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Abstract: Approaches to the identification of metabolites have progressed from early biochemical
pathway evaluation to modern high-dimensional metabolomics, a powerful tool to identify and
characterize biomarkers of health and disease. In addition to its relevance to classic metabolic
diseases, metabolomics has been key to the emergence of immunometabolism, an important area of
study, as leukocytes generate and are impacted by key metabolites important to innate and adaptive
immunity. Herein, we discuss the metabolomic signatures and pathways perturbed by the activation
of the human immune system during infection and vaccination. For example, infection induces
changes in lipid (e.g., free fatty acids, sphingolipids, and lysophosphatidylcholines) and amino
acid pathways (e.g., tryptophan, serine, and threonine), while vaccination can trigger changes in
carbohydrate and bile acid pathways. Amino acid, carbohydrate, lipid, and nucleotide metabolism
is relevant to immunity and is perturbed by both infections and vaccinations. Metabolomics holds
substantial promise to provide fresh insight into the molecular mechanisms underlying the host
immune response. Its integration with other systems biology platforms will enhance studies of
human health and disease.

Keywords: metabolomics; vaccines; infections; integrative metabolomics; systems biology; diagnosis;
response detection

1. Introduction

Metabolites are small molecules (50 to 1500 Daltons) produced by regulatory mechanisms and
during cellular processes or acquired from exogenous sources, including diet and xenobiotics such
as drugs [1]. The metabolic profile provides a snapshot of the complex interplay between genome,
environment, and intermediary processes [2]. Metabolites play critical roles in biological pathways
and serve as valuable bioindicators of cell physiology [3].

As early as 1955, biochemical research provided the first perspective of a comprehensive cellular
metabolome comprised of ~20 metabolic pathways [4]. As mass spectrometry evolved in the
following decades, it dramatically expanded the range and detail of mapping biochemical charts [2].
“Metabolomics” thus emerged as a new frontier in systems biology [5]. Though this technology is
powerful and comprehensive, the exact set of metabolites it provides depends on the precise technique
employed and its sensitivity and specificity.
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Within the framework of precision medicine and in comparison to other systems biology
approaches such as transcriptomics (e.g., RNASeq) and proteomics, metabolomics provides a nearly
instantaneous snapshot of metabolism. The metabolome rapidly responds to even minor stimulations,
rendering metabolomics a powerful approach to assess quantitative responses to stress [6], nutritional
changes [7], disease states [8], host–pathogen interactions [9], as well as short- and long-term metabolic
effects of infection [10] and vaccination [11]. The multitude of metabolite changes across space and
time and their impact on downstream biological processes produces a complex wealth of data that
requires sophisticated detection methods, separation, and analyses based on molecular characteristics.
Of note, there are still uncharted areas of the metabolome that may be key to the host response to
infection [12–16] and vaccines [17], including the relatively underexamined lipid families assessed via
“lipidomics,” a branch of metabolomics [18].

This review highlights metabolomics as an emerging tool for identifying signatures and pathways
in the host response to infection and vaccination.

2. Metabolomics—An Emerging Tool to Complement Other Systems Immunology Platforms

Systems biology approaches that focus on a single class of molecules, such as transcripts
(transcriptomics) or proteins (proteomics), can provide important but limited understanding of the
biological mechanisms of disease [3]. Their combination with metabolomics provides insights
into complementary and synergistic interactions at different cellular and molecular levels [19].
The integration of multi-omic variables addresses gaps in our current knowledge of disease pathogenesis
and evolution, offers opportunities for early diagnosis, prevention, and potential treatment of disease,
and allows gaining a holistic understanding of a dynamic biological system [20].

Recent systems immunology methodologies have enabled a comprehensive analysis of multiple
immune system features in parallel, as well as the identification of cellular and molecular biomarkers
not previously known to be relevant to immune responses [21]. Multi-omic integration of metabolomics
with other systems biology platforms has enabled the comprehensive characterization of diseases and
the identification of metabolic pathways involved in a range of pathologies, including cancer [22–27],
chronic obstructive pulmonary disease [28], asthma [29,30], and sepsis [31,32]. The use of systems
biology platforms together with metabolomics accelerates biomarker discovery and has been
increasingly incorporated in preclinical study workflows such as those related to nutrition and
diet [33–38]. Targeted metabolite assays, including those for eicosanoids, arginine, and citrulline,
are currently performed for clinical use based on metabolites’ association with immune regulatory
pathways [39–41] and metabolic diseases [42–44]. In addition, there are existing metabolite tests that are
routinely available in the U.S. for point-of-care testing, including those for glucose, 1,5 anhydroglucitol,
carbohydrates, lipids, and amino acid (AA) panels to assess glycemic disorders [45].

