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Abstract: River corridor metabolomes reflect organic matter (OM) processing that drives aquatic 
biogeochemical cycles. Recent work highlights the power of ultrahigh-resolution mass spectrometry 
for understanding metabolome composition and river corridor metabolism. However, there have 
been no studies on the global chemogeography of surface water and sediment metabolomes using 
ultrahigh-resolution techniques. Here, we describe a community science effort from the Worldwide 
Hydrobiogeochemistry Observation Network for Dynamic River Systems (WHONDRS) consortium 
to characterize global metabolomes in surface water and sediment that span multiple stream orders 
and biomes. We describe the distribution of key aspects of metabolomes including elemental 
groups, chemical classes, indices, and inferred biochemical transformations. We show that 
metabolomes significantly differ across surface water and sediment and that surface water 
metabolomes are more rich and variable. We also use inferred biochemical transformations to 
identify core metabolic processes shared among surface water and sediment. Finally, we observe 
significant spatial variation in sediment metabolites between rivers in the eastern and western 
portions of the contiguous United States. Our work not only provides a basis for understanding 
global patterns in river corridor biogeochemical cycles but also demonstrates that community 
science endeavors can enable global research projects that are unfeasible with traditional research 
models. 

Keywords: environmental metabolomics; river corridor; sediment organic matter; WHONDRS; 
CONUS; carbon character; dissolved organic matter 

 

1. Introduction 

Organic matter (OM) transformations in aquatic ecosystems are a critical source of uncertainty 
in global biogeochemical cycles [1–4]. More than half of OM inputs to freshwater ecosystems are 
metabolized before reaching the oceans [1,2,4], yet while several studies have focused on quantifying 
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OM uptake and export rates [1,5,6], the processes driving river corridor OM transformations across 
spatial scales remain poorly understood. 

River corridor OM pools contain an extensive variety of molecules that are both produced and 
metabolized by microorganisms, which are processes reflected in the composition of sediment and 
surface water metabolomes [2,7,8]. Metabolic transformations of OM in freshwater ecosystems have 
been traditionally estimated by a combination of laboratory incubations and in-stream tracer 
additions [9–12]. However, results from incubation experiments are challenging to scale beyond 
laboratory conditions [9,10], and in-stream tracer processing often does not reflect ambient 
biogeochemical processes, as the naturally occurring metabolome is more chemically diverse than 
the tracer added to the stream [11,12]. Several studies have shown that OM pool composition can 
influence microbial activity, highlighting complexities in the metabolic processes that determine OM 
transformations [13–18]. Consequently, determining mechanisms underlying river corridor 
metabolome composition at a large scale remains challenging. 

Environmental metabolomics uses the identification of small molecules in an organism 
(metabolites) to characterize the interactions of organisms within their environment [19]. Over the 
past several years, this definition has been extended to encompass all metabolites present in complex 
environmental systems for which it is difficult to attribute specific metabolites to specific organisms 
[20–24]. Different metabolomic techniques have been implemented across fields to enhance our 
understanding of microbial communities [25,26], anthropogenic activities and pollution sources [27–
29], and potential bioremediation strategies [30]. Recently, environmental metabolomics, enabled by 
ultrahigh-resolution mass spectrometry, has allowed us to reveal connections between OM character, 
reactivity, and biochemical transformations within and across river ecosystems [15,17,18,31–35]. 
These advances have vastly improved our understanding of the mechanisms governing OM 
bioavailability and biochemical transformations at a global scale. For instance, previous studies have 
used ultrahigh-resolution metabolomics from river water across different climatic regions to find 
common compositional features that would inform global carbon dynamics [36] and to investigate 
environmental drivers affecting OM composition, bioavailability, and transport of OM [37]. In 
addition, recent studies show that OM thermodynamics influence aerobic respiration under carbon-
limited scenarios [16], that biogeochemical hotspots are influenced by OM nitrogen content [17], and 
that hyporheic zone mixing induces OM metabolism via a priming effect [15]. These detailed 
metabolome characterizations have the potential to enable global-scale inferences about watershed 
features (e.g., vegetation, lithology, hydrology, microbiology, climate) that govern the reactivity and 
fate of OM across river corridors [35,38]. In turn, metabolomics can enhance our predictive 
capabilities of global river corridor biogeochemical cycles by helping to improve the representation 
of biochemical mechanisms in numerical models, such as reactive transport codes [39,40]. For 
example, an emerging substrate-explicit model uses thermodynamic theory to explicitly account for 
the chemical composition of all metabolites in OM pools to improve the predictive capacity of 
biogeochemical models [40]. 

Characterizing metabolomes across global spatiotemporal scales requires a way to collect 
multiple data types across diverse locations in such a way that they can be analyzed together. This 
goal can be facilitated by a framework that requires studies to Integrate biological, physical, and 
chemical processes across scales; Coordinate with consistent methods; be Open across the research 
lifecycle; and Network with global collaborators to reduce the burden on a single team (ICON) 
[41,42]. When ICON principles are applied, they allow for distributed sampling in ways that have 
historically been difficult to achieve. 

