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Abstract: Lipidomics has great promise in various applications; however, a major bottleneck in 

lipidomics is the accurate and comprehensive annotation of high-resolution tandem mass spectral 

data. While the number of available lipidomics software has drastically increased over the past five 

years, the reduction of false positives and the realization of obtaining structurally accurate 

annotations remains a significant challenge. We introduce Lipid Annotator, which is a user-friendly 

software for lipidomic analysis of data collected by liquid chromatography high-resolution tandem 

mass spectrometry (LC-HRMS/MS). We validate annotation accuracy against lipid standards and 

other lipidomics software. Lipid Annotator was integrated into a workflow applying an iterative 

exclusion MS/MS acquisition strategy to National Institute of Standards and Technology (NIST) 

SRM 1950 Metabolites in Frozen Human Plasma using reverse phase LC-HRMS/MS. Lipid 

Annotator, LipidMatch, and MS-DIAL produced consensus annotations at the level of lipid class for 

98% and 96% of features detected in positive and negative mode, respectively. Lipid Annotator 

provides percentages of fatty acyl constituent species and employs scoring algorithms based on 

probability theory, which is less subjective than the tolerance and weighted match scores commonly 

used by available software. Lipid Annotator enables analysis of large sample cohorts and improves 

data-processing throughput as compared to previous lipidomics software. 

Keywords: lipidomics; lipid annotation; tandem mass spectrometry; liquid chromatography; 

metabolomics; ion mobility; metabolomics; automation; software; time-of-flight 
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1. Introduction 

Lipids are an incredibly complex class of non-polar small molecules with a vast diversity in the 

number of known lipid species and their biological roles. The entire range of lipids in a given 

substrate are called the lipidome. The structural and functional diversity of lipids explains the recent 

spike and continually expanding interest in lipidomics (comprehensive measurement of the 

lipidome) and includes application in clinical [1–3], material [4–6], agricultural [7,8], environmental 

sciences, and many other domains. While new lipids are discovered almost monthly, the complete 

diversity of lipids is still unknown, even within humans [9]. By increasing the coverage and accuracy 

of lipid identifications, scientists can better determine biological effects and lipid-based diagnostic 

markers of disease and other biological perturbations, as well as discover new lipids for novel 

materials. Though untargeted data-acquisition using liquid chromatography high-resolution tandem 

mass spectrometry (LC-HR-MS/MS) currently provides a wealth of information on lipids, processing 

the immense mass spectral data to provide accurate lipid annotations and corresponding relative 

lipid concentrations remains a challenge. 

Since the release of LipidBlast in 2013 [10], there has been a rapid increase in the number of 

vendor and open-source software solutions for processing mass spectral lipidomics data; currently 

over 25 software solutions exist [11,12]. Few software cover the entire LC-HRMS/MS lipid data-

processing workflow, which includes feature finding, annotation, manual validation, and 

normalization, with MS-DIAL being the most commonly used open-source software covering the 

majority of the workflow [13]. The high random-access memory (RAM) and processing speeds 

required by most current featuring finding and annotation software solutions limit their ability to 

analyze medium to large LC-HRMS/MS samples sets (i.e., tens to hundreds of samples). Clinical and 

medical research studies often require large sample sizes, making software performance a limiting 

factor in the advancement of lipidomics.  

In addition to processing times, accurate annotation is a challenge. The majority of available 

software employ in silico lipid libraries, which are developed by computing all combinations of fatty 

acids, backbones, linkages, and head groups, and combining them in all possible arrangements. 

Fragmentation can be predicted using a simple set of rules extracted from a few lipid standards per 

class. These libraries can often be rapidly developed, which is ideal as new lipids are continually 

discovered with automated tools [14,15], and thus this approach allows for the comprehensive 

lipidomics analysis of fatty acyl-based lipids. However, using this common approach, non-fatty acyl 

lipids such as sterols and lipophilic vitamins are generally excluded, as their fragmentation spectra 

are more complex and/or less informative.  

Lipid annotation using in silico libraries often leads to a relatively high false positive rate [16]. 

False positives often occur due to high spectral impurity (numerous co-isolated lipid precursors for 

fragmentation) [17], limited lipid standards for simulating MS/MS and validation, and lack of 

available methods to quantify the false positive rate for any given software or application [18]. In 

addition, lipid isomers with subtle, but biologically important structural differences co-elute in many 

cases. Most often the complete lipid structure cannot be characterized by MS/MS alone. For example, 

evidence of double bond position and branching in fatty acids may not be conferred by most 

conventional MS/MS systems. Therefore, lipid annotations should reflect only the degree of structural 

information supported by fragmentation spectral evidence [19]: the nomenclatures in lipidomics are 

currently suggested in lipidomics standards initiative (LSI; https://lipidomics-standards-

initiative.org/). Lipid software solutions often over-annotate, and establishing a common consensus 

of acceptable protocols is difficult given the large diversity of lipids [20]. Without algorithms for 

determining the false positive rate, spectral purity, and deconvolution of mixed MS/MS spectra, 

MS/MS annotations must be validated manually if high confidence in annotations is needed. Manual 

validation often does not occur in practice and requires extensive knowledge of fragmentation 

pathways. 
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In this manuscript, Lipid Annotator is introduced as a user-friendly lipidomics software for 

Agilent .d files, which can be employed to rapidly analyze large lipidomics LC-(IM)-HRMS/MS 

datasets and improve the accuracy of annotation. Lipid Annotator employs unique algorithms (non-

negative least squares) to deconvolute mixed MS/MS spectra and annotate lipids to the correct degree 

of structural precision, as supported by MS/MS evidence. Lipid Annotator employs Bayesian 

statistics, using probability distributions derived from random errors in measurement performance 

(m/z, isotopic fidelity, artifacts in MS/MS spectra, and fragmentation signal distributions) in order to 

approximate the likelihood of individual lipid candidates as well as candidate mixtures to explain 

the spectra. The application of Bayesian theorem is unique in the field of lipidomics annotation, with 

the majority of software employing rules based on annotation or weighted scoring schemas, which 

can be arbitrary and more difficult to interpret than probabilities. It is easier to tune the code to reduce 

false positives and negatives if Bayesian methods are used through explicit characterization of the 

error distribution. In addition, Bayesian methods can provide more accurate estimations through the 

ability to incorporate prior knowledge and direct experimental measurements into error distributions 

[21]. Software employing Bayesian methods for identification from mass spectra have shown 

promising results in proteomics [22,23], lipidomics [24], and metabolomics [25]. Application of the 

Bayesian theorem in lipidomics stands to benefit from better characterization of distributions due to 

measurement errors (which are instrument and often experiment specific) and real world 

probabilities, such as those of lipid occurrences in different substrates.  

2. Results and Discussion 

2.1. Lipid Annotator Software 

2.1.1. User-Workflow 

Lipid Annotator can be used as a standalone tool for the rapid peak picking and annotation of 

lipids within a given sample, or it can be integrated into a larger LC-HRMS/MS workflow covering 

all steps, including peak picking, annotation, normalization to lipid internal standards, and statistics. 

Lipid Annotator is designed only for Agilent LC/ quadrupole time-of-flight (Q-TOF) data files, which 

limits its scope, but increases the accuracy and simplicity of the software by reducing the need for 

user parameters and optimization of the parameters and algorithms to Agilent instruments. Figure 1 

shows a recommended workflow for comparison of lipid profiles across different groups. Full scan 

data is acquired for every individual sample (as well as quality controls and extraction blanks). Data-

dependent analysis using iterative exclusion is applied to pooled samples of each group to improve 

MS/MS coverage of lipid ions [26].  

 

Figure 1. Example of a lipidomics workflow employing Lipid Annotator. MS/MS can be acquired on 

only a few representative samples saving acquisition and processing time (A). Note that iterative 

exclusion MS/MS of various pools from different groups (e.g., healthy, disease, and control) can be 
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imported into a single Lipid Annotator project, or all groups can be pooled and analyzed via Lipid 

Annotator. Resulting data is imported into Lipid Annotator (and optionally ID-Browser) to obtain 

annotations (B). Annotation data (including retention times and m/z) are used to determine features 

(B) across all samples (A). Resulting feature tables are imported into mass profiler professional (C) to 

perform normalization (including normalization by lipid internal standards), data-visualization, and 

multivariate and univariate statistics. Acronyms are defined in Appendix B. * The targeted peak list 

of annotated lipids m/z and retention time can also be used for feature finding via MZMine, XCMS, 

and other open-source software. ** Resulting data can also be processed via Metaboanalyst and other 

open-source software. 