The potential contribution of metabolomics in the context of infectious diseases and host–pathogen
interactions appears particularly promising. Host–pathogen interactions impact leukocyte
immunometabolism, thereby shaping their response to infection. Plasm- or serum metabolomics
can profile the metabolome in an infected patient, reflecting the systemic responses of diverse cell
types in various organ systems affected by a specific pathogen and thereby identifying potential
biomarkers of infection [46]. Finally, metabolomics can complement the characterization of complex
systems measurements of the effect of a defined immune perturbation such as vaccination (Figure 1).
Such an approach is particularly promising in the newborn, given our recent demonstration of marked
changes in numerous metabolic pathways across the first week of human life [47], a time of marked
susceptibility to infection and of receipt of multiple vaccines, such as via the Expanded Program
on Immunization—which includes Bacille Calmette–Guérin vaccine, hepatitis B vaccine, and polio
vaccine) [48,49]. In light of these proof-of-concept examples, further metabolomic discovery and targeted
metabolite validation may provide novel biomarkers of infectious diseases and successful immunization.
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Figure 1. Metabolomics is an emerging tool that can complement other high-throughput systems 
immunology methods and immune response readouts to identify infection and vaccination 
biomarkers. 

3. Immunometabolism 

The interplay between metabolism and the immune response is increasingly recognized, and 
distinct metabolic needs and demands define responses to infection and vaccination [50]. 
Immunometabolism is a rapidly evolving field of immunology, and the metabolites produced by 
leukocytes serve as potent immune signaling molecules, during primary (innate), trained (innate 
memory), and classical adaptive immunity [51]. Trained immunity, the phenomenon of antigen-
agnostic memory responses by leukocytes subjected to various environmental threats, is an 
evolutionary process mediated by epigenetic modulations [52]. Global or targeted metabolomic 
analysis of pre-defined immune cell populations can lead to novel discoveries of metabolic pathways 
or molecules that serve as epigenetic or transcriptional regulators. For example, mammalian target 
of rapamycin (mTOR) signaling, primarily by activating the transcription factor hypoxia-inducible 
factor-1 (HIF-1α), increases aerobic glycolysis and regulates the differentiation of CD4+ T cells, 
favoring their differentiation into Th17 rather than Treg cells, and the production of pro-
inflammatory cytokines in response to T cell receptor activation [53]. 

In contrast, adenosine monophosphate-activated protein kinase (AMPK), an energy sensor 
kinase, serves as an immunometabolic checkpoint in T cell development and effector responses as 
well as in memory T cell differentiation by regulating the metabolic switch from aerobic glycolysis to 
oxidative phosphorylation of lipids [54]. As is the case for all the body’s cells, leukocytes use lipids 
to synthesize cell membranes and for posttranslational modifications of proteins; therefore, lipid 
metabolism is relevant to immune responses [55], including those related to epigenetic 

Figure 1. Metabolomics is an emerging tool that can complement other high-throughput systems
immunology methods and immune response readouts to identify infection and vaccination biomarkers.

3. Immunometabolism

The interplay between metabolism and the immune response is increasingly recognized, and distinct
metabolic needs and demands define responses to infection and vaccination [50]. Immunometabolism
is a rapidly evolving field of immunology, and the metabolites produced by leukocytes serve as
potent immune signaling molecules, during primary (innate), trained (innate memory), and classical
adaptive immunity [51]. Trained immunity, the phenomenon of antigen-agnostic memory responses by
leukocytes subjected to various environmental threats, is an evolutionary process mediated by epigenetic
modulations [52]. Global or targeted metabolomic analysis of pre-defined immune cell populations can
lead to novel discoveries of metabolic pathways or molecules that serve as epigenetic or transcriptional
regulators. For example, mammalian target of rapamycin (mTOR) signaling, primarily by activating the
transcription factor hypoxia-inducible factor-1 (HIF-1α), increases aerobic glycolysis and regulates the
differentiation of CD4+ T cells, favoring their differentiation into Th17 rather than Treg cells, and the
production of pro-inflammatory cytokines in response to T cell receptor activation [53].

In contrast, adenosine monophosphate-activated protein kinase (AMPK), an energy sensor
kinase, serves as an immunometabolic checkpoint in T cell development and effector responses as
well as in memory T cell differentiation by regulating the metabolic switch from aerobic glycolysis
to oxidative phosphorylation of lipids [54]. As is the case for all the body’s cells, leukocytes use
lipids to synthesize cell membranes and for posttranslational modifications of proteins; therefore,
lipid metabolism is relevant to immune responses [55], including those related to epigenetic
reprogramming [56]. Integration of metabolomics with other systems biology platforms can enrich
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the discovery, characterization, and validation of immune signatures and networks [47]. Moreover,
characterizing the impact of infection and immunization on the immunometabolism of leukocyte
populations may inform the discovery and development of target-based therapeutics and vaccines.

4. Impact of Infection on Host Metabolic Signatures

During infection, several metabolic changes occur, with reciprocal effects between the pathogen
and the host. Metabolic adaptations occurring in eukaryotic hosts upon acute infection by bacterial or
viral pathogens are complex, as the pathogen competes for host nutrients and other metabolites to
satisfy its bioenergetic and biosynthetic requirements. In contrast, the host response is aimed at the
elimination of the invading pathogen [57]. Most microbes enhance specific anabolic pathways in the
host and are highly dependent on these alterations, such that the characterization of these metabolic
alterations may inform diagnostic, prognostic, and therapeutic applications [58]. Select studies
investigating metabolic signatures of infection in the human host are listed in Table 1.

Table 1. Metabolomics identifies biomarkers of human infections. Metabolites noted in more than
one infection are in bold. HIV, human immunodeficiency virus, SARS-CoV-2, severe acute respiratory
syndrome coronavirus 2, Covid19, coronavirus disease 2019, CSF, cerebrospinal fluid.