The Worldwide Hydrobiogeochemistry Observation Network for Dynamic River Systems 
(WHONDRS) is a global consortium of researchers based out of Pacific Northwest National 
Laboratory that uses an ICON-based approach to understand coupled hydrologic, biogeochemical, 
and microbial functions in river corridors [35]. ICON principles allow WHONDRS to collect open, 
globally distributed data through collaboration with the scientific community. The WHONDRS 
consortium designs sampling campaigns that target specific spatial and temporal scales, modifies its 
approach based on community input, and then sends free sampling kits to collaborators. All 
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WHONDRS data are openly accessible through Environmental Systems Science Data Infrastructure 
for a Virtual Ecosystem (ESS-DIVE-https://data.ess-dive.lbl.gov/) and the National Center for 
Biotechnology Information (NCBI), and the WHONDRS consortium ascribes to FAIR data principles 
(findable, accessible, interoperable, reusable) [43]. This approach enables WHONDRS to collect, 
analyze, and distribute ultrahigh-resolution metabolomic data to the global scientific community. 

Here, we describe a community science effort conducted by the WHONDRS consortium during 
July-August 2019 that used Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-
MS) to characterize metabolomes in global surface water and sediment spanning a range of biomes 
(e.g., desert-like in the Columbia Plateau, subtropical in southern Florida, temperate forests in the 
Mid-Atlantic) and stream orders [44]. We describe key metabolome characteristics of surface water 
and sediment and also explore spatial variation of these characteristics within the United States. We 
focus on central aspects of metabolomes including assigned elemental groups, chemical classes, 
descriptor indices, and biochemical transformations. This paper provides a benchmark for studying 
integrated surface water and sediment river corridor metabolomes and highlights the need to engage 
a wider scientific community in order to expand the reach and impact of scientific advancements. 

2. Results and Discussion 

2.1. Surface Water Metabolome is More Unsaturated, Aromatic, Oxidized, Rich, and Variable than Sediment 
Metabolome 

In order to assess patterns in global metabolome composition, we derived a number of 
descriptive metrics that summarize FTICR-MS metabolomic profiles. Specifically, we compared 
double-bond equivalents (DBE), modified aromaticity index (AIMod), nominal oxidation state of 
carbon (NOSC), inferred chemical classes (e.g., lignin-like, protein-like), and elemental groups (e.g., 
CHO, CHON, CHOSP) of surface water and sediment metabolomes. The double-bond equivalent 
metric (DBE) describes the degree of chemical unsaturation of bonds in a particular metabolite [45,46], 
AIMod quantifies the degree of aromaticity (i.e., ring-like shape) of a metabolite [45–47], and NOSC 
indicates the energy required to oxidize different metabolomes [48]. High values of AIMod can denote 
the existence of either aromatic (AIMod > 0.5) or condensed aromatic structures (AIMod ≥ 0.67), and high 
DBE indicates more saturated compounds. NOSC is inversely correlated with the Gibbs free energy 
of carbon oxidation. Higher NOSC corresponds to metabolites that are more oxidized and 
thermodynamically favorable [15–18,48,49]. Chemical class assignments for each metabolite were 
predicted using oxygen-to-carbon and hydrogen-to-carbon ratios (i.e., Van Krevelen classes [50]). 
Finally, we used the molecular formula assigned to each metabolite to describe the relative 
abundance of different heteroatom combinations associated with CHO groups (i.e., differences in -
N, -S and/or -P). We then compared metrics across all metabolites found in any surface water sample 
vs. all metabolites found in any sediment sample. All analyses in Section 2.1 were conducted only on 
FTICR-MS peaks that were able to be assigned a molecular formula. Other metrics describing 
metabolome composition are reported in the SI (Table S1). 

Surface water metabolomes were composed of comparatively more unsaturated and aromatic 
compounds with a higher nominal oxidation state than sediment. This was denoted by significantly 
higher AIMod, DBE, and NOSC than sediment metabolomes (Figure 1, p-value < 0.001). In addition, we 
observed higher relative abundances of lignin-like, tannin-like, and condensed-hydrocarbon-like 
metabolites in surface water versus sediment (Figure 2, all p-values < 0.001). These classes of 
metabolites are characteristic of terrestrial OM [51], and their prevalence in surface water 
metabolomes indicates a larger contribution of terrestrial OM in surface water relative to sediment. 
This may also indicate greater contributions of microbially processed OM in sediment, as has been 
observed previously in comparisons between surface water and hyporheic zone porewater [15, 52]. 
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Figure 1. Density plots comparing the properties of all molecular formulas found in surface water 
and sediment samples. AIMod (modified aromaticity index) is a measure of the potential ring-like 
structure in a given molecular formula. DBE (double-bond equivalents) is an approximation of 
potential unsaturation. NOSC (nominal oxidation state of carbon) represents the degree of 
oxidation/reduction of a given molecular formula. Significance values obtained via a two-sided 
Mann–Whitney U test to compare sample type distributions are denoted in the upper right corner of 
each panel. 

The higher relative abundance of unsaturated and aromatic metabolites in surface water 
contrasts with previous studies that have observed that these compounds are more common in 
sediment porewater than in lake surface water or aquifer recharge water [53,54]. These studies 
inferred low physical, chemical, and/or biological transformation of sediment porewater associated 
OM. This deviation might be connected to the systems studied. For example, Pracht et al. [53] 
examined a system where sediment OM was protected due to physical and/or chemical constraints 
such as mineral sorption and hydrophobic encapsulation [53]. We studied rivers where the shallow 
benthic layer and the hyporheic zone are known to enhance biogeochemical reactions [55–59]. In turn, 
we hypothesize that very high rates of biological activity in riverbed sediment [60,61] could be 
responsible for lower AIMod, DBE, and NOSC values of sediment metabolomes relative to surface 
water, in contrast to previous work in potentially less active lake and aquifer systems.  
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Figure 2. Box plots comparing the relative abundances of metabolites belonging to specific elemental 
groups (a) and chemical classes (b) between sediment and surface water. As in Figure 1, these values 
were obtained from all metabolites assigned molecular formulas in sediment and surface water. 
Significance values were obtained via a two-sided Mann–Whitney U test (0.05 > * > 0.01 > ** > 0.001 > 
***). 

