two replicates with proportional
error, a scatter plot of each replicate against the other will show an increasing spread of values with
increasing signal and the log-transformed data will collapse into a line. Plot of two replicates with
additive error can be viewed as uniformly deviated from the line of identity, but once log-transformed
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will show an increasing spread of values with decreasing signal. The original plots of raw data indicate
existence of proportional error in both FT-ICR-MS and LC-MS datasets (Figures 4A and 5A). However,
the original plots of normalized data almost collapsed to a straight line (Figures 4C and 5C), suggesting
that normalization somehow removes the proportional error in the raw data. In addition, from the
log-transformed plots, we can see that additive error does not exist in the normalized FT-ICR-MS
datasets (Figure 4D) but does exist in the normalized LC-MS datasets (Figure 5D). The replicate plots
of all time points (Supplementary Figures S1 and S2) show similar tendency with selected optimized
datasets. Based on the above results, the absolute difference of logs objective function can hinder
efficient optimization in FT-ICR-MS datasets. We also compared four objective functions in the context
of model selection with LC-MS datasets (Supplementary Tables S2–S5). From these tables, we can
see that model selection fails earlier with absolute difference of logs objective function compared to
other objective functions, also suggesting that additive error may dominate in the normalized LC-MS
datasets. Based on the above results, the objective function clearly affects model selection and the
selection of certain objective functions for model optimization is able to increase resistance to failure
in model selection caused by over-optimization; however, this is likely due to less efficient model
optimization caused by the selection of an objective function not appropriate for the type of error in
the data.
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Figure 5. Error analysis in LC-MS datasets. (A,B) are plots of raw data. (C,D) are plots of renormalized
data after natural abundance correction. All these plots contain 3 time points (12–36 h).

2.7. Effects of Information Quantity on Model Selection

From the above experiments, we found that over-optimization is a primary cause for failure in
model selection and this is affected by the objective function used. The next question is whether the
quantity of information affects model selection. One basic approach is to utilize more datasets in
order to overcome the effects of over-optimization. In the following experiments, we repeated single
model optimization 10 times in order to pragmatically finish these computational experiments. Every
experiment was conducted 10 times using the AICc criterion and the absolute difference objective
function. We used the SAGA-optimize method to test where model selection starts to fail.

First, we used decreasing number of time points of the LC-MS dataset to test whether data quantity
affects model selection (Figure 6A, Supplementary Table S6). However, model selection failed with
few optimization steps when all five time points were included and when only one time point was
included, with the most robust model selection occurring with 3 time points. Initially, these results
were not expected, until we realized that the relative isotopologue intensity of the 0 and 6 h time
points is concentrated within the 13C0 isotopologue with zero 13C tracer. Thus, these datasets are less
informative with respect to capturing the isotope flow from labeling source to each moiety in the
metabolite. When the 0 and 6 h time points are removed, the selection results improved significantly.
Likewise, when information-rich time points are removed, the model selection robustness decreases as
well. Similar results were obtained when testing the FT-ICR-MS dataset (Figure 6B). Taken together,
the addition of information-rich data contributes to successful model selection while the addition of
information-poor data detracts from successful model selection.

To further test this concept, we investigated whether combining FT-ICR-MS (34 h, 48 h, 72 h)
and LC-MS (12 h, 24 h, 36 h) datasets can prevent failure in model selection (Figure 6C). From the
comparison, we can see that combining information-rich FT-ICR-MS and LC-MS datasets is much more
resistant to failure of model selection than just using the information-rich FT-ICR-MS or LC-MS dataset,
strongly supporting our previous conclusions that utilizing more information-rich datasets can prevent
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failure in model selection. Similar results were obtained with absolute difference of logs objective
function (Supplementary Figure S3). These datasets were collected at different times, on very different
mass spectrometry platforms. One used chromatographic separation while the other utilized direct
infusion. However, the really surprising part is that the datasets were derived from different human
cell cultures: LnCaP-LN3 human prostate cancer cells and human umbilical vein endothelial cells.
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Figure 6. Comparison of the log optimization steps where model selection with different datasets
begins to fail. (A) Test with LC-MS datasets. LC-MS_1 to LC-MS_5 represent LC-MS datasets with 36 h,
24–36 h, 12–36 h, 6–36 h and 0–36 h. (B) Test with FT-ICR-MS datasets. FT-ICR-MS_1 to FT-ICR-MS_3
represent FT-ICR-MS datasets with 48 h, 48–72 h and 34–72 h. (C) Test with combination of LC-MS
(12 h, 24 h, 36 h) and FT-ICR-MS (34 h, 48 h, 72 h) datasets. The median values are indicated in the plots.
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3. Discussion