Pathogen
Type Target

Pathogen
(Infection)

Biosample
Type

Technique
Used

Examples of Metabolites or
Metabolic Pathways Perturbed References

Bacteria
Clostridioides

difficile
(infection)

stool LC–MS,
GC–MS

2-hydroxy-4-methypentanoic acid,
2TMS derivative,

4-methylpentanoic acid,
allo-isoleucine, bile acids,

chenodeoxycholic acid, cholenic
acids, choleonoic acid,

eicosatrienoic acid, fatty acids,
fructose, glyceryl glycoside,

isoleucine,
lysophosphatidylcholine (16:0),
phenylalanine, propylene glycol,

ribitol, sphingolipid,
sphingomyelin, tyrosine, tyrosol

[59,60]

Bacteria

Escherichia coli
(associated

urinary tract
infection)

urine H-NMR,
LC–MS

acetate, amines, aspartic acid,
cadaverine, citrate, glutamic acid,

glycine, hippurate,
trimethylamine, trimethylamine

n-oxide

[61,62]

Bacteria
Mycobacterium

tuberculosis
(tuberculosis)

plasma,
serum

LC–MS,
FIA–MS,
GC–MS

amino-acyl tRNA, asparagine,
aspartate, citrulline, cysteine,

gamma-glutamylglutamine, fatty
acid metabolism, glutamate,
glutamine, histidine, inosine,

kynurenine,
lysophosphatidylcholines,

medium chain fatty acid,
lysosome pathway, mannose
methionine, protein digestion

pathway, sphingolipid,
sphingosine-1-phosphate,

sulfoxymethionine, tryptophan,
urea

[13,63–75]

Virus Alphavirus
(Chikungunya) serum H-NMR

2-hydroxycaproic acid, azelaic
acid, carnitine, d-maltose, ethanol,
galactitol, galactose metabolism
and citrate cycle, gluconolactone,

glycine, mandelic acid,
methylguanidine, serine,

threonine metabolism

[76]
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Table 1. Conts.

Pathogen
Type Target

Pathogen
(Infection)

Biosample
Type

Technique
Used

Examples of Metabolites or
Metabolic Pathways Perturbed References

Virus Flavivirus
(Dengue) serum GC–MS,

LC–MS

acylcarnitines, amino acids, bile
acids, chenodeoxyglycocholic

acid, galactose and pyrimidine,
glycine, glyoxylate and

dicarboxylate, kynurenine,
pentose phosphate pathway,
phospholipids, propanoate,

purines, serine, serotonin, starch
and sucrose, threonine, uric acid

[76–79]

Virus

Lentivirus
(human

immunodeficiency
virus/HIV)

CSF, CD4+

T cells,
plasma

H-NMR,
LC–MS,
targeted
LC–MS

acetate, citrate, creatine,
dicarboxylicacylcarnitines,

dopamine, glucose,
glycerophospholipids, glycolysis,

L-aspartate
plasmalogen/plasminogen,

lysophospholipids,
methylglutarylcarnitine,
phosphatidylcholines,

sphingomyelin,
sphingosine-1-phosphate, TCA

cycle

[80–83]

Virus
Alphainfluenza

virus
(Influenza)

plasma H-NMR,
GC–MS

amino acids and ketone bodies,
cAMP, glucose, glutathione, lipid,
N-acetylglucosamine(O-GlcNAc),

purine

[84–87]

Virus SARS-CoV-2
(COVID19)

plasma,
serum LC–MS

Bile acids, bile acids, bilirubin,
diacylglycerols, free fatty acid,
glucose, glucuronate, glycerol

3-phosphate, kynurenine,
lysophosphotidylcholines, malic

acid,
monosialodihexosylganglioside,

phosphatidylcholines,
sphingomyelin, triglycerides,

tryptophan

[14,88–92]

Common metabolic reactions are essential to host cell defense [93] to prevent microbial access to
nutrients [94]. Generic common responses triggered by intracellular bacterial pathogens in host innate
immune cells include: (a) induction of host cell reactive oxygen species (ROS) and reactive nitrogen
intermediates (RNI) [95,96], (b) enhancement of glucose uptake, which stimulates host cells’ anabolic
activity [58,97,98], (c) a switch to enhanced glutaminolysis and the citrate lyase reaction [99,100],
enhancing fatty acid/lipid biosynthesis, and (d) an overall increase in lipid metabolism, especially the
biosynthesis of steroids and eicosanoids [101].