In addition, the relative abundances of lipid-like and protein-like metabolites were significantly 
higher in sediment than in surface water (p-value < 0.001). More lipid-like compounds in sediment 
could reflect higher microbial biomass [62] and further supports our inference that sediment 
metabolomes were influenced by microbial processes to a greater extent than surface water 
metabolomes. This highlights the key role played by riverbed sediment and associated hyporheic 
zones in river corridor biogeochemistry that likely influences global elemental cycles but is not 
captured in current Earth system models.  

Conversely, elemental groups of metabolites were similar across surface water and sediment. 
The median abundance of each elemental group did not vary more than 5% between the two 
environments, except for CHO (~9%) and CHONSP (~0.2%, not statistically significant) groups. Bulk 
similarities in elemental groups, in contrast to chemical classes, could indicate that the presence or 
absence of heteroatoms alone is insufficient to distinguish metabolomes and that elemental 
stoichiometry of the entire metabolite (the basis for chemical class assignment) may be more 
important for distinguishing metabolomes. This is important because the elemental stoichiometry of 
metabolites can mechanistically connect OM thermodynamics to biogeochemical reactions and rates 
[40]. 

Metabolites found in surface water were distinct from and showed more among-sample 
variation than those in sediment. To evaluate compositional differences, we conducted a principal 
component analysis (PCA) and a beta-dispersion analysis (Figure 3). For consistency with prior 
analyses in this section, we present a PCA on only peaks assigned a molecular formula in Figure 3. 
When performed on all peaks, regardless of formula assignment, PCA results were consistent with 
Figure 3 (Figure S1, Table S2). The PCA, in conjunction with a PERMANOVA comparison, indicated 
that surface water and sediment metabolomes significantly diverged in composition (p-value < 0.001). 
Loadings for PC1 and PC2 are presented in Table S3. In general, the loadings suggest that many 
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metabolites contributed to the separation between surface water and sediment metabolomes (PC1), 
while CHON-containing metabolites primarily drove variability in surface water metabolomes 
(PC2). The beta-dispersion analysis further indicated that surface water metabolomes were more 
dispersed in multivariate space than sediment metabolomes (Figure 3; p-value < 0.001). Additionally, 
surface water metabolomes had higher richness (i.e., more peaks with assigned formulas detected on 
average) than sediment metabolomes (Figure 1). These patterns indicate that metabolomes in surface 
water and sediment may be shaped by distinct processes that likely span differences in inputs, rates 
of microbial activity, and abiotic constraints. 

We hypothesize that higher richness and greater among-sample variation in surface water 
metabolomes could reflect more heterogeneous environmental pressures. For example, we sampled 
across a broad range of latitudes and stream orders that likely led to among-site variation in light 
exposure (Table S4 [44]). This may, in turn, have led to variation in surface water temperatures and 
surface water metabolite photodegradation, thereby increasing metabolome variability and richness 
[63]. Hydrology could also contribute to metabolome richness in surface water as precipitation events 
and associated runoff transport large amounts of terrestrial OM into rivers [64]. For example, 
precipitation has been shown to increase aromatic OM and decrease more labile OM in surface water 
[65–67]. We hypothesize that more immediate connectivity between surface water and terrestrial 
systems, relative to connectivity between sediment and terrestrial systems, is at least partially 
responsible for greater variation and higher richness in surface water metabolomes.  

In addition, lower sediment metabolome variation and richness could be due to comparatively 
higher rates of microbial activity in sediment that degrade polymeric OM into a limited set of less 
chemically complex metabolites. This would result in a reduction in the number of distinct 
metabolites present by collapsing a diverse pool of OM into microbial exudates. Sediment 
metabolomes may also be constrained by interactions with sediment mineral surfaces, especially 
considering that we studied only the water-extractable metabolome. This subset of the full sediment 
metabolome may inherently be composed of a restricted suite of metabolites [68], leading to lower 
among-sample variation and lower richness. We nonetheless hypothesize that among-site variation 
in mineralogy could contribute to some of the observed sediment metabolome variation. The 
WHONDRS consortium is currently generating mineralogy data to test this hypothesis.  

Together, the observations presented in this section indicate that there are significant differences 
across global surface water and sediment metabolomes, where surface water metabolomes are more 
unsaturated, aromatic, oxidized, rich, and variable. These characteristics suggest that surface water 
metabolomes are more dynamic due to a variety of watershed and river corridor processes (discussed 
above), while sediment metabolomes may be more stable integrators of localized processes (e.g., 
mineral interactions and microbial processing of OM). 
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Figure 3. Principal component analysis (PCA) of the molecular formula data (a). Differences between 
surface water and sediment metabolomes were significant per a Euclidean distance-based 
PERMANOVA (p-value < 0.001). The degree of among-sample variation was evaluated by 
quantifying beta-dispersion. Surface water had higher beta-dispersion per a two-sided Mann–
Whitney U test (p-value < 0.001) (b). 