Here, we discuss the importance of model selection in isotopic flux analysis as a proxy for
metabolic flux analysis and factors that affect robust model selection. We found that it is not the
optimization method per se, but the degree of optimization that influences model selection, due
to the effects of over-optimization, i.e., fitting of model parameters based on the error in the data.
Overfitting is a known problem typically due to the ill-conditioning of the nonlinear inverse problem
that is partially ill-posed. Moreover, the objective function in model optimization is also of great
importance in model selection. Proper selection of an objective function can help increase resistance
to failure in model selection. This may mean that different objective functions should be used for
model selection versus parameter optimization for flux interpretation. Most SIRM experimental
datasets have few collected replicates and time points due to the cost and effort required to acquire
these datasets. The lack of replicates makes it impractical to directly estimate error in many of these
datasets. Moreover, the presence of different types of systematic error like ion suppression can limit
the overall effectiveness of replicate-based error analysis. With our moiety modeling framework, we
are able to conduct a set of gradient experiments with varying amounts of optimization (i.e, number of
optimization steps) using the SAGA-optimize method to estimate the failure point in model selection
caused by overfitting. Furthermore, we found that incorporation of less informative datasets can
hinder successful model selection, since they lack appreciable signal representing the incorporation of
isotopes simulated by moiety models but with the full amount of error of the measured isotopologues.
This lowers the overall isotope incorporation signal to noise ratio, which can lead to increased error in
model selection. On the other hand, combining informative datasets (i.e., time points with significant
isotope incorporation) can help control failure in model selection, which suggests that informative
datasets in public metabolomics repositories can be combined to facilitate robust model selection.
Moreover, these datasets do not need to come from identical biological systems, just biological systems
that utilize the same part of metabolism being measured and modeled. The implication is that SIRM
datasets in public repositories of reasonable quality can be combined with newly acquired datasets
to improve model selection. Furthermore, curation efforts of public metabolomics repositories to
maintain high data quality and provide metrics of measurement error could have a huge impact on
future metabolic modeling efforts.

4. Materials and Methods

4.1. UDP-GlcNAc Time Course MS Isotopologue Datasets

Two UDP-GlcNAc time course MS isotopologue datasets were used to test the robustness of
model selection mechanism. The first is a direct infusion Fourier transform MS (FTMS) UDPGlcNAc
13C isotopologue dataset derived from LnCaP-LN3 human prostate cancer cells with [U-13C]-glucose
as isotope labeling source and collected on an Advion Nanomate nanoelectrospray inline connected to
a Thermo 7T LTQ Fourier transform ion cyclotron resonance MS (FT-ICR-MS). This dataset includes 3
time points: 34 h, 48 h, and 72 h [14]. The second is a liquid chromatography-MS (LC-MS) UDP-GlcNAc
13C isotopologue dataset derived from human umbilical vein endothelial cells with [U-13C]-glucose as
the isotope labeling source and collected on a ThermoFisher Dionex UltiMate 3000 LC System in-line
connected to a ThermoFisher Q-Exactive Orbitrap MS. This dataset has 5 time points: 0 h, 6 h, 12 h, 24 h
and 36 h [15]. Look to the reference associated with each dataset for more details on their experimental
design, implementation, and rationale.

4.2. Objective Functions

We used four distinct forms of the objective function (Table 9) that compares the observed
isotopologues and corresponding calculated isotopologues derived from model parameters obtained
from model optimization. The first is a summation of absolute differences between observed and
calculated isotopologues, which is generally expected to work well with data where the dominant type
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of error is additive. The second is a summation of the absolute differences between the log of observed
and calculated isotopologues, which is generally expected to work well with data where the dominant
type of error is proportional. The third is a summation of square of differences between observed and
calculated isotopologues. The fourth one tries to mimic the effect of model selection criteria.