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is an example of the
metabolic adaptation of a bacterium to the host environment, as this pathogen has learned to survive
in the host causing a latent infection (LTB) which can progress to active TB disease in ~10% of
latently infected individuals. Carbon metabolism is a major determinant of the pathogenicity of Mtb,
as demonstrated in animal models, where the lack of carbon sources causes failed replication and
survival. It is essential to fuel Mtb growth [102]. Untargeted metabolite profiling of Mtb growing
on 13C-labeled carbon substrates revealed that Mtb could simultaneously catabolize multiple carbon
sources (e.g., dextrose, acetate, and glycerol) to augment its growth [64]. The sphingolipid metabolic
pathway is another established mediator of the host response to TB [75]. Sphingolipids are fundamental
building blocks for cell membranes, are important to immune signaling, and are major constituents
of the mucus secreted by lung alveolar epithelial cells [13]. Metabolic signature identification
in pulmonary active TB, employing high-resolution plasma metabolomics (HRM), revealed that
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tryptophan metabolism is highly regulated during TB infection and disease and is characterized by
increased catabolism to kynurenine, which occurs in both latent and active TB patients [63]. Increased
tryptophan catabolism may enable the survival of Mtb at the site of infection by modulating CD4+

T cell responses, inducing immune tolerance and bacterial persistence, and could also protect the
host from excessive inflammation. Metabolomics can identify immunometabolic pathways associated
with TB progression, discriminating active TB from latent TB [71]. Fatty acid metabolic networks
are critical in TB progression. Mtb favors fatty acids as a cellular nutrient source and the expression
of multiple genes dedicated to fatty acid metabolism, at higher levels than those induced by any
other microorganism [72,73]. Of note, higher serum concentrations of glutamate, sulfoxy-methionine,
and aspartate and lower serum levels of glutamine, methionine, and asparagine are noted in active
TB patients compared to latent TB subjects or healthy controls [65]. Lastly, the amino-acyl tRNA
pathway is associated with the progression of TB infection to disease, with progressors demonstrating
a significant decrease of AA levels compared to controls [71].

Viruses depend on the host cell to obtain macromolecules and on host biosynthesis machinery to
replicate; they utilize host cell metabolism according to their specific needs [103]. Viral reprogramming
of host metabolism contributes to viral pathogenesis by fueling viral proliferation and survival,
enhancing access to free AA, fatty acids, and host-derived lipid membranes, eventually augmenting
intercellular signaling promoting evasion of the host’s immune system [104]. Some of the
significant cellular metabolic pathways, including glycolysis, fatty acid synthesis, and glutaminolysis,
are significantly altered by multiple virus families such as HCMV, HCV, HSV-1 poliovirus [103].
Serum metabolomics of chikungunya and/or dengue (co)infection revealed that glycine, serine,
threonine, galactose, and pyrimidine metabolism are the most perturbed host pathways in both single
and co-infection conditions [76]. Tryptophan metabolites serotonin and kynurenine are differently
enriched in patients with dengue hemorrhagic fever (DHF) and their presence may be used in
combination with the levels of interferon (IFN)-γ for early prognostication of DHF [78]. Analysis of
influenza A virus (IAV)-infected cells revealed alterations in several metabolites of the purine, lipid,
and glutathione pathways, resulting in the acceleration of viral replication [16].

Retroviruses directly alter host cell metabolism as well. Metabolites involved in glycolysis were
increased in human immunodeficiency virus (HIV)-infected CD4+ T cells [81] but decreased in infected
macrophages [82]. Macrophages generally maintain long-term infection, while CD4+ T cells most often
are effectors of the acute lytic infection, which may explain the differences. HIV metabonomic studies
utilizing biofluids from HIV-infected patients and controls have been used to identify HIV infection
biosignatures, disease progression, and immunological responses to treatment [105]. Plasma metabolomics
demonstrated deficient concentrations of sphingomyelins and dopamine, in parallel with high levels
of dicarboxylicacylcarnitines, L-aspartate, and many plasmalogen/plasminogen phosphatidylcholines
in the blood of HIV-1-infected individuals compared with controls [83]. Of note, patients defined as
immunological non-responders, demonstrated a downregulation of β-oxidation, important in T cell
survival, and sphingosine-1-phosphate-phosphatase-1 activity, which is involved in lymphocyte egress
from lymphoid organs and the bone marrow. In contrast, acyl–alkyl-containing phosphatidylcholines and
alkylglyceronephosphate synthase levels were elevated [83], suggesting that metabolomics can predict a
potential rapid disease progression or inadequate antiretroviral immunological responses.

Interestingly, the interaction between glucose metabolism and the inflammatory cytokine network
might trigger the host’s systemic inflammatory response. Metabolomics of peripheral blood mononuclear
cells (PBMCs) challenged with IAV or H1N1 demonstrated that an increase in glucose metabolism
promotes viral replication and cytokine production [86]. Plasma metabolomics of study participants
with H1N1 influenza A pneumonia or bacterial community-acquired pneumonia (CAP) demonstrated
metabolic changes linked to H1N1 pneumonia compared with CAP, including decreased in citrate,
fumarate, alanine, and tyrosine levels and increased carnitine, glycine, and acetoacetate levels [85].
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In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic,
advances in metabolomics can shed light on the pathogenesis of coronavirus disease 2019 (COVID-19)
that could inform the development of novel therapeutics. Patients with COVID-19 exhibit
changes in serum tryptophan metabolism and increased circulating levels of glucose and free
fatty acids (FFA), consistent with altered carbon homeostasis, compared with SARS-CoV-2-negative
controls. Interestingly, these findings correlate with the detection of clinical laboratory markers
of inflammation (interleukin-6 (IL-6) and C-reactive protein) and renal function (i.e., blood urea
nitrogen) [89]. Plasma lipid alterations (i.e., enhanced levels of sphingomyelins (SMs) and
monosialodihexosylgangliosides (GM3s) and reduced diacylglycerols (DAGs) associated with
COVID-19, detected by targeted and untargeted tandem mass spectrometry analysis of the plasma
lipidome and metabolome in mild, moderate, and severe COVID-19 patients and unaffected controls,
suggest that SARS-CoV-2 might take advantage of host-derived lipid membranes [90], as it has
been described for other coronaviruses [91]. Metabolic signatures may allow the early detection of
infected patients at risk for severe disease before the appearance of severe clinical manifestations.
Proteomic and metabolomic profiling of sera from COVID-19 and control individuals demonstrated
that the elevation of glucose, glucuronate, bilirubin degradation products, and four bile acid derivatives
potentially indicates compromised liver detoxification function in patients with severe COVID-19
disease [14]. Plasma metabolite and lipid alterations are more extensive in fatal COVID-19 cases than
in patients with severe and mild symptoms [92]. Compared to healthy volunteers, the carbohydrate
pathway metabolites malic acid and glycerol 3-phosphate are diminished in symptomatic patients
and demonstrated the most significant reduction in patients who died. Plasma lipidomic alterations
relate to clinical symptoms of COVID-19: diglyceride (DG), FFA, and triglyceride (TG) concentrations
increase with disease deterioration, while concentrations of phosphatidylcholines (PCs) decrease in
patients with fatal COVID-19 [92].