2.2. Nitrogen-, Sulfur- and Phosphorous-Containing Transformations Vary Across Surface Water and 
Sediment Metabolomes 

We evaluated how potential reactions in metabolomes varied across the globe by inferring 
biochemical transformations as per Bailey et al. [62], Kaling et al. [69], Moritz et al. [70], Graham et 
al. [17,18], Garayburu-Caruso et al. [16], Danczak et al. [38], and Stegen et al. [15]. This method 
leverages the ultrahigh-resolution of FTICR-MS to compare mass differences between detected peaks 
to a database of common biochemical transformations. Identified biochemical transformations 
provide information regarding the frequency at which a specific molecule could have been gained or 
lost during metabolism. Resulting transformation counts can then be separated based upon their 
chemical properties to study the potential role of the molecule gained or lost in metabolome 
composition. Unlike the analyses described in the previous section, where formula assignments of 
metabolites are necessary, this method allows for the incorporation of all detected metabolites into 
downstream analyses. 

We observed that biochemical transformations involving molecules containing nitrogen (N), 
sulfur (S), or phosphorous (P) exhibited divergent patterns between surface water and sediment 
metabolomes (Figure 4). Specifically, surface water had a significantly higher relative abundance of 
N-containing transformations, while sediment metabolomes had more S- and P-containing 
transformations (p-value < 0.001 in all cases). This contrast between surface water and sediment may 
occur due to variation in nutrient requirements within the water column and sediment, as 
biochemical transformations have been inferred to reflect nutrient limitations in other systems. For 
example, Garayburu-Caruso et al. [16] found an increase in N-containing transformations under 
nutrient-limited conditions, but only when N-containing OM was introduced. More N-containing 
transformations in surface water as compared to sediment could therefore reflect microbial N mining 
in surface water through the preferential decomposition of N-containing OM [71,72]. In addition, a 
higher abundance of P- and S-containing biochemical transformations in sediment further suggest 
that microbial metabolism is limited by different factors between surface water and sediment 
environments, which are potentially associated with nutrient assimilation processes [73,74].  
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Figure 4. Boxplots displaying the patterns of CHO-only transformations (a); N-containing 
transformations (b); S-containing transformations (c); and P-containing transformations (d). False 
discovery rate (FDR)-corrected two-sided Mann-Whitney U test p-values are provided in either the 
top right or the bottom left corner of panels with significant comparisons. 

Interestingly, the higher abundance of N-containing transformations in surface water observed 
in this study is contrary to past work, where porewater had a higher relative abundance of N-
containing transformations than surface water [15,38]. Given that these studies were collected from 
the Pacific Northwest region of the United States (e.g., eastern Washington and Oregon), this 
highlights the necessity to expand research beyond individual test systems or geographic regions and 
emphasizes the utility of global studies through efforts like WHONDRS. 

In contrast, biochemical transformations that did not involve N-, S-, or P-containing molecules 
were not significantly different between surface water and sediment metabolomes. Similar patterns 
have been observed in other studies [38]. These results indicate the presence of ubiquitous 
biochemical transformations that occur in both surface water and sediment (Figure 4). Based on these 
results, we hypothesize that N-, S-, and P-containing transformations may have a stronger 
dependency than CHO-only transformations on nutrient status. That is, changes in nutrient 
availability across surface water and sediment environments may drive shifts in N-, S-, and/or P-
containing transformations but not influence transformations that do not involve these nutrients. 
Additional data on variation in nutrient limitation and availability will be required to test this 
hypothesis. 
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2.3. Sediment Metabolomes are More Spatially Variable Than Surface Water Metabolomes 

Because most of our sampling locations were in the contiguous United States (CONUS), we used 
CONUS data to resolve potential spatial patterns in metabolomes (Figures 5 and 6). In order to 
uncover site-by-site metabolomic variation, we calculated the mean value for each derived metric 
(e.g., AIMod, NOSC, DBE) and calculated the relative abundance of elemental groups and chemical 
classes (e.g., CHO and lignin-like) for each sample. 

Overall, differences between the mean properties of CONUS surface water and sediment 
metabolomes were generally consistent with differences between global surface water and sediment 
metabolomes reported in Figure 1. For instance, surface water metabolomes displayed higher AIMod, 
DBE, and NOSC than sediment metabolomes (Figure 5, p-value < 0.001 for all, Table S5). We also 
observed similar patterns in both the relative abundances of specific elemental groups (Figure 6, p-
value < 0.001 for all, Table S5) and chemical classes (p-value < 0.001 for all, Table S5 and File S1). In 
order to expand our analyses, we investigated spatial patterns in individual metabolomic features 
across the CONUS by comparing sites that were east (hereafter “East”, surface water n = 34, sediment 
n = 33) vs. west (hereafter “West”, surface water n = 45, sediment n = 38) of the Mississippi River. 

 

 
Figure 5. Maps of the United States revealing the spatial variability of average NOSC in sediment (a) 
and surface water (b) metabolomes. East vs. West spatial patterns for various derived metrics are 
displayed in panel (c). Statistically significant differences identified via a two-sided Mann–Whitney 
U test are indicated by p-values listed in each comparison. The red dashed line represents the 
longitude of the Mississippi River at St. Louis, MO, USA—the dividing line between East and West 
samples. 