After annotation in Lipid Annotator and optionally annotating non-fatty acyl lipids using 

experimental libraries, the final compound list is used for targeted feature extraction across all 

samples (MS-only data files) in MassHunter Profinder (Agilent). Peaks which do not occur in a large 

number of samples or which are of too low quality for statistics are filtered out based on user 

thresholds. The resulting annotated feature table(s) are imported into MassHunter Mass Profiler 

Professional (MPP, Agilent), where normalization, baselining, median fold changes, constant sums, 

internal/external scalars, and a wide variety of filtering criteria can be applied prior to statistical 

analysis. A lipidomics experiment type has been added to MPP to enable annotated lipid analysis. 

The lipidomics experiment type supports lipid class-based internal standard normalization. Several 

new visualizations are also supported, included lipid matrix plots (heat maps) at both the lipid 

species and lipid class level. Additionally, Kendrick mass defect plots and retention time versus mass 

plots are color coded by lipid class for discernment of class-based trends.  

Lipid Annotator can also be used as the initial annotation step followed by subsequent peak 

picking and statistical steps using open-source software. Briefly, a text file can be exported from Lipid 

Annotator which contains the names, mass to charge values, and retention times of annotated lipids, 

These text files can be formatted as a targeted peak list for peak picking using MZMine 2 [27] 

(optionally followed by GNPS) or other mass spectral processing software, which can perform 

numerous steps including chromatogram peak picking, deconvolution, isotopic peak grouping, 

alignment, gap filling, further library searching and MS/MS similarity scoring [28]. MetaboAnalyst 

[29] can also be used for downstream statistical analysis either following MZMine 2 by direct export 

of the peak table file or by exporting and formatting outputs from MassHunter Profinder or MPP. 

2.1.2. Lipid Annotator Libraries 

Lipid Annotator in silico libraries use MS-DIAL in silico libraries [13] as its source of theoretical 

fragmentation spectra. MS-DIAL libraries are the most extensive set of in silico MS/MS libraries 

containing both fragment m/z and predicted intensities for Q-TOF MS/MS based approaches and new 

releases continue to expand the scope of lipid coverage. An algorithm was developed to validate MS-

DIAL libraries based on formula prediction of fragments and internal consistency of fragmentation 

across fatty acyl constituents of a given class. Flagged libraries were removed or corrected, and new 

libraries were added. Libraries were validated against 63 lipid standards across 21 lipid classes 

purchased from Avanti Polar Lipids, Inc. and Nu-Chek Prep, Inc. Currently, 58 lipid types are 

covered when considering all ether and oxidized lipids each as a single lipid type. Within Lipid 

Annotator, the user can view a table of all in silico lipid libraries by class, by precursor m/z match, or 

by text query similar to LipidPioneer [30].  

2.1.3. Lipid Annotator Annotation Algorithm 

An in-depth discussion of the Lipid Annotator algorithms, mathematical derivatizations, and 

theoretical explanations are provided in the Appendix A and supplemental figures. Briefly, the Lipid 

Annotator algorithm, for annotation based on the in silico libraries, consists of five general steps: 

feature finding (Figure 2, Step 1), association of MS/MS scans with features (Figure 2, Step 2), 

annotation of possible lipids for each feature (Figure 2, Step 3), calculation of the percent abundance 

of each fatty acyl constituent under a single chromatographic peak in the case of mixed spectra 
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(Figure 2, Step 4), and filtration of final annotated features according to exact mass, isotope, and 

MS/MS match probabilities (normalized to 100) (Figure 2, Step 5).  

Lipid Annotator is used to annotate a feature at two levels. First, algorithms based on the 

Bayesian theorem [31] are employed to determine which sum composition (sum mixture of lipids for 

a given class with varying fatty acyl constituents containing the same number of carbons and double 

bonds) is most likely for a given feature. Essentially, Bayesian probability is used to choose between 

two potentially overlapping isomers from differing lipid classes, for example, phosphatidylcholine 

PC(17:0/18:1) and phosphatidylethanolamine PE(16:0/22:1). If multiple lipid isomers co-elute from 

one lipid class (with differing fatty acyl constituents, in Lipid Annotator referred to as 

“constituents”), we can estimate the relative abundances of constituents in the mixture by using a 

non-negative least squares fit (Figure 2, Step 4). 

Non-negative least squares is applied to optimize the abundances of individual lipid ions, in 

order that their cumulative in silico MS/MS spectral signal best matches the experimental MS/MS 

spectra (Figure 3). This percent abundance ranking allows the user to evaluate the relative 

contributions of the different lipid fatty acyl constituents present for a given lipid sum composition. 

In cases where all constituents have similar percent abundance, the sum composition lipid name is 

used for downstream analysis. In cases where there is a predominant lipid defined at the level of fatty 

acyl constituents, the feature is annotated by fatty acyl constituents, which can be used for further 

biological interpretation (Figure 2, Step 4). The advantage of semi-quantitative determination of lipid 

abundances under co-eluting chromatograms is shown in Figure 2, Step 4. Whereas 3 peaks are 

observed, based on pie charts of fatty acyl lipid distributions it can be recognized that there are at 

least 5 lipid isomers. PC(16:0_22:5) occurs as a higher portion of peak 1 and 3 then peak 2, showing 

the existence of two deconvoluted isomers of PC(16:0_22:5), which in neither case are the dominant 

lipids. In this case these species may differ in position of fatty acids on the backbone or positions of 

double bonds (n-6 DPA and n-3 DPA). Only in the 2nd peak is there a dominant lipid species, which 

can be reported by fatty acyl constituents for downstream statistics.  

The non-negative-least squares algorithm for deconvoluting mixed spectra (even when 

chromatograms of isomers completely overlap) has several limitations, which plague any 

deconvolution algorithm employing data-dependent MS/MS to lipidomics. For example, in silico 

spectra for which deconvolution depends are imperfect; the effect of fatty acyl chain unsaturation 

and chain length on fragmentation profiles is not accounted for and instrument conditions used to 

generate in silico libraries may differ from user conditions. Furthermore, only a single MS/MS scan 

is required for deconvolution in Lipid Annotator (to improve coverage). This MS/MS scan(s) may not 

appropriately cover the differing distributions of co-eluting precursor ions, which has previously 

been discussed [17]. While software has been developed which takes advantage of multiple MS/MS 

scans to reconstruct co-eluting precursor elution profiles [32], the number of MS/MS scans required 

for each mass to reconstruct precursor elution profiles would drastically reduce coverage. Therefore, 

this technique providing percent abundances of co-eluting isomers is qualitative, not quantitative. 

The MS/MS spectral match (Figure S1), precursor mass, and isotope pattern (of all combined 

candidates) of a given feature are each considered independently of one another and multiplicatively 

contribute to the final probability density of a feature (Figure 2, Step 5). Both independent and final 

probability densities are used to filter annotated features to reduce false positives. Filter thresholds 

are user modifiable, with default filters developed to ensure the largest number of false positives are 

removed and true positives retained using a hand annotated data-set and standards.  

The use of Bayesian theorem and probability densities is unique to Lipid Annotator and 

provides a more universal approach for annotation based on statistical theory than is currently 

available in other software. Current lipidomics software approaches uses tolerance windows and/or 

weighted scoring systems for lipid annotation, which are highly subjective. While these weights can 

be optimized for a given training data set, weighting schemes lack obvious, logical reasons explaining 

how the optimization result is applicable to unknown data. The Bayesian method eliminates all 

weighting schemes. The Bayesian method gives the identification probabilities from, and only from, 

other than a priori probabilities not dealt with here, measurement distributions, such as ppm errors 
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in m/z, signal to noise ratio in fragment spectra, and isotopic ratio fidelity. Certain assumptions must 

be used in Bayesian methods for lipidomics; mainly that the likelihood of lipid probabilities in a given 

substrate is unknown (hence the likelihood of each lipid candidate is assumed to be equal), and that 

the in silico spectra are a good approximate for the actual spectra. In addition, for our purposes, the 

distribution of errors (e.g., mass error, isotope fidelity, and artifacts in spectra) in most cases were 

assumed to be normal. One advantage of focusing on a single vendor for software development is 

that these distributions (e.g., in mass error) can be empirically estimated. Further discussion of 

assumptions and Bayesian methods is provided in Appendix A1.  