Table 9. Objective functions.

Objective Function Equation

Absolute difference Σ|In,obs – In,calc|
Absolute difference of logs Σ|log(In,obs) – log(In,calc)|

Square difference Σ(In,obs – In,calc)2

Difference of AIC 2k + nln(RSS/n)

k is the number of parameters; n is the number of data points; RSS is the residual sum of squares:

RSS =
∑n

i=1

(
Iobs,i − Icalc,i

)2
.

4.3. Optimization Methods

From a mathematics perspective, model optimization is actually a non-linear inverse problem.
Several different optimization methods were used to solve this problem, including the SAGA-optimize
method [13], and three other optimization methods (‘TNC’ [16], ‘SLSQP’ [17], and ‘L-BFGS-B’ [18])
available in the scipy.optimize Python module. The SAGA-optimize method is a combination of
simulated annealing and genetic algorithm optimization methods that utilizes the population and
crossover concepts from genetic algorithm to improve the optimization speed and consistency over older
more traditional implementations of simulated annealing, allowing SAGA-optimize to produce better
quality optimization results more efficiently (i.e., with fewer overall number of optimization steps).
The ‘TNC’ method is designed for optimizing non-linear functions with large numbers of independent
variables [16]. The SLSQP method uses Sequential Least Squares Programming, which is an iterative
method for constrained nonlinear optimization [17]. ‘L-BFGS-B’ is a limited-memory algorithm for
solving large nonlinear optimization problems subject to simple bounds on the variables [18].

4.4. Model Selection Estimators

We used three different quality estimators (Table 10) in model selection: the Akaike Information
Criterion (AIC) [19], the sample size corrected Akaike Information Criterion (AICc) [20], and the
Bayesian Information Criterion (BIC) [21]. The Akaike information criterion (AIC) is biased to select
models with more parameters when the sample size is small, which can lead to overfitting [19].
The sample size corrected AIC (AICc) was developed to handle this bias and prevent overfitting [20].
The Bayesian information criterion (BIC) is another criterion commonly used in model selection [21].

Table 10. Model selection estimators.

Selection Criterion Equation

Akaike Information Criterion (AIC) 2k + nln(RSS/n)
Sample size corrected AIC (AICc) AIC +

(
2k2 + 2k

)
/(n− k− 1)

Bayesian Information Criterion (BIC) nln(RSS/n) + kln(n)

k is the number of parameters; n is the number of data points; RSS is the residual sum of squares:

RSS =
∑n

i=1

(
Iobs,i − Icalc,i

)2
.

4.5. Computer Code and Software

The moiety_modeling and SAGA-optimize packages are available on: GitHub: https://github.com/

MoseleyBioinformaticsLab/moiety_modeling, https://github.com/MoseleyBioinformaticsLab/SAGA_
optimize. PyPI: https://pypi.org/project/moiety-modeling/, https://pypi.org/project/SAGA-optimize/.

https://github.com/MoseleyBioinformaticsLab/moiety_modeling
https://github.com/MoseleyBioinformaticsLab/moiety_modeling
https://github.com/MoseleyBioinformaticsLab/SAGA_optimize
https://github.com/MoseleyBioinformaticsLab/SAGA_optimize
https://pypi.org/project/moiety-modeling/
https://pypi.org/project/SAGA-optimize/
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Project documentation is available online at ReadTheDocs: https://moiety-modeling.readthedocs.
io/en/latest/, https://saga-optimize.readthedocs.io/en/latest/.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/118/s1,
Figure S1: Error analysis in FT-ICR-MS datasets., Figure S2: Error analysis in LC-MS datasets, Figure S3:
Comparison of the log of optimization steps where model selection with different datasets begins to fail with
absolute difference of logs objective function, Table S1: Comparison of mode rank based on different model
selection criteria, Table S2: Model selection test with absolute difference objective function, Table S3: Model
selection test with square difference objective function, Table S4: Model selection test with absolute difference of
logs objective function, Table S5: Model selection test with difference of AIC objective function, Table S6: Inclusion
of less informative dataset can lead to failure in model selection.
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