In general, we observed greater spatial patterning in sediment metabolomes than in surface 
water metabolomes. Average NOSC and AIMod values of sediment metabolomes were higher in the 
East than in the West (p-value < 0.001 for both). Metabolites containing CHONP, CHONS, or CHOSP 
constituted a significantly lower relative abundance of metabolomes in the East sediment, relative to 
the West (p-value < 0.001 for all). Lastly, lignin- and tannin-like metabolites constituted a higher 
relative abundance of sediment metabolomes in the East, while protein-, condensed-hydrocarbon-, 
and unsaturated-hydrocarbon-like metabolites were more abundant in the West (p-value < 0.001 for 
all, Table S5 and File S1). 
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In contrast to spatial patterns in sediment metabolomes, surface water showed less spatial 
structure with only CHO and CHOS metabolites showing significant shifts between East and West 
(p-value < 0.001 for both). CHO and CHOS metabolites comprised higher and lower relative 
abundances in the West than in the East, respectively (Figure 6). No spatial patterns were observed 
in NOSC (p-value = 0.4, Table S5), DBE (p-value = 0.07, Table S5), or AIMod (p-value = 0.93, Table S5) in 
surface water (Figure 5). Results from the remainder of molecular indices, elemental groups, and 
chemical class comparisons are shown in Table S5 and File S1. 

 

 
Figure 6. Maps of the United States revealing the spatial variability of the relative abundance of 
metabolites containing only CHO with sediment (a) and surface water (b); East vs. West spatial 
patterns for different elemental groups’ relative abundances are displayed in panel (c). Statistically 
significant differences identified via a two-sided Mann–Whitney U test are indicated by p-values 
listed in each comparison. The red dashed line represents the longitude of the Mississippi River at St. 
Louis, MO, USA—the dividing line between East and West samples. 

Together, these patterns suggest that spatial differences in the metabolic processes driving OM 
cycling in the East versus the West have a stronger influence on sediment metabolomes than surface 
water metabolomes. While our non-spatial analyses showed greater among-sample and among-site 
variability in surface water metabolomes (Figure 3), the lack of spatial structure across the CONUS 
suggests that this variability is not driven by factors that are spatially structured at the continental 
scale. Instead, we hypothesize that surface water metabolomes are more temporally variable due to 
fluctuating inputs from precipitation events. To more directly evaluate spatial structure in surface 
water metabolomes, it is likely necessary to control for precipitation history and hydrologic 
connectivity to terrestrial systems. These inferences are supported by previous studies addressing 
spatial dissolved OM chemography dynamics showing that longitudinal patterns of dissolved OM 
in surface water are sensitive to hydrologic events [75–77]. However, there is a complex interaction 
between hydrology and space, as the sources and quality of OM from different regions may respond 
differently to hydrological variation [78].  

The contrasting patterns in surface water and sediment metabolome characteristics across the 
East-West gradient could be the result of many factors, including vegetation cover [79], underlying 
lithology [80], photoreactivity [63], climate and precipitation regime [80], and/or microbial 
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metabolism [81]. Additional data and analyses will be required to disentangle the relative 
contributions of these potential drivers. Pursuing this knowledge is important for explaining and 
ultimately predicting OM transformations. In turn, representing these processes and their impacts on 
biogeochemical cycles in processed-based models has the potential to improve the accuracy of 
biogeochemical predictions across the globe. 
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3. Materials and Methods 

3.1. WHONDRS Summer 2019 Sampling Campaign 

In July and August 2019, the WHONDRS consortium initiated a study of global river corridors 
to evaluate interactions between ecosystem features, microbial communities, and metabolomes in 
surface water and shallow sediments. To design the study, the WHONDRS consortium held multiple 
webinars with collaborators who volunteered to collect samples. The webinars allowed for 
community input on sampling protocol and data collected. More details are available at 
https://whondrs.pnnl.gov. 

Briefly, WHONDRS developed sampling protocols and videos in coordination with the scientific 
community that were made openly available via YouTube, sent free sampling kits to collaborators, 
and conducted a suite of biogeochemical analyses on surface water and sediment. All data will be 
made open access following QA/QC at https://data.ess-dive.lbl.gov/. Preliminary data are available 
on a Google Drive linked via https://whondrs.pnnl.gov as they become available. 

The 2019 study collected samples and metadata associated with stream order, climate, 
vegetation, and geomorphological features from 97 river corridors in 8 countries within a 6-week 
period, from 29 July to 19 September (Table S4, [44]). Stream order information (Table S4) was 
acquired for sites within the continental United States through the EPA National National 
Hydrography Dataset Plus (https://www.epa.gov/waterdata/nhdplus-national-hydrography-
dataset-plus), and stream orders for a couple of Canada sites were acquired through British Columbia 
Data Catalogue (https://catalogue.data.gov.bc.ca/dataset/75299593-3222-40f9-879f-29e9824fc978). 
Stream orders indicate the relative size of a stream [82]. The data provided in the SI were calculated 
following Strahler’s definition of stream order [83]. This is estimated based on the size of its 
tributaries; for example, if two 1st order streams come together, they will form a 2nd order stream. 
Lower stream orders tend to be small tributaries or headwaters, while large stream orders are often 
major rivers [82,83]. 