 

Figure 2. Steps of Lipid Annotator identification algorithm using actual data from National Institute 

of Standards and Technology (NIST) SRM 1950 human blood plasma acquired in negative polarity. 

In Step 1 three chromatographic peaks are integrated and in Step 2 the MS/MS scans are averaged for 

each peak. In Step 3 the average MS/MS are used to identify three possible peak constituents: 

phosphatidylcholine PC(16:0_22:5), PC(18:1_20:4), and PC(18:0_20:5). In Step 4 the percent 

constituents under each peak are calculated using negative least squares fitting of in silico spectra to 

experimental spectra. In Step 5 the composite in silico spectra is matched against the experimental 

spectra and total scores for MS/MS are calculated, which, along with precursor isotopic score and 

exact mass match scores, can be used to filter results to reduce false positives. Fatty acyl annotation is 

only provided in Step 5 if the top percent abundance differential between the first and second top 

most abundant lipid in Step 4 is above a certain threshold. Acronyms are defined in Appendix B. 
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Figure 3. Example of the approximation of percent contribution to a mixed MS/MS spectra of two 

triglyceride isomers with 50 carbons and 2 degrees of unsaturation, triglyceride TG(50:2), using a 

negative least squares best fit. Example is from NIST SRM 1950 in positive ion mode. 

2.1.4. User Interface and Downstream Workflow 

The interface has a feature view (Figure 4) and match details view (Figure S2) for investigating 

the results. In the feature view, a 2D plot shows each feature detected. The dimensions can be toggled 

between abundance, retention time, collisional cross sections, drift time (if ion mobility is employed), 

and m/z. The features can be colored by lipid class and highlighted to flag compounds with low 

chromatographic peak quality (Figure 4). The Match Details view consists of annotated features. Each 

annotated feature can be selected for further details. Upon selection, the resulting lipid species 

identified under the same chromatographic peak and their respective match scores, percent 

abundances, and head-to-tail plots of in silico versus experimental spectra are shown (Figure S3). 

Based on manual examination of the data, lipids can be removed or added using the MassHunter 

Personal Compound Database and Library (PCDL) Manager software before further use in 

downstream analysis. This database is then used to perform a targeted feature extraction from MS1 

level data in Profinder based on accurate mass and retention time. This approach improves the speed 

of data processing by only performing the untargeted peak picking step which is computational 

expensive on a few representative samples (in Lipid Annotator). It is important to note that because 

only representative samples are analyzed in Lipid Annotator, the semi-quantitative distributions of 

lipids determined through non-negative least squares is not passed on into further steps up the 

workflow, but rather is simply used to assign class based or fatty acyl based annotations. Finally, 

after the annotations from Lipid Annotator have been aligned with the MS1 data in Profinder, 

normalization of lipid ions by lipid class can be performed in MPP using user selected internal 

standards.  
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Figure 4. Examples of Lipid Annotator data-visualizations (feature view) for NIST SRM1950 in 

positive ion mode. Panel A. shows a plots of features which can be used to examine patterns across 

retention time, mobility, lipid class, identified versus non-identified compounds, Q-score 

(chromatographic peak quality) and abundance. In panel B., a pie chart displays the total number of 

annotated lipids per lipid class Note that axis and labels were re-written in larger font to be able to be 

read in a publication sized figure. Acronyms are defined in Appendix B. 

2.2. Application and Validation: Analysis of NIST SRM 1950 using Iterative Exclusion  

2.2.1. Lipid Coverage 

The workflow presented here uses pooled or representative samples to obtain annotations of 

features; the annotated features are then used for targeted chromatographic peak detection across all 

samples, thereby increasing throughput and consistency in peak picking. Because MS/MS is not 

obtained on all samples, by applying iterative exclusion (IE) for repeated injections of pools, the lower 

abundant lipid ions can be annotated. In contrast to a prior study [26], iterative exclusion on NIST 

SRM 1950 human plasma proved more advantageous in negative polarity, with a 149% increase in 

the number of unique annotations after six injections in negative ion mode as compared to 82% in 

positive ion mode (Figure 5). This could be due to the higher injection volumes used for negative ion 

polarity and higher levels of chemical background in this case. 
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Figure 5. Iterative exclusion in positive (A) and negative (B) ion mode, showing an increase in the 

number of annotations over injections when using iterative exclusion. Acronyms are defined in 

Appendix B. 

In addition to iterative exclusion, using higher injection amounts (more lipids loaded onto the 

column) improved annotation due to higher signal for low abundant compounds (Figure S4) and was 

obtained without significantly affecting mass accuracy of the detected features over a broad range of 

abundances in the concentrated pooled sample (Figure S5). The presented workflow increases the 

total number of annotations. In addition, unique databases in Lipid Annotator improved lipid 

coverage and the precision of annotation. For example, for lysophosphatidylcholine LPC(18:1), 

multiple isomers were separated chromatographically (four were annotated) and the stereospecific 

numbering (sn) positional isomers were assigned using the m/z 104 fragment, which is unique to fatty 

acyl chains in the sn2 position of LPC as [M+H]+ adducts [33] (Figure S6). The additional isomer(s) 

could be due to branching in fatty acyl chains or position/stereochemistry of the double bond, which 

cannot be discerned using traditional MS/MS methods. There were a significant number of lipid 

isomers whose structural differences could not be resolved by MS/MS. For example, in positive ion 

mode 19 lipids annotated at the fatty acyl constituent level had one or more identical annotation 

eluting at a different retention time. Forty-two lipids annotated at the sum composition level (without 

a predominant fatty acyl constituent, or any fatty acyl fragment information) had one or more 

identical annotation eluting at a differing retention time. In summary, 17% of the 365 unique lipid 

species annotated in positive mode had identically annotated isomers, showing the extent of future 

work needed in routine lipidomics analyses to delineate isomers. 

The use of Lipid Annotator on six injections of NIST SRM 1950 using iterative exclusion resulted 

in 608 unique lipids annotated by Lipid Annotator after combining positive and negative polarity 

data (class distributions shown in Figure S7 raw data shown in Software_Outputs.xlsx). In this case 

unique lipids refers to the number of lipid species after combining differing adducts for a single 

molecular species and combining chromatographically resolved isomers which were 

indistinguishable by MS/MS. In addition to in silico libraries, experimental MS/MS libraries from over 

800 lipid standards were searched against Lipid Annotator. A total of nine unsaturated fatty acids, 

one branched fatty acid, acetylcarnitine, vitamin E, and cholesterol sulfate were uniquely identified 

using experimental MS/MS libraries and not annotated using in silico libraries. This shows the 
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advantage of a hybrid in silico–experimental approach for lipidomics to determine both fatty acyl 

and non-fatty acyl lipids. 

Lipid Annotator, LipidMatch, and MS-DIAL annotated 356, 324, and 336 unique lipids in 

negative ion mode, and 365, 325, and 466 unique lipids in positive ion mode, respectively (Table S4). 

Total features annotated by each software are included in Table S3. All software outputs can be found 

in the supplemental excel file. 

Lipid Annotator was the software with the highest computational speed (run on a computer 

with 16 GB RAM, intel Core i7-7700HQ CPU at 2.80 GHz, 64 bit operating system). The software 

process for annotation (positive mode, 6 IE files, NIST SRM 19560) was less than 1 min as compared 

to LipidMatch, which took 78 min and MS-DIAL processing which took 8 min. Both of these 

calculations do not account for file conversion, which is an unnecessary for Lipid Annotator. Further 

tests across the broader set of lipidomics software and across larger datasets are needed to benchmark 

the efficiency and speed of Lipid Annotator, but preliminary applications show an advantage in 

reducing the computational bottleneck in lipidomics workflows. 

2.2.2. Annotation Accuracy 

To date, one of the major issues with lipid software is the determination of the rate of false 

positives, due to the difficulty in establishing a decoy database. Therefore, the accuracy of Lipid 

Annotator annotations was explored through: 

(1) internal and external standard solutions, 

(2) comparing annotations against other lipidomics software. 