5. Metabolic Signatures of Vaccine-Induced Responses

Systems vaccinology provides fresh insights into distinct age- and sex-specific vaccine-induced
responses [106–109]. The application of metabolomics to vaccinology may identify metabolites
that correlate with immunogenicity and inform the tailoring of vaccine regimens for distinct
vulnerable populations [109]. Plasma metabolic components, including small molecules and lipids,
have immunomodulatory effects that may impact vaccine immunogenicity and infection responses.

Systems vaccinology studies have uncovered metabolic pathways that correlate with vaccine
immunogenicity and may have critical roles in immune response mechanisms [11,110,111] (Table 2).
Metabolomic studies of influenza immunization of antibiotic-treated study participants demonstrated
significant cofactor-/vitamin-related metabolism changes at Day 7 postvaccination compared to
baseline [110]. Similarly, dysbiosis associated with bile acid metabolism occurred with antibiotic
administration after influenza vaccines, and the IgG1 response was related to metabolic clusters of
fatty acid metabolism. These observations suggest that perturbations of the microbiome may impact
the levels of critical metabolites, thereby altering the immune response to vaccination [110].

A plasma metabolomic analysis of immune responses to herpes zoster (shingles) Zostavax vaccine
demonstrated a strong association of transcriptomic pathways with multiple metabolic pathways,
including lipid (e.g., glycerophospholipid, glycosphingolipid, and linoleate metabolism) and AA
pathways (methionine and cysteine) at Day 3 postvaccination [11]. These metabolic pathways are
also strongly associated with genes related to the MHC–TLR7–TLR8 cluster, antigen presentation,
dendritic cell (DC) activation, and B cell signatures [11]. Purine and lysine metabolism were also found
to overlap with transcriptomics data at Day 1 versus Day 0. While there was no association between
transcriptomics and metabolomics at Day 7 postvaccination, the kinetics of vaccine-induced metabolic
shifts may be dependent on gene expression [11].

In a phase III multicenter clinical trial, the Hantavax vaccination (Hantavirus vaccine) demonstrated
dose-dependent upregulation of folate biosynthesis, nicotinate, nicotinamide, and arachidonic
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acid metabolism, thiamine levels, and pyrimidine metabolism in the high responder vaccine
group [111]. In light of the known roles of metabolic pathways in immunity, Hantavax-induced
perturbation of metabolites was thought to be related to immune function, including (a) folate
biosynthesis with activation of cell-mediated immunity [112], (b) arachidonic acid metabolism
with immune regulation [113], (c) thiamine elevation with enrichment of T cell differentiation and
phagocytosis pathways [114], and (d) pyrimidine metabolism with cell-mediated immunity, T cell
activation, and ultimately defeat of the microbial infection [115]. Metabolomics also identified
elevation of key metabolites correlating with antibody responses, such as arginine, phenylalanine,
cholesteryl nitrolinoleate, and octanoylcarnitine, in the high responder group. Elevated cholesteryl
nitrolinoleate in high responders may reflect increased expression of inducible nitric oxide synthase
(iNOS), as macrophage activation (e.g., by lipopolysaccharide and INF-γ) can increase the production
of this metabolite [116]. Arginine and phenylalanine enhance macrophage activation for enhanced
synthesis of nitric oxide (NO) and are key to the antiviral response against herpes simplex virus [117].
Such systems vaccinology studies have identified metabolic pathways that may be important to vaccine
immunogenicity and may ultimately inform future vaccine design.

Table 2. Metabolomic studies of human vaccine responses. Metabolites induced by more than one
vaccine are in bold. TCA, tricarboxylic acid.