This paper focuses on surface water (95 sites) and sediment (78 sites) collected across biomes 
(i.e., desert, tropical, temperate forests), from which a total of 504 samples were analyzed. Toyoda et 
al. [44] provide additional metadata associated with specific site characteristics (e.g., 
hydrogeomorphology, vegetation, temperature, discharge). 

3.2. Sample Collection and Laboratory Pre-Processing 

At each location, collaborators selected sampling sites within 100 m of a station that measured 
river discharge, height, or pressure. Within each site, 3 depositional zones were identified for 
sediment collection following NEON’s protocol (NEON.DOC.001193; [84]) and labeled as upstream, 
midstream, or downstream. The depositional zones were situated within 10 m of each other. Surface 
water was sampled in triplicate prior to sediment sampling. Surface water was collected only at the 
downstream site before collecting the sediments to make sure the water collected was not affected by 
sediment debris mobilized during water or sediment sampling at upstream locations. Sediments 
were collected from all three zones, where each zone provided a biological replicate of a sediment 
sample. 

Surface water was collected using a 60 mL syringe and was filtered through a 0.22 μm sterivex 
filter (EMD Millipore) into a 40 mL glass vial (I-Chem amber VOA glass vials; ThermoFisher, pre-
acidified with 10 μL of 85% phosphoric acid). Subsequently, 125 mL of surface sediments (1–3 cm 
depth) were sampled from a ~1m2 area at each depositional zone with a stainless steel scoop, making 
sure the sediments were saturated upon collection. All samples were shipped to Pacific Northwest 
National Laboratory on blue ice within 24 h of collection. 

Surface water samples were immediately frozen at −20 °C upon receiving. Sediments from each 
depositional zone were individually sieved to <2 mm, subsampled into proteomic friendly tubes 
(Genesee Scientific), and stored at −20 °C for FTICR-MS analysis.  
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3.3. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) 

Surface water samples were thawed in the dark at 4 °C for 72 h. Non-purgeable organic carbon 
(NPOC) was determined using a 5 mL aliquot of the acidified water sample by a Shimadzu 
combustion carbon analyzer TOC-L CSH/CSN E100V with ASI-L autosampler. NPOC concentrations 
(Table S6) were normalized to 1.5 mg C L⁻¹ across all samples to allow for data comparison across 
sites within this study and other WHONDRS sampling campaigns. Diluted samples were acidified 
to pH 2 with 85% phosphoric acid and extracted with PPL cartridges (Bond Elut), following Dittmar 
et al. [85]. 

Sediment samples were thawed overnight in the dark at 4 °C. Then, sediment organic matter 
was extracted in proteomic friendly tubes (Genesee Scientific) with a 1:2 ratio of sediment to water (5 
g of sediment to 10 mL of milli-Q water). During the extraction, tubes were continuously shaken in 
the dark at 375 rpm and 21 °C for 2 h, after which the tubes were centrifuged at 6000 rcf and 21 °C for 
5 min. The supernatant was collected and filtered through 0.22 μm polyethersulfone membrane filter 
(Millipore Sterivex, USA) into borosilicate glass vials. NPOC (Shimadzu combustion carbon analyzer 
TOC–Vcsh with ASI–V autosampler) was determined using a 5 mL aliquot from the filtered 
supernatant. As with the water samples, this supernatant was normalized to a standard NPOC 
concentration (Table S4) of 1.5 mg C L−1, acidified to pH 2 with 85% phosphoric acid, and extracted 
with PPL cartridges following the same methods described above. 

A 12 Tesla (12 T) Bruker SolariX Fourier transform ion cyclotron mass spectrometer (FTICR-MS; 
Bruker, SolariX, Billerica, MA, USA) located at the Environmental Molecular Sciences Laboratory in 
Richland, WA, was used to collect ultrahigh-resolution mass spectra of surface water and sediment 
OM pools. Resolution was 220 K at 481.185 m/z. The FTICR-MS was outfitted with a standard 
electrospray ionization (ESI) source, and data were acquired in negative mode with the voltage set to 
+4.2 kV. The instrument was externally calibrated weekly to a mass accuracy of <0.1 ppm; in addition, 
the instrument settings were optimized by tuning on a Suwannee River Fulvic Acid (SRFA) standard. 
Data were collected with an ion accumulation of 0.05 sec for surface water and 0.1 or 0.2 sec for 
sediment from 100–900 m/z at 4 M. One hundred forty-four scans were co-added for each sample and 
internally calibrated using an OM homologous series separated by 14 Da (–CH2 groups). The mass 
measurement accuracy was typically within 1 ppm for singly charged ions across a broad m/z range 
(100 m/z–900 m/z). BrukerDaltonik Data Analysis (version 4.2) was used to convert raw spectra to a 
list of m/z values by applying the FTMS peak picker module with a signal-to-noise ratio (S/N) 
threshold set to 7 and absolute intensity threshold to the default value of 100. We aligned peaks (0.5 
ppm threshold) and assigned chemical formulas using Formularity [86]. The Compound 
Identification Algorithm in Formularity was used with the following criteria: S/N > 7 and mass 
measurement error <0.5 ppm. This algorithm takes into consideration the presence of C, H, O, N, S, 
and P and excludes other elements. 