Moreover, 11/14 of the Lipidomix deuterated PC, PE, phosphatidylserine (PS), 

phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidic acid (PA), LPC, 

lysophosphatidylethanolamine (LPE), cholesterol ester (CE), monoglyceride (MG), diglyceride (DG), 

triglyceride (TG), sphingomyelin (SM), and cholesterol standards spike into the human plasma were 

correctly annotated by Lipid Annotator, with the exception of CE, DG, and MG, most likely due to 

the low ionization efficiencies of MG and DG and in-source fragmentation of CE. Of the 86 standards 

spiked into neat solutions, 63 were correctly annotated by Lipid Annotator (by class, carbons, and 

unsaturations), 23 were not annotated (mainly due to the lack of libraries to cover them or lack of 

detection during acquisition), and none were incorrectly annotated at the level of fatty acyl 

constituents (Lipid_Standards_Info.xlsx). 

Lipid Annotator, LipidMatch, and MS-DIAL annotation of the human plasma samples were 

compared (Figure 6) (Note that in this case total features annotated are compared (not unique lipid 

annotations), and therefore numbers are greater in Figure 6 than Figure 5 for Lipid Annotator). Each 

software uses unique algorithms for annotation. In LipidMatch, specific lipid fragment m/z values 

must be observed for confirmation (class-based rules), and summed fragment intensities are used to 

rank co-eluting lipid isomers. MS-DIAL uses a weighted scoring algorithm which includes modified 

reverse dot product scoring for MS/MS, isotopic distribution scores, and rules to determine at what 

level of structure to annotate in a manner similar to LipidMatch. Lipid Annotator uses probability 

density calculations for isotopic pattern, MS/MS spectra, and precursor mass to annotate lipids, and 

a non-negative least squares fit to determine percent contribution of isomers to a peak. 
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Figure 6. Comparison of annotations of features across the untargeted lipid annotation software Lipid 

Annotator (LA), LipidMatch (LM), and MS-DIAL (MD). Bars are color coded by lipid class. Bar graphs 

A. and C. represent the lipid annotations, which were only determined in one software (only) and 

those which were annotated in two or more software (annotation intersections denoted by “&”), for 

negative and positive mode, respectively. Bar graphs B. and D. represent the total annotations for 

each software individually divided by lipid class for negative and positive mode, respectively. Prior 

to this analysis both internal standards and skin ceramides were removed. Note fatty acid esters of 

hydroxy fatty acids (FAHFA) was removed from analysis due to likely false positives (see text). 

Acronyms are defined in Appendix B. 

A comparison of each lipid software with different algorithms for annotation produced similar 

results, suggesting that MS-DIAL, LipidMatch, and Lipid Annotator have a low false positive rate for 

annotations at the level of sum compositions (Table S5). Moreover, 98% of features with annotations 

across all software in positive mode (of 176 comparable features) and 96% of features in negative 

mode (of 132 comparable features) were annotated the same at the level of lipid class, total fatty acyl 

carbons and level of unsaturation, while 65% and 79% had matching top hits at the level of fatty acyl 

constituents in positive and negative mode, respectively. Lipid Annotator annotations were 

confirmed by at least one other software at the level of carbons and unsaturations for 100% and 99% 

of comparable features, in positive and negative mode respectively, and by fatty acyl constituents for 

84% and 88% of comparable features, in positive and negative mode, respectively (Table S5). 

All three software platforms generated high agreement using differing algorithms for 

annotation. This includes the top ranked fatty acyl constituent for a feature being confirmed over 80% 

of the time by other software, suggesting that the novel algorithm for deconvoluting mixed MS/MS 

spectra in Lipid Annotator generates an accurate ranking of lipid isomers for a high proportion of 

annotated chromatographic peaks. Of the three software platforms compared, Lipid Annotator is the 

only software to estimate the actual levels of each isomer in a mixed MS/MS spectra (Figure 2 and 

Figure 3). A current limitation to this technique is that the percent contribution of each lipid isomer 

to an MS/MS scan may not represent the exact percent contribution of each lipid isomer to a 

chromatographic peak [17]. Briefly, if only a few MS/MS events occur across a chromatographic peak, 

and the positions of these scans do not accurately reflect the distribution of isomers under the 

chromatographic peak, then this will skew any quantitation of isomers using MS/MS. Therefore, 

advances in data-acquisition methods, for example developing scanning methods, which include 

four or more MS/MS events distributed evenly across the peak, would better represent isomer 
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abundances using MS/MS. In addition, if in silico libraries do not correctly predict experimental 

MS/MS fragmentation, then percent abundance calculations will be incorrectly estimated. However, 

this issue can be overcome through improvements in in silico libraries specific to a set collision 

energy, Q-TOF instruments, and accounting for the effect of unsaturations and carbons on ionization 

efficiencies. 

A more in-depth analysis of features annotated after removing internal standards can be seen in 

Figure 6. The proportion of features annotated by all three software platforms was higher in negative 

mode (Figure 6A) than in positive ion mode (Figure 6C). Hence, there are more discrepancies in 

annotation between software packages in positive ion polarity data. This is further verified by the 

fact that of those features with annotations across all three software platforms, there was better 

agreement of annotations in negative polarity than positive polarity as described above. In negative 

ion mode, Lipid Annotator had the most lipids which were verified by one or more other software 

(Figure 6A), the most unique lipids (Figure 6A), and the highest number of total features annotated 

(Figure 6B). MS-DIAL had the most unique lipids in positive polarity. 

It is important to note that in-source fragmentation and solvent clusters can lead to MS/MS 

spectra identical to precursor ions [34], which are not of biological origin and hence can be considered 

false positives (see Appendix A). These cannot be discerned without orthogonal approaches 

including retention time or ion mobility separation, and/or prior knowledge/expert review. For 

example, the cluster ions incorporating solvent and fatty acids can be misannotated as fatty acid 

esters of hydroxy fatty acids (FAHFAs): we excluded the annotation of FAHFAs from the original 

output in this study because they are rarely detected in human serum with our conventional LC-MS 

method. While these were considered false positives, these species have been detected in plasma 

previously [35], and therefore using prior knowledge we reduce false positives while potentially 

limiting the discoveries of novel lipids, or known lipids previously unknown to exist within a 

biological compartment/fluid. Other compounds which are products of ionization mechanisms rather 

than of biological origin, for example the in-source fragment lyso-lipids originating from their 

precursor phospholipids, are also often annotated when solely using MS/MS as annotation criteria 

[34], but will elute at the retention times of the precursor not of their analyte counterparts. Therefore, 

including retention time (supported in MS-DIAL for example), ion mobility, or other orthogonal 

separation method in annotation will reduce false positives, and future implementation in Lipid 

Annotator would be advantageous. One difficulty is that in silico retention time libraries are column 

and gradient specific and, therefore, collisional cross-sectional values (CCS), which are fundamental 

properties of ions and hence universal could be more widely adopted. As in all current lipidomics 

non-targeted software, annotations should be validated by expert review before being 100% 

confident in the annotation. 

3. Conclusion 

Lipid Annotator can be used on large datasets for rapid annotation, relative quantification, and 

statistics (using a downstream workflow with MassHunter Profinder and MassHunter Mass Profiler 

Professional software). In addition to the correct annotation of spiked internal standards, annotations 

of NIST SRM 1950 were comparable across lipid software using differing annotation algorithms 

suggesting low false positive rates. As compared to other software, Lipid Annotator contains unique 

algorithms to deconvolute mixed MS/MS spectra from co-eluting lipid isomers, determines the 

percent abundance of each lipid isomer contributing to the mixed spectra, and annotates by fatty acyl 

constituents only if there is a dominant lipid species. Lipid Annotator also is the only software to use 

probability theory for annotation (which is less subjective than current approaches) and supports ion-

mobility data workflows. While Lipid Annotator provides unique algorithms for annotation of lipids, 

a number of assumptions in library generation and annotation exist, and as with any software, expert 

review is required prior to 100% confidence in annotations. Future work developing algorithms to 

determine software false positive, true positive, false negative, and true negative rates would be 

helpful for users to distinguish quality lipidomics software from that which produces many 

erroneous annotations or has low coverage. In addition, ground truth lipidomics datasets with 
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manually curated annotations (possibly with the aid of software) for validating and benchmarking 

lipid annotation algorithms are needed. 