Pathogen
Type Target

Microbial
Target

Vaccine
Formulation

Studied

Biosample
Type

Technique
Used

Examples of Metabolites
or Metabolic

Pathways Perturbed
References

Bacterium Francisella
tularensis

F. tularensis
(LVS-DynPort

Vaccine)
plasma LC–MS

2-oxocarboxylic acid,
asparagine, glycolysis, purine,

pyruvate, TCA cycle
[118]

Bacterium M.
tuberculosis

BCG
(Connaught

strain)
serum LC–MS

1,5-anhydroglucitol,
alpha-ketobutyrate, de novo

purine synthesis, glucose
processing metabolites,

methylguanine,
N6-carbomoyltheronyladenosine

[119]

Virus Hantavirus Hantavax
(GreenCross) serum LC–MS

16-hydroxyplamitate,
arachidonic acid, arginine,

benzoate, chenodeoxycholic
acid, cholesteryl nitrolinoate,
cystathionine, glutamine and
citrulline, glycine, histidine,

homocysteine, indole
3-acetaldehyde, isoleucine,

leucine, methionine, methyl
palmitate, N-stearoyl,

octanoylcarnitine,
phenylalanine, threonine,

tryptophan, tyrosine,
ubiquinone-9, valine

[111]

Virus Influenza

Fluzone
(2014–2015,
2015–2016)

*co-administered
with antibiotics

plasma LC–MS primary and secondary bile
acids, tryptophan metabolism [110]

Virus
Varicella

zoster
(Shingles)

Zostavax plasma LC–MS

aldarate, ascorbate,
gluconeogenesis, glycolysis,

inositol phosphate, propanoate,
sterol, TCA cycle, tryptophan

[11]

Virus Variola virus
(Small Pox)

DryVax or
ACAM 2000 serum H-NMR

2-aminobutyrate, alanine,
choline, creatinine, fructose,

glutamate, glutamine,
histidine, lactate, threonine,

lysine, methionine, propylene
glycol, serine

[120]



Metabolites 2020, 10, 492 9 of 18

Metabolomics is also being applied to study vaccine safety. A human plasma metabolomics study of
200 individuals pre- and post-small pox immunization discovered novel biomarkers for an adverse event
following immunization (AEFI), including redness at the local site of vaccination or a severe allergic
reaction [121]. Individuals who experienced clinically verified myocarditis or asymptomatic elevation of
troponins were metabolically distinct from controls or those who only experienced systemic symptoms.
Creatinine, fructose, phenylalanine, histidine, and serine metabolites were decreased in those with
an identified adverse event, suggesting that certain vaccine adverse events may be metabolically
mediated [121]. Metabolomics, coupled with machine learning approaches, may predict vaccines’
effects and potentially help avoid serious adverse events following immunization, thereby improving
the risk/benefit ratio of immunization. In the race for a SARS-CoV-2 vaccine, metabolomic approaches
may help identify vaccine candidates that demonstrate relatively low reactogenicity and superior
protection. Leveraging systems biology approaches, including metabolomics, may further enhance the
benefit-to-risk ratios and the quality of immunization programs, a topic of critical importance in an era
of growing vaccine hesitancy.

6. Shared Metabolic Pathways Across Infection and Vaccination Studies

Common metabolic pathways induced by infection and vaccination include AA (asparagine, glycine,
methionine, threonine, tryptophan, glutamate, glutamine, and serine), carbohydrate (tricarboxylic acid
(TCA) cycle, glycolysis, glucose, propanoate), nucleotide (purine), and lipid metabolism (bile acids).
Remarkably, these are metabolic pathways known to shape the immune cell response [56,122].

Numerous reviews indicated that AA metabolism shapes the host’s physiology, growth,
reproduction, and immunity. AA metabolites also serve as the energy source for cells and as regulators for
cell signaling and host metabolism [123,124]. AA metabolites arginine, asparagine, and tryptophan are
identified as central points of competition between the host and the pathogen [125]. Glutamine mediates
the activation of Th1 and Th17 cells [126,127] and has also been implicated as an immunomodulatory
nutrient that may represent a therapeutic target during severe infection [128]. Serine is required for
optimal T cell expansion to support T cell activation and effector functions and supports de novo purine
biosynthesis in proliferating T cells [101,129].

Immunometabolism involving carbohydrate pathways proposes that innate or adaptive naïve
immune cells mainly rely on shifting oxidative phosphorylation to glycolysis (Warburg metabolism)
upon immune activation [98]. Carbohydrate metabolism pathways are essential host factors influencing
responses to bacterial and viral infections [130]. TCA cycle regulation demonstrates a mechanism of host
defense against intracellular pathogens through hypoxia and impairment of STAT3 to reduce microbial
replication [131]. These carbohydrate metabolic pathways have been extensively shown to promote
innate immune cell survival, growth, and physiology [51], provide antimicrobial defense, and prevent
hyperinflammatory responses [132,133]. Understanding this pathway during host–pathogen interaction
is crucial, as each pathogen induces a specific metabolic program, suggesting that research directed at
developing species-specific strategies to counter these infections will be fruitful [98].