It is important to note that FTICR-MS is not quantitative and does not provide information about 
the structure of the molecular formulas identified. This method provides a non-targeted approach to 
reliably identify molecular formulas of organic metabolites with masses between 200–900 m/z. The 
power of FTICR-MS is that it can capture thousands of metabolites simultaneously in contrast to other 
global environmental metabolomics techniques that yield less information. A key consideration with 
FTICR-MS-derived information is that it captures all ionizable organic molecules and thus is source-
agnostic (e.g., not all detected compounds are guaranteed to be biologically derived). Hence there is 
a tradeoff of depth vs. specificity in metabolomics methods, and FTICR-MS sacrifices some specificity 
for depth. In addition, the sediment-water extractions performed in this study provide chemical 
selectivity towards water-extractable OM. Although water-soluble OM in the sediments is the 
primary interest of this study, the extraction method has the potential to bias towards the most labile 
pool of the sediment OM and can also extract a higher abundance of carbohydrates when compared 
to other solvents [68]. 
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3.4. FTICR-MS Data Analysis 

All FTICR-MS analyses were performed using R v4.0.0 [87], and all plots were generated using 
the ggplot2 package (v3.2.2) [88]. The R package “ftmsRanalysis” [89] was used to (1) remove peaks 
outside of a high confidence m/z range (200 m/z–900 m/z) and/or with a 13C isotopic signature; (2) 
calculate molecular formula properties (i.e., Kendrick defect, double-bond equivalent, modified 
aromaticity index, nominal oxidation state of carbon, standard Gibbs Free Energy of carbon 
oxidation); and (3) to determine to which chemical class a given metabolite belonged [45,46,48,50]. 
Using “ftmsRanalysis” [75] data outputs, we can obtain the central aspects of metabolomes 
investigated in this study, where elemental groups are categorized by the combination of elemental 
atoms present in each metabolite with molecular formula identified (e.g., CHO, CHON, CHOSP). The 
double-bond equivalent metric (DBE) describes the degree of chemical unsaturation of bonds in a 
particular metabolite [45,46], the modified aromaticity index (AIMod) quantifies the degree of 
aromaticity (i.e., ring-like shape) of a metabolite [45–47], and NOSC indicates the energy required to 
oxidize different metabolomes [48]. High values of AIMod can denote the existence of either aromatic 
(AIMod > 0.5) or condensed aromatic structures (AIMod≥ 0.67), and high DBE indicates more saturated 
compounds. NOSC is inversely correlated with the Gibbs free energy of carbon oxidation. Higher 
NOSC corresponds to metabolites that are more oxidized and thermodynamically favorable [15–
18,48,49]. Chemical class assignments for each metabolite were predicted using oxygen-to-carbon and 
hydrogen-to-carbon ratios (i.e., Van Krevelen classes [50]).  

In order to evaluate bulk variation across sample types, a Mann–Whitney U test (wilcox.test) with 
a false discovery rate (FDR) p-value adjustment (p.adjust) was used to evaluate the divergence in 
molecular properties of all metabolites with molecular formulas assigned (46.08% of the total 95,681 
peaks) present in either surface water or sediment. Differences in elemental group and chemical class 
relative abundances within samples between surface water and sediment were evaluated using the 
same approach. A principal component analysis (PCA; prcomp) was used to visualize differences 
between surface water and sediment metabolomes after a presence/absence transformation. A 
Euclidean distance matrix was obtained (vegdist, vegan package v2.5-6) and evaluated using a 
PERMANOVA (adonis, vegan package v2.5-6) in order to assess multivariate differences between 
sample types [90]. Inter-sample type variability was evaluated using the same Euclidean distance 
matrix in a beta-dispersion analysis (betadisper, vegan package v2.5-6); divergence in distance to 
centroid values was then evaluated using a Mann–Whitney U test [90].  

To determine CONUS-scale patterns, sites were divided into eastern and western US based on 
their position relative to the location of the Mississippi River at St. Louis, Missouri. Replicates at each 
site were merged such that if a metabolite was observed in one replicate, it was considered present 
at the site. Given that FTICR-MS samples typically have less than 100% reproducibility [91,92], we 
considered a metabolite to be present in a sample if it was detected in any of the three replicates. This 
allowed us to maximize our detection of metabolites and has been previously employed [38]. Average 
molecular properties were then calculated, and elemental group/chemical class relative abundances 
were determined for each site/sample type combination based upon the metabolites present. This 
resulted in a single value for any given variable in surface water or sediment at a given site. 
Differences between these values across the East vs. West CONUS were then assessed using a Mann–
Whitney U test with FDR correction. Maps were generated using ggplot to visualize spatial variance. 
All maps can be found in File S1. 

3.5. Biochemical Transformation Analysis 

We inferred biochemical transformations in sediment and surface water metabolomes as per 
Bailey et al. [62], Kaling et al. [69], Moritz et al. [70], Graham et al. [17,18], Garayburu-Caruso et al. 
[16], Danczak et al. [38], and Stegen et al. [15] to estimate the gain or loss of specific molecules (e.g., 
glucose, valine, glutamine). Briefly, pairwise mass differences were calculated between every peak 
in a sample and compared to a reference list of 1255 masses associated with commonly observed 
biochemical transformations (i.e., reactions of organic matter, Table S7). It is important to note that a 
molecular formula assignment is not necessary for this method as it allows for the incorporation of 
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all detected metabolites. For mass differences matching to compounds in the reference list (within 1 
ppm), we inferred the gain or loss of that compound via a biochemical transformation. For example, 
if a mass difference between two peaks corresponded to 71.0371, that would correlate to the loss or 
gain of the amino acid alanine, while a mass difference of 79.9662 would correspond to a loss or gain 
of a phosphate. Transformations were separated into 4 different groups based upon their labels: 
CHO-only, N-containing, S-containing, and P-containing. Differences in the relative abundance of 
transformations across samples were identified using a Mann–Whitney U test with FDR correction. 