4. Materials and Methods 

4.1. Methods: Lipid Extraction and Data-Acquisition 

Aliquots (40 µL for (positive mode) and 120 µL for (negative mode)) of thawed plasma (NIST 

SRM 1950 Metabolites in Frozen Plasma, Sigma, St. Louis USA) were each extracted using a modified 

Folch extraction procedure [36] and reconstituted in 100 µL of a methanol/chloroform mixture (9:1, 

v/v). LC separation was performed on an Agilent 1290 Infinity II LC System, with a 19 min gradient 

time on a reverse phase C18 column (Agilent InfinityLab Poroshell 120 EC-C18, 3.0 × 100 mm, 2.7 

µm). Mobile phase consisted of 10 mM ammonium acetate and 0.2 mM ammonium fluoride in 9:1 

water/methanol, while mobile phase B consisted of 10 mM ammonium acetate and 0.2 mM 

ammonium fluoride in 2:3:5 acetonitrile/methanol/isopropanol. Negative and positive polarity data 

was acquired on the Agilent 6546 LC/Q-TOF using iterative MS/MS acquisition mode on 6 injections 

of extracted plasma for each polarity [37]. Detailed experimental methods for chromatography and 

mass spectrometry can be found in Supplemental Table S1 and Table S2, respectively, and in the 

Agilent application note 5994-0775en [37]. Two methods were used, a high-load and a low-load 

method, to determine the effect of high injection volumes/concentration on the number of annotations 

using the Agilent 6546 LC/Q-TOF. 

4.2. Methods: Data-Processing 

Iterative MS/MS acquisition data of NIST SRM 1950 in positive and negative polarity were 

separately analyzed by each lipidomics software platform (LipidMatch Flow, MS-DIAL, and Lipid 

Annotator). Data processing parameters can be found in Appendix A. Resulting annotations from all 

software were appended to the Lipid Annotator feature table using an R script available in the 

LipidMatch software package [17]. The FAHFA class was also excluded from the list because the 

molecules are not detected in our extraction and LC-MS conditions. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/10/3/101/s1, 

Lipid_Standards_info.xlsx: Contains a list of standards and false positives, true positives, and false negatives 

using Lipid Annotator. Software_Outputs.xlsx: Processed features tables with lipid annotations from MS-DIAL, 

LipidMatch, and Lipid Annotator, as well as a combined table of annotations from all 3 software with statistics 

on agreement between the software. Raw data is available at: 

https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp, MassIVE ID: MSV000084849 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=a18ac48abb6b4148a41a1ec31e86abb3; Figure S1: A figure 

describing the algorithm for determining MS/MS score. Note that two “artifact peaks” actually come from 

PC(18:1_20:4) and hence reduce the score due to mixed spectra. Therefore, after negative least squares is applied, 

the in silico mixed spectra is used to obtain a new MS/MS score, which takes into account co-eluting lipids. *A 

normalization factor is applied to have a scoring scale between 0–100, Figure S2: Match Details view, showing 

two panels for the annotation of TG(16:0_16:1_18:1) and Cer(d18:1/18:0), Figure S3: Lipid constituents table (A), 

showing two triglycerides (TG) annotated for the same feature (B and C) and their percent abundance score, 

Figure S4: A lipid dense region of the mass spectrum (m/z 750–765) without (A) and with (B) peak saturation. 

The figure shows that lower abundant ions can be observed when the sample is concentrated, which would not 

have been observed otherwise, Figure S5: Mass accuracy versus abundance (intensity) of ions. Mass accuracy is 

consistently within 5 ppm on the Agilent 6546 even when peaks are saturated, Figure S6: EICs for LPC(18:1) (5 

ppm tolerance) showing 4 annotated isomers. Note the last peak could be an erroneously detected LPC due to 

peak tailing. The m/z 104 fragment is used to discern LPC sn1 and sn2 isomers, Figure S7: Distribution of unique 

lipids by class after combining positive and negative polarity lipid annotation using Lipid Annotator (as a 

percent of annotations, not intensity or relative amounts). Other consists of one CL and SHexCer, Table S1: 

UHPLC parameters, Table S2: Mass spectrometric parameters for the Agilent 6546 LC/Q-TOF; Table S3: Total 

number of features annotated with iterative exclusion data-dependent analysis (IE-DDA), DDA, and IE-DDA 

with high injection volume; Table S4: Total number of unique lipids annotated per software and polarity. In this 

case, unique lipids refers to the number of lipid species after combining differing adducts for a single molecular 

species and combining chromatographically resolved isomers, which were indistinguishable by MS/MS, Table 
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S5: Percent of features which have annotations across all software (excluding ether-lipids) with one or more 

additional software proving the same annotation at the level of lipid class, carbons and unsaturations (C:DB), 

and at the level of fatty acyl constituents (FA). “All” represents the percent of feature where all three software 

provided the same annotation. 

Author Contributions: N.K. managed the software development team and both N.K. and J.P.K. came up with 

many of the unique aspects related to the Lipid Annotator user workflow and algorithms. X.L. developed and 

implemented the algorithms generating and transferring in silico libraries from MS-DIAL (developed by HT) to 

Lipid Annotator. X.L. developed and wrote an algorithm to performed quality control of the in silico lipidomics 

libraries, and J.P.K. and H.T. made corrections based on flagged portions of the library. X.L. also developed and 

implemented all algorithms for lipid identification, and wrote the initial draft of the methods and supplemental 

pertaining to these algorithms. S.M.S. further validated the libraries and software via running of a large number 

of lipid internal standards and comparing results across a number of lipid software platforms. S.M.S. also 

thoroughly tested the software, cataloging errors, and helped to develop a more user-friendly workflow. The 

entire team came up with the interface, and A.M. and N.K. implemented the interface for Lipid Annotator. S.M.S. 

and R.K. designed and carried out lipidomics experiments on various samples, with and without ion mobility 

and 2D LC to further validate the software. M.S. designed and performed the lipidomics experiment and 

iterative exclusion data-acquisition on NIST SRM 1950 used in this study, and further validated the software on 

results to this known QC material. J.P.K. processed MS’s data using Lipid Annotator and LipidMatch, while H.T. 

and M.T. processed the data using MS-DIAL. J.P.K. combined results from the 3 software, and did statistical and 

quantitative comparisons between software. J.P.K. made all figures for the manuscript and wrote the initial draft 

of the introduction, results and discussion. All authors edited and contributed to the writing of the manuscript, 

including V.V., J.A.B., R.A.Y., and T.J.G. All authors have read and agreed to the published version of the 

manuscript. 
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Appendix A 

Appendix A1. Lipid Annotator Algorithms: 

Since neither databases nor observed data are error free (due to background noise, simplification 

of theoretical databases, etc.), lipid annotations for a given feature using precursor and fragment mass 

spectrometric (MS) peaks are tentative. In addition, frequently a single feature consists of multiple 

isomeric lipid ions. For these reasons, we annotate a feature at two levels. First, we determine which 

sum composition (mixture of lipids for a given class with varying fatty acyl constituents containing 

the same total number of carbons and double bonds) is likely to be the feature based on probability 

(Bayesian theorem). Then, we calculate the relative abundances of lipids in the mixture which give 

the best fit to the data. 
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Appendix A1.1. Sum Composition Annotation using Bayesian Theorem 

Mass spectrometry, along with chromatography and ion mobility spectrometry, provide very 

rich, multiple-dimension data for the separation and annotation of lipids and other chemical 

compounds. It is highly desirable to take advantage of all the available data during annotations. 

Conventional techniques use tolerance windows for matching. For example, a software user may 

specify a 10 ppm tolerance for the mass and 0.5 min tolerance for retention time. Under this premise, 

all of the lipids falling into the windows described above are assigned to the feature. More 

sophisticated software packages allow the user to specify a weighting scheme to combine the fitting 

of all the dimensions into a single ranking score. Weighting schemes enable discriminative power to 

determine which annotations are most accurate. Such schemes are highly subjective. While these 

weights can be optimized for a given training data set, weighting schemes lack obvious, logical 

reasons as to why the optimization result is applicable to the unknown data. 