Purine metabolites provide the necessary energy and cofactors to promote cell survival
and proliferation [134]. Adenosine suppresses the proinflammatory response and promotes an
anti-inflammatory response through purinergic receptors [135]. Deficiency or mutation of adenosine
deaminase activity, a key enzyme for purine metabolite degradation, leads to the accumulation of
adenosine, which increases the susceptibility to infection and autoimmunity [136,137]. Bile acids that
primarily function in lipid metabolism play key roles in controlling the microbiota composition in the
gut [138]. An altered bile acid pool has been associated with infection, suggesting a mechanistic link
between the gut microbiota and metabolic syndromes. The interplay between host and pathogen in
the gut microbial community underscores the critical involvement of this pathway, as described in
vaccination [11,110,139] and infection studies [138,140].
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7. Integrative Metabolomics—Challenges and Emerging Horizons

The application of metabolomics for precision medicine is dependent on our ability to categorize
infectious disease states or vaccine immunogenicity based on reproducible metabolic signatures
that reflect specific, discernible phenotypes and can be used as a consistent readout [141]. For all
its many strengths, metabolomics is lagging behind other systems biology fields concerning the
standardization of protocols [44] and the routine usage of repositories for mass spectrometry data [142].
Close coordination between researchers, clinicians, and biomedical centers will be necessary to identify
reproducible and generalizable metabolic signatures and realize the potential of metabolomics.

Potential obstacles to the broader application of metabolomics for precision medicine have been
the prohibitive cost of clinical metabolite profiling and the time-consuming nature of extraction and
derivatization of certain metabolites. The typical cost of metabolomics at this time is hundreds of
dollars per sample, such that the broad application of global metabolomics is unaffordable, limiting
metabolomics-based applications to well-funded clinical trials and perhaps the most privileged
patients. To overcome this limitation, technologies such as NMR, which is more affordable than mass
spectrometry [143], could be employed, acknowledging the limitations in their detection abilities.
Alternatively, detecting a single metabolite or a small group of well-characterized metabolites that were
found to be informative of a patient’s clinical state can be performed using less costly techniques such as
conventional HPLC. Fortunately, current efforts to reduce the cost of mass spectrometry-based methods
by several companies might significantly reduce the metabolite profiling costs in the coming years.

At present, the US Food and Drug Administration (FDA) regulations allow the application of
metabolomics as a diagnostic tool for in vivo newborn screening of metabolic diseases [144] and for the
in vitro identification of bacteria and fungi in clinical samples [145]. Although the FDA has recognized
the potential of metabolomics as a promising technology for diagnostics as far back as 2008 [146]
and acknowledged its importance and broad applicability to research and development, it has not
approved the clinical application of metabolomics for precision medicine. Specific assays of diagnostic
markers will have to be individually approved to ensure clinical readouts’ safety and accuracy.

As the metabolomics research community finds ways to overcome the current limitations of this
powerful technology, the way for personalized metabolic phenotyping will be paved [147,148], which may
enable early diagnosis [149], informed treatment choices [150], and accurate prediction of response to
therapy [151]. Of note, metabolomics data have advantages compared to data from other screening methods,
as they directly measure drug metabolism, inflammation markers, and other ever-changing indicators
of a patient’s disease status. Such metabolomics data are most useful when integrated with high-quality
clinical data (such as ethnicity, age, sex, clinical history, etc.) and molecular data (genomic, transcriptomic,
and proteomic data) to inform a comprehensive report of a patient’s health status.

Finally, robust structures and incentives for data sharing will be critical to the metabolomics
field’s success. Extensive studies by investigators in the areas of infectious diseases, vaccinology,
and metabolomics, coupled with data sharing, such as that fostered by the Human Immunology Project
Consortium ImmPort database [152,153] (www.immport.org), will enable the discovery and validation
of cellular and molecular signatures of infection and immunization. Eventually, when integrated with
clinical information and validated in clinical contexts, such knowledge may help leveraging metabolic
signatures to enhance the diagnosis and treatment of infectious diseases and inform vaccine discovery
and development. Given the power of metabolomics and the growing evidence that metabolic pathways
are relevant to immune responses, we predict that collaborative data verification and integration efforts
will eventually enable the use of metabolic signatures to inform clinical decision-making.

8. Conclusions

As the field of metabolomics evolves in accessibility, usability, and sophistication, metabolomic
data will increasingly be integrated with clinical and other systems biology data to gain deep insights
into the biology of health and disease. On addition to presenting metabolic pathways triggered by
infections and vaccinations, our review also highlights metabolomics as a useful tool for discovering

www.immport.org
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and identifying biomarkers of disease subtype and stage and treatment response. These biomarkers can
be used to distinguish patients infected with different pathogens, predict vaccine-induced protection
against these infections, and provide insight into human immunity. Given the emerging evidence
that metabolism plays key roles in infection and vaccine responses, a growing number of metabolites
will likely emerge as targets for developing biomarkers, predictive algorithms, therapeutic targets,
and preventative modalities.

Author Contributions: Conceptualization, J.D.-A.; Writing—Original Draft Preparation, J.D.-A., M.G.C., B.P.,
N.K., A.A., O.L.; Writing—Review & Editing, J.D.-A., M.G.C., B.P., N.K., A.A., O.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by the National Institute of Health/National Institute of Allergy & Infectious
Diseases Human Immunology Project Consortium Grant U19AI118608 and funds from the BCH Precision Vaccines
Program.

Acknowledgments: We thank Kristin Johnson for illustration and Diana Vo for programmatic support.

Conflicts of Interest: Ofer Levy is a named inventor on several Boston Children’s Hospital patent applications
relating to human in vitro assays systems and vaccine adjuvants. The other authors declare no competing
financial interests.