3.6. Data Availability 

Original and expanded metadata, as well as surface water and sediment data used in this study, 
are publicly available on the Department of Energy data archive site ESS-DIVE [44,93]. All scripts 
used in this study are available on GitHub at 
https://github.com/danczakre/GlobalRiverMetabolomes. 

4. Conclusions 

We leveraged community science facilitated by the WHONDRS consortium to present the first 
ultrahigh-resolution analysis of global river corridor metabolomes of both surface water and 
sediment. Our data showed a strong divergence between surface water and sediment metabolomes, 
consistent with previous work within local systems. Surface water metabolomes were more rich and 
variable and contained more unsaturated and aromatic metabolites than sediment, possibly 
suggesting higher influence from terrestrial inputs or lower microbial processing. Further, surface 
water and sediment metabolomes had a consistent set of core biochemical transformations (CHO-
only) but differed in N-, S-, and P-containing transformations that may be more influenced by 
nutrient limitations. Finally, we hypothesize the presence of systematic, spatially structured drivers 
influencing sediment metabolomes more strongly than surface water, as sediment changed along 
longitudinal patterns within the contiguous United States. 

While there are many potential explanations for these patterns, the publicly available datasets 
being actively compiled by WHONDRS are well-suited for follow-on analyses to identify factors 
underlying metabolome variability. Given that the WHONDRS sampling campaign spanned 1st to 
9th stream orders across multiple biomes (e.g., desert-like in the Columbia Plateau, subtropical in 
southern Florida, temperate forests in the Mid-Atlantic), outcomes of current and future data 
analyses and modeling efforts will enable transferable knowledge that can be applied throughout the 
world. To expand the breadth of questions that can be pursued with the data, WHONDRS is currently 
collecting information pertaining to mineralogy, geochemistry (e.g., anion and total N 
concentrations), microbiology (e.g., metagenomics, metatranscriptomics, flow cytometric cell 
counts), and various remote sensing data types (e.g., vegetation cover). Future questions might, for 
example, involve exploring spatial patterns of metabolomes across stream orders; correlating N-, S-, 
and P-containing transformations with land use, mineralogy, and vegetation; or investigating 
relationships between microbial activity and metabolome composition. We encourage the scientific 
community to explore WHONDRS datasets and combine them with additional data products to 
pursue novel scientific questions at local to global scales and to further engage with and pursue 
science that embodies the ICON principles. 

Supplementary Materials: The following are available online at www.mdpi.com/2218-1989/10/12/518/s1. Table 
S1: This table contains by-sample mean, median, and standard deviation for molecular characteristics (i.e., 
aromaticity index, H:C ratios, etc.; Sheet (1), the number of metabolites belonging to a given elemental group 
(i.e., CHON, CHO; Sheet (2), and the number of metabolites belonging to some compound class (i.e., %lignin-
like, %protein-like, etc.; Sheet (3); Sheet (4), information about how each of the different measurements was 
calculated. Figure S1: Principal component analysis (PCA) performed on all peaks, regardless of formula 
assignment. Table S2: Loadings for PCA performed on all peaks. PC1 loadings on the x-axis are presented in 
Column A, while PC2 loadings on the y-axis are presented in Column B. Table S3: Loadings for PCA performed 
peaks with molecular formula assigned. PC1 loadings on the x-axis are presented in Column A, while PC2 
loadings on the y-axis are presented in Column B. Table S4: This spreadsheet contains meta-data for each site 
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from which samples were collected, including (but not limited to) latitude, longitude, stream order, and 
sampling date. Table S5: This table contains the results of the FDR-corrected, two-sided Mann–Whitney statistics 
performed to evaluate spatial variability across the contiguous United States of America. Table S6: Table of non-
purgeable organic carbon (NPOC) concentrations for surface water and sediment-water extractions. Table S7: 
The file is the database of transformations used in the transformation analysis. The first column represents the 
transformation label, while the second column is the corresponding mass difference. There are two types of 
transformations listed in this file: (1) the gain or loss of the listed molecular formula (e.g., C1H1O1N1), with 
numeric values indicating the number of atoms associated with the element that precedes the numeric value; 
and (2) a substitution reaction denoted by an underscore (e.g., C1H1N1O_1). In the case of a substitution 
reaction, the underscore connects the element lost to the number of atoms lost. For example, C1H1N1O_1 
indicates that a molecule gained C1H1N1 and lost one O atom. Some substitution reactions include multiple 
elements that are lost such that there are multiple underscores. In all cases, an underscore connects the element 
lost to the number of atoms lost. In all cases, atoms are gained if they are not followed immediately by an 
underscore. For example, C_1H_4O2 indicates loss of one C, loss of four H, and gain of two O. If no numeric 
value follows an element, it indicates that there is a gain of a single atom of that element (e.g., CH2 indicates one 
atom of C). File S1: A compressed file containing all of the maps generated during the spatial analysis of the 
contiguous United States of America. 
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