Here, we apply the Bayesian Theorem [31], which is arguably the most fundamental statistics 

theory in machine learning to handle classification problems, to our annotation problem. Bayesian 

Theorem can be summarized as: 

𝑃(𝑤𝑖|𝒙) =  
𝑝(𝒙|𝑤𝑖 )𝑃(𝑤𝑖)

𝑝(𝒙)
, (1) 

where 𝑃(𝑤𝑖|𝒙) is the probability that a given feature belongs to class  𝑤𝑖  (sum composition, in this 

case) for the given observed data  𝒙 , 𝑝(𝒙|𝑤𝑖)  is the probability density that the data 𝒙  can be 

observed for a given sum composition 𝑤𝑖 , 𝑃(𝑤𝑖)  is a known a priori probability of the sum 

composition 𝑤𝑖  independent of the data 𝒙, and 𝑝(𝒙) is the total probability density function given 

by 

𝑝(𝒙) =  ∑  𝑝(𝒙|𝑤𝑖)𝑃(𝑤𝑖)𝑖 , (2) 

with the sum being over all the possible classes 𝑤𝑖 . 

Since we do not, at this stage, have a database giving the universal natural frequency of lipid 

sum composition occurrences in different substrates, we treat all the lipids equally (𝑃(𝑤𝑖) = 1). 

Namely, we let the observed data be the sole judge to decide the annotation. Using this simplification, 

we focus on the calculation of 𝑝(𝒙|𝑤𝑖). 

𝑝(𝒙|𝑤𝑖)  is the probability density of data taking a value of 𝒙  given sum composition 

𝑤𝑖 . Currently we use precursor masses, precursor isotope patterns, and fragment spectra as our data 

𝒙 . It would be straightforward to include retention times, mobility drift times, and other 

measurements into the probability calculation upon required databases becoming available. One 

assumption is that different dimensions of data are statistically independent to one another. Under 

this assumption, 𝑝(𝒙|𝑤𝑖) can be decomposed into: 

𝑝(𝒙|𝑤𝑖) =  ∏ 𝑝(𝒄𝑗|𝑤𝑖)𝑗 , (3) 

where indexes j run over the dimensions (precursor mass, isotope pattern, and MS/MS), and 𝑝(𝒄𝑗|𝑤𝑖) 

is the probability density for 𝑤𝑖  taking value 𝒄𝑗. 

In the following, we give some detailed examples to illustrate how we calculate these 𝑝(𝒄𝑗|𝑤𝑖) 

in practice. For precursor mass, for any sum composition, we can calculate its theoretical mass 𝑚0. If 

we assume its observed value 𝑚 has a Gaussian distribution, we can write, up to a scaling factor, 

𝑝(𝑚|𝑤𝑖) = 𝑒−(𝑚−𝑚0)2 2σ2⁄ , (4) 

where σ is a constant for a give instrument and data acquisition protocol and is obtainable 

empirically. 

For fragment spectra matching, a common traditional technique involves “forward” and 

“reverse” searches using dot-products of library and observed spectra [10,13,32]. This heuristic 

approach does not fit our theoretical framework. As a new approach, we assume the data deviation 
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from the database values are due to two independent factors: impurity and mismatch (Figure S1). 

The impurity covers all the observed peaks not associated with database peaks (e.g., background 

noise), and the mismatch describes the difference in intensity patterns between database peaks and 

observed peaks. Two observables (or derivatives from observations) are 𝐼 = √∑ ℎ𝑖
2

𝑖 ⁄ 𝐻𝐷 and 𝑀 =

√∑ (ℎ𝑑 − ℎ̂𝑑)2
𝑑 ⁄ 𝐻𝐷  where ℎ𝑖 are intensities of impurity peaks, ℎ𝑑 are intensities of experimental 

peaks associated with database peaks, ℎ̂𝑑 are peak intensity values from the database, and 𝐻𝐷 =

∑ ℎ̂𝑑
2

𝑑 . Thus, the probability density of fragment spectra 𝑝(𝑓|𝑤𝑖) of 𝑤𝑖  becomes 𝑝(𝑓|𝑤𝑖) = 𝑝(𝐼|𝑤𝑖) 

𝑝(𝑀|𝑤𝑖) where 𝑝(𝐼|𝑤𝑖) and 𝑝(𝑀|𝑤𝑖) are the probabilities of 𝑤𝑖  taking values I and M, respectively. 

The distributions of 𝑝(𝐼|𝑤𝑖) and 𝑝(𝑀|𝑤𝑖) can be obtained either by doing statistics on data from 

known lipids, or simply by heuristics. Note that the exact form of I and M are not crucially important, 

as long as we have reasonably good models of their statistical distributions. 

Under the assumption that both I and M follow Gaussian distributions, we can write the 

probability density of the fragmentation data as 

𝑝(𝑓|𝑤𝑖) = 𝑒−𝐼2 2σ𝐼
2⁄  𝑒−𝑀2 2𝜎𝑀

2⁄ , (5) 

where constants σ𝐼  and σ𝑀  are obtained empirically. 

In these descriptions, we assume an in silico MS/MS fragmentation for a sum composition exists. 

If the sum composition is made up of multiple fatty acyl species, then no in silico (predicted) MS/MS 

library of the sum composition is available in the database. The database only contains individual 

fatty acyl species in silico MS/MS (e.g., Figure 2, Step 3). Therefore, first, we use the procedures 

described above to choose candidates of individual lipids, for which fragment spectra are available 

in the database. Then, we proceed to determine relative abundances of lipids belonging to the same 

sum composition as described in the next section. Once these relative abundances are available, a 

composite reference spectrum (as shown in Figure 3) can be calculated for the sum composition, and 

then a 𝑝(𝑓|𝑤𝑖) for the observation f. 

It is important to note that deconvolution of overlapping isotopic patterns is performed during 

molecular feature extraction in Lipid Annotator, reducing contamination of isotopic envelopes. This 

improves isotopic matches. When the separations in both the retention time and mass domains are 

not enough for deconvolution, overlapping isotope envelopes do affect the isotope scoring, which 

does not have as great discriminative power as the mass. One of the most common situation is when 

two lipids are separated by 2 Da, e.g., PC(36:3) and PC(36:2). In such a case, the lower-mass lipid has 

only 2 peaks which can be used. However, this limitation is minimal since any higher order peaks 

are very small for lipids. The effect on the higher-mass lipid could be more severe. However, the 

contamination from the lower-mass lipid is more damaging to the absolute heights than to the height 

ratios which are used in the scoring. Overlapping isotopic patterns are less common in reverse phase 

chromatography, but are more common in hydrophilic interaction liquid chromatography HILIC 

approaches. 

Appendix A1.2. Calculation of Lipid Relative Abundances to Fit Data using Non-Negative Least Squares Fit 

Lipid analysis presents an additional challenge compared to metabolite analysis in that often a 

single feature (precursor mass and retention time and/or ion mobility drift time) consists of multiple 

overlapping lipid isomers. This algorithm uses a non-negative least squares fit to determine the 

percent abundance for each lipid as compared to the total feature ion signal (Figure 2, Step 4). Non-

negative least squares is applied to optimize the abundances of individual lipid ions, in order that 

their additive in silico MS/MS spectra best match the experimental MS/MS spectra (Figure 3). This 

percent abundance ranking allows the user to evaluate the different lipid fatty acyl constituents 

present for a given lipid sum composition. In cases where all constituents have similar percent 

abundance, the sum composition lipid name is used for downstream analysis. However, in cases 

where there is a predominant lipid defined at the level of fatty acyl constituents, the feature is 

annotated by fatty acyl constituent which can be used for further biological interpretation (Figure 2, 

Step 4). 
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After following the steps in Section 4.1., if multiple lipids of the same sum compositions are 

assigned to a feature, than, letting {𝑎1,𝑎2,. . . 𝑎𝑁 } represent relative abundances of each fatty acyl 

constituent and {𝒔𝟏,𝒔𝟐,. . . 𝒔𝑵 } represent the in silico database spectra of each fatty acyl constituent, we 

can have a composite spectrum for the sum composition 𝒔̂: 

𝒔̂ =  ∑ 𝑎𝑖𝑖 𝒔𝒊 in a schematic manner. Treating {𝑎1,𝑎2,. . . 𝑎𝑁 } as unknowns, we can solve the 

minimization problem for these unknowns: 

𝑚𝑖𝑛||𝒔 −  𝒔̂||2 

where s is the observed data. Since {𝑎1,𝑎2,. . . 𝑎𝑁 } cannot be negative number, the minimization turns 

to solving a non-negative least squares equation. 