References

1. Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How close are we to complete annotation of metabolomes?
Curr. Opin. Chem. Biol. 2017, 36, 64–69. [CrossRef] [PubMed]

2. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms.
Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [CrossRef] [PubMed]

3. Sun, Y.V.; Hu, Y.J. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex
Human Diseases. Adv. Genet. 2016, 93, 147–190. [CrossRef] [PubMed]

4. Atkinson, D.E. An Introduction to Metabolic Pathways. S. Dagley, Donald E. Nicholson. Q. Rev. Biol. 1971,
46, 288–290. [CrossRef]

5. Veenstra, T.D. Metabolomics: The final frontier? Genome Med. 2012, 4, 40. [CrossRef] [PubMed]
6. Yuan, H.; Xu, Y.; Chen, Y.; Zhan, Y.; Wei, X.; Li, L.; Wang, D.; He, P.; Li, S.; Chen, S. Metabolomics analysis reveals

global acetoin stress response of Bacillus licheniformis. Metabolomics 2019, 15, 25. [CrossRef] [PubMed]
7. Blighe, K.; Chawes, B.L.; Kelly, R.S.; Mirzakhani, H.; McGeachie, M.; Litonjua, A.A.; Weiss, S.T.; Lasky-Su, J.A.

Vitamin D prenatal programming of childhood metabolomics profiles at age 3 y. Am. J. Clin. Nutr. 2017, 106,
1092–1099. [CrossRef] [PubMed]

8. Sun, C.; Li, T.; Song, X.; Huang, L.; Zang, Q.; Xu, J.; Bi, N.; Jiao, G.; Hao, Y.; Chen, Y.; et al. Spatially resolved
metabolomics to discover tumor-associated metabolic alterations. Proc. Natl. Acad. Sci. USA 2019, 116, 52–57.
[CrossRef]

9. Liu, N.N.; Acosta-Zaldivar, M.; Qi, W.; Diray-Arce, J.; Walker, L.A.; Kottom, T.J.; Kelly, R.; Yuan, M.;
Asara, J.M.; Lasky-Su, J.A.; et al. Phosphoric Metabolites Link Phosphate Import and Polysaccharide
Biosynthesis for Candida albicans Cell Wall Maintenance. mBio 2020, 11. [CrossRef] [PubMed]

10. Beale, D.J.; Oh, D.Y.; Karpe, A.V.; Tai, C.; Dunn, M.S.; Tilmanis, D.; Palombo, E.A.; Hurt, A.C. Untargeted
metabolomics analysis of the upper respiratory tract of ferrets following influenza A virus infection and
oseltamivir treatment. Metabolomics 2019, 15, 33. [CrossRef] [PubMed]

11. Li, S.; Sullivan, N.L.; Rouphael, N.; Yu, T.; Banton, S.; Maddur, M.S.; McCausland, M.; Chiu, C.; Canniff, J.; Dubey, S.;
et al. Metabolic Phenotypes of Response to Vaccination in Humans. Cell 2017, 169, 862–877. [CrossRef] [PubMed]

12. Abu-Farha, M.; Thanaraj, T.A.; Qaddoumi, M.G.; Hashem, A.; Abubaker, J.; Al-Mulla, F. The Role of Lipid
Metabolism in COVID-19 Virus Infection and as a Drug Target. Int. J. Mol. Sci. 2020, 21, 3544. [CrossRef] [PubMed]

13. Sharma, L.; Prakash, H. Sphingolipids Are Dual Specific Drug Targets for the Management of Pulmonary
Infections: Perspective. Front. Immunol. 2017, 8, 378. [CrossRef] [PubMed]

14. Shen, B.; Yi, X.; Sun, Y.; Bi, X.; Du, J.; Zhang, C.; Quan, S.; Zhang, F.; Sun, R.; Qian, L.; et al. Proteomic and
Metabolomic Characterization of COVID-19 Patient Sera. Cell 2020, 182, 59–72. [CrossRef] [PubMed]

15. Smith, C.L.; Dickinson, P.; Forster, T.; Craigon, M.; Ross, A.; Khondoker, M.R.; France, R.; Ivens, A.; Lynn, D.J.;
Orme, J.; et al. Identification of a human neonatal immune-metabolic network associated with bacterial
infection. Nat. Commun. 2014, 5, 4649. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cbpa.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28113135
http://dx.doi.org/10.1038/nrm.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/26979502
http://dx.doi.org/10.1016/bs.adgen.2015.11.004
http://www.ncbi.nlm.nih.gov/pubmed/26915271
http://dx.doi.org/10.1086/406923
http://dx.doi.org/10.1186/gm339
http://www.ncbi.nlm.nih.gov/pubmed/22546050
http://dx.doi.org/10.1007/s11306-019-1492-7
http://www.ncbi.nlm.nih.gov/pubmed/30830499
http://dx.doi.org/10.3945/ajcn.117.158220
http://www.ncbi.nlm.nih.gov/pubmed/28835366
http://dx.doi.org/10.1073/pnas.1808950116
http://dx.doi.org/10.1128/mBio.03225-19
http://www.ncbi.nlm.nih.gov/pubmed/32184254
http://dx.doi.org/10.1007/s11306-019-1499-0
http://www.ncbi