Appendix A1.3. Normalization of Probabilities 

As an addition to the annotation algorithm itself, we would like to point out that 𝑝(𝒄𝑗|𝑤𝑖) can 

be used, after some modification, as a score to indicate how lipid 𝑤𝑖  fits a particular dimension j of 

the data. The value of 𝑝(𝒄𝑗|𝑤𝑖) has certain unit with it. For example, the unit is 1/Dalton for mass 

dimension. To build a user-friendly, universally comparable scoring system, we define the score in 

jth dimension as 𝑠𝑗  =  𝑛𝑗𝑝(𝒄𝑗|𝑤𝑖) where 𝑛𝑗 is a normalization factor such that the best possible fit has 

a score 100. We can also extend the scoring to a combination of dimensions or to the overall data set 

by averaging scores of individual dimensions involved. Since the combination of probabilities of 

individual dimensions follows the multiplication rule (eq. 3), a natural rule for the averaging is the 

geometrical average: √∏ 𝑠𝑗𝑗
𝑁 . For example, the score of fragment fit is √𝑠𝐼𝑠𝑀  according to the 

discussion in section 1, where 𝑠𝐼  𝑎𝑛𝑑 𝑠𝑀 are the scores of the impurity and mismatch, respectively. 

Appendix A1.4. User Interface and Downstream Workflow 

Screen shots from the interface can be seen in Figure S2 and Figure S3 and in Figure 4. The 

interface has a feature view and match details view for investigating the results. In the feature view, 

a 2D plot shows each feature detected. The dimensions can be toggled between abundance, retention 

time, and m/z and the features can be colored by lipid class (Figure 4) or sample. On the right panel, 

a pie chart shows the number of features annotated for each lipid class. A table consisting of each 

feature and respective information including retention time, m/z, detection across samples, and Q-

Score, is shown. In the match details view, a table with lipid annotations, match scores, formulas, 

adducts, and other pertinent information for identification is provided. Each annotated feature can 

be selected and the resulting lipid species identified under the same chromatographic peak and their 

respective match scores, percent abundances, and head to tail plots of in silico versus experimental 

spectra can be viewed. Based on manual examination of the data, lipids can be removed or added 

using PCDL Manager before further downstream analysis. 

After annotation using Lipid Annotator and peak picking using Agilent Profinder software, 

normalization of lipid ions by lipid class can be performed in Agilent Mass Profiler Professional 

software using user selected internal standards. The sample-wise normalization algorithm 

normalizes all lipids within a class to the internal standard(s) sharing the same lipid class. In the case 

of multiple internal standards per class, the average signal across internal standards is used for 

normalization. When an analyte of a specific lipid class has no matching internal standard or the 

analyte is unidentified, the average signal across all internal standards is used. 

Appendix A2. Software Settings 

Appendix A2.1. MS-DIAL Parameter Setting 

MS-DIAL version 3.66 was used (http://prime.psc.riken.jp/) by the following parameters: 

retention time begin, 0 min; retention time end, 100 min; mass range begin, 0 Da; mass range end, 

5000 Da; accurate mass tolerance (MS1) tolerance, 0.01 Da; MS2 tolerance, 0.025 Da; maximum charge 

number, 2; smoothing method, linear weighted moving average; smoothing level, 3; minimum peak 
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width, 5 scan; minimum peak height, 5000 in positive ion mode and 3000 in negative ion mode; mass 

slice width, 0.1 Da; sigma window value, 0.5; MS2Dec amplitude cut off, 0; exclude after precursor, 

true; keep isotope until, 0.5 Da; keep original precursor isotopes, false; exclude after precursor, true; 

retention time tolerance for identification, 100 min; MS1 for identification, 0.01 Da; accurate mass 

tolerance (MS2) for identification, 0.05 Da; identification score cut off, 80%; using retention time for 

scoring, true; relative abundance cut off, 0; top candidate report, true; retention time tolerance for 

alignment, 0.05 min; MS1 tolerance for alignment, 0.015 Da; peak count filter, 0; adduct ion setting, 

[M+H]+, [M+NH4]+, [M+Na]+, [M-H2O+H]+, [M-C6H10O5+H]+, [2M+H]+, [2M+NH4]+, [2M+Na]+ in 

positive ion mode and [M-H]-, [M-H2O-H]-, [M+CH3COO]-, [M+Na-2H]-, [M-C6H10O5-H]-, [2M-H]-, 

[2M+CH3COO]- in negative ion mode. Lipid annotations were automatically performed. The 

following lipid classes were excluded in annotation pipeline to provide the same chemical space as 

that of LipidAnnotator and LipidMatch: MGDG, DGDG, LDGTS, DGTS, LDGCC, DGCC, SQDG, 

GlcADG, AcylGlcADG, Cer-EOS, and HexCer-EOS in positive ion mode, and GlcADG, AcylGlcADG, 

MGDG, DGDG, EtherMGDG, SQDG, Cer-OS, Cer-AS, Cer-ADS, Cer-BS, Cer-BDS, Cer-NP, Cer-EOS, 

Cer-EODS, HexCer-EOS, Ac2PIM1, Ac2PIM2, Ac3PIM2, Ac4PIM2, and LipidAPP in negative ion 

mode. 

Appendix A2.2. LipidMatch Parameter Setting 

LipidMatch was applied with an m/z window for matching fragment ions of 10 ppm, a retention 

time window for assigning MS/MS scans for a feature of 0.3 min, and a minimum number of “scans” 

with necessary fragments set to 1. All libraries were queried except for those excluded above in the 

MS-DIAL parameters settings. Formate adducts were excluded from searching. The feature table 

used as an input for LipidMatch was the same feature table generated by Lipid Annotator, including 

features without annotations. 

Appendix B List of Acronyms 

Acronym Definition 

Acar acylcarnitine 

BMP bis(monoacylglycero)phosphate 

CCS collision cross section 

CE cholesterol ester 

Cer ceramide 

CL cardiolipin 

DG diglyceride 

EIC reconstructed ion chromatogram 

ether plasmenyl/plasmanyl lipid 

FAHFA fatty acid ester of hydroxyl fatty acid 

Gangl ganglioside 

GlcCer glucosyl ceramide 

GM3 monosialodihexosylganglioside 

HexCer_NS hexosyl-ceramide 

HRMS high resolution mass spectrometry 

ID identification 

LA Lipid Annotator 

LC liquid chromatography 

LM LipidMatch 

LPC lysophosphatidylcholine 

LPE lysophosphatidylethanolamine 

LPI lysophosphatidylinisitol 

LPL lysophospholipid 

M molecular ion 

MD MS-DIAL 

MG monoglyceride 

MPP mass profiler professional 

MS/MS tandem mass spectrometry 

NIST National Institute of Standards and Technology 

NL neutral loss 

PA phosphatidic acid 
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PC phosphatidylcholine 

PCDL Personal Compound Database and Library  

PE phosphatidylethanolamine 

PG phosphatidylglycerol 

PI phosphatidylinositol 

PS phosphatidylserine 

Q-TOF quadrupole time of flight 

RAM random access memory 

SM sphingomyelin 

SRM standard reference material 

TG triglyceride 

  



Metabolites 2020, 10, 101 20 of 21 

 

References 

1. Gross, R.W.; Han, X. Lipidomics in diabetes and the metabolic syndrome. Meth. Enzymol. 2007, 433, 73–90. 

2. Lv, J.; Zhang, L.; Yan, F.; Wang, X. Clinical lipidomics: A new way to diagnose human diseases. Clin. Transl. 

Med. 2018, 7, 12. 

3. Yan, F.; Zhao, H.; Zeng, Y. Lipidomics: A promising cancer biomarker. Clin. Transl. Med. 2018, 7, 21. 

4. Bi, H.; Fu, D.; Wang, L.; Han, X. Lipid Nanotube Formation Using Space-Regulated Electric Field above 

Interdigitated Electrodes. ACS Nano. 2014, 8, 3961–3969. 

5. Depalo, N.; Leo, V.D.; Corricelli, M.; Gristina, R.; Valente, G.; Casamassima, E.; Comparelli, R.; Laquintana, 

V.; Denora, N.; Fanizza, E.; et al. Lipid-based systems loaded with PbS nanocrystals: Near infrared emitting 

trackable nanovectors. J. Mater. Chem. B 2017, 5, 1471–1481. 

6. Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P.-Y.; Geissbühler, I.; Demurtas, D.; 

Dubochet, J.; Vogel, H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting 

of live cells. Angew. Chem. Int. Ed. Engl. 2006, 45, 5478–5483. 

7. Chang, Y.; Zhang, L.; Lu, X.; Zhao, C.; Zhu, Z.; Wang, F.; Zhang, J.; Chen, S.; Zhao, Y.; Xu, G. A simultaneous 

extraction method for metabolome and lipidome and its application in cry1Ac and sck-transgenic rice leaf 

treated with insecticide based on LC–MS analysis. Metabolomics 2014, 10, 1197–1209. 

8. Welti, R.; Shah, J.; Li, W.; Li, M.; Chen, J.; Burke, J.J.; Fauconnier, M.-L.; Chapman, K.; Chye, M.-L.; Wang, 

X. Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass 

spectrometry. Front. Biosci. 2007, 12, 2494–2506. 

9. Christie, B. Lipid Matters - Archive of Older Blogs - 2017 Available online: 

http://www.lipidhome.co.uk/info/blogarch-2017.htm (accessed on 26 Mar 2019). 

10. Kind, T.; Liu, K.-H.; Yup Lee, D.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast - in-silico tandem mass 

spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. 

11. Bowden, J.A.; Ulmer, C.Z.; Jones, C.M.; Koelmel, J.P.; Yost, R.A. NIST lipidomics workflow questionnaire: 

An assessment of community-wide methodologies and perspectives. Metabolomics 2018, 14, 53. 

12. Lipid Maps - External Software Available online: 

https://www.lipidmaps.org/resources/tools/index.php?tab=software (accessed on 26 Mar 2019). 

13. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, 

O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. 

Nat. Methods 2015, 12, 523–526. 

14. Hutchins, P.D.; Russell, J.D.; Coon, J.J. Mapping Lipid Fragmentation for Tailored Mass Spectral Libraries. 

J. Am. Soc. Mass Spectrom. 2019, 30, 659–668. 

15. Kind, T.; Okazaki, Y.; Saito, K.; Fiehn, O. LipidBlast Templates As Flexible Tools for Creating New in-Silico 

Tandem Mass Spectral Libraries. Anal. Chem. 2014, 86, 11024–11027. 

16. Hartler, J.; Triebl, A.; Ziegl, A.; Trötzmüller, M.; Rechberger, G.N.; Zeleznik, O.A.; Zierler, K.A.; Torta, F.; 

Cazenave-Gassiot, A.; Wenk, M.R.; et al. Deciphering lipid structures based on platform-independent 

decision rules. Nat. Methods 2017, 14, 1171–1174. 

17. Koelmel, J.P.; Kroeger, N.M.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Cochran, J.A.; Beecher, C.W.W.; 

Garrett, T.J.; Yost, R.A. LipidMatch: An automated workflow for rule-based lipid identification using 

untargeted high-resolution tandem mass spectrometry data. BMC Bioinform. 2017, 18, 331. 

18. Kyle, J.E.; Crowell, K.L.; Casey, C.P.; Fujimoto, G.M.; Kim, S.; Dautel, S.E.; Smith, R.D.; Payne, S.H.; Metz, 

T.O. LIQUID: An-open source software for identifying lipids in LC-MS/MS-based lipidomics data. 

Bioinformatics 2017, 33, 1744–1746. 

19. Liebisch, G.; Vizcaíno, J.A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W.J.; Schmitz, G.; Spener, F.; Wakelam, 

M.J.O. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013, 54, 1523–

1530. 

20. Koelmel, J.P.; Ulmer, C.Z.; Jones, C.M.; Yost, R.A.; Bowden, J.A. Common cases of improper lipid 

annotation using high-resolution tandem mass spectrometry data and corresponding limitations in 

biological interpretation. Biochim. Biophys. Acta 2017, 1862, 766–770. 

21. Hernández, B.; Pennington, S.R.; Parnell, A.C. Bayesian methods for proteomic biomarker development. 

EuPA Open Proteom. 2015, 9, 54–64. 

22. Serang, O.; MacCoss, M.J.; Noble, W.S. Efficient Marginalization to Compute Protein Posterior Probabilities 

from Shotgun Mass Spectrometry Data. J. Proteome. Res. 2010, 9, 5346–5357. 



Metabolites 2020, 10, 101 21 of 21 

 

23. Li, Y.F.; Arnold, R.J.; Li, Y.; Radivojac, P.; Sheng, Q.; Tang, H. A Bayesian Approach to Protein Inference 

Problem in Shotgun Proteomics. J. Comput. Biol. 2009, 16, 1183–1193. 

24. Witting, M.; Ruttkies, C.; Neumann, S.; Schmitt-Kopplin, P. LipidFrag: Improving reliability of in silico 

fragmentation of lipids and application to the Caenorhabditis elegans lipidome. PLoS ONE 2017, 12, 

e0172311. 

25. Jeong, J.; Shi, X.; Zhang, X.; Kim, S.; Shen, C. An empirical Bayes model using a competition score for 

metabolite identification in gas chromatography mass spectrometry. BMC Bioinform. 2011, 12, 392. 

26. Koelmel, J.P.; Kroeger, N.M.; Gill, E.L.; Ulmer, C.Z.; Bowden, J.A.; Patterson, R.E.; Yost, R.A.; Garrett, T.J. 

Expanding Lipidome Coverage Using LC-MS/MS Data-Dependent Acquisition with Automated Exclusion 

List Generation. J. Am. Soc. Mass Spectrom. 2017, 28, 908–917. 

27. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, 

visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. 

28. Olivon, F.; Grelier, G.; Roussi, F.; Litaudon, M.; Touboul, D. MZmine 2 Data-Preprocessing To Enhance 

Molecular Networking Reliability. Anal. Chem. 2017, 89, 7836–7840. 

29. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards 

more transparent and integrative metabolomics analysis. Nucleic. Acids Res. 2018, 46, W486–W494. 

30. Ulmer, C.Z.; Koelmel, J.P.; Ragland, J.M.; Garrett, T.J.; Bowden, J.A. LipidPioneer : A Comprehensive User-

Generated Exact Mass Template for Lipidomics. J. Am. Soc. Mass Spectrom. 2017, 28, 562–565. 

31. Joyce, J. Bayes’ Theorem. In The Stanford Encyclopedia of Philosophy; Zalta, E.N., Ed.; Metaphysics 

Research Lab, Stanford University, 2003. Available online: https://plato.stanford.edu/entries/bayes-

theorem/ (accessed on 7 March 2020).  

32. Hutchins, P.D.; Russell, J.D.; Coon, J.J. LipiDex: An Integrated Software Package for High-Confidence Lipid 

Identification. Cell Syst. 2018, 6, 621–625. 

33. Xu, F.; Zou, L.; Lin, Q.; Ong, C.N. Use of liquid chromatography/tandem mass spectrometry and online 

databases for identification of phosphocholines and lysophosphatidylcholines in human red blood cells. 

Rapid Commun. Mass Spectrom. 2009, 23, 3243–3254. 

34. Gathungu, R.M.; Larrea, P.; SniatynskI, M.J.; Marur, V.R.; Bowden, J.A.; Koelmel, J.P.; Starke-Reed, P.; 

Hubbard, V.S.; Kristal, B.S. Optimization of ESI-Source Parameters for Lipidomics Reduces Misannotation 

of In-Source Fragments as Precursor Ions. Anal. Chem. 2018, 90, 13523–13532. 

35. Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, 

S.; Peroni, O.D.; et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-

inflammatory effects. Cell 2014, 159, 318–332. 

36. Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides 

from animal tissues. J. Biol. Chem. 1957, 226, 497–509. 

37. Sartain, M.; Salcedo, J.; Murali, A.; Li, X.; Stow, S.; Koelmel, J. Improving Coverage of the Plasma Lipidome 

Using Iterative MS/MS Data Acquisition Combined with Lipid Annotator Software and 6546 LC/Q-TOF. 

Agilent Application Note 2019, 5994–0775en. Available online: 

https://www.agilent.com/cs/library/applications/application-6546-q-tof-lipidome-5994-0775en-agilent.pdf 

(accessed on 7 March 2020). 

 

 

©  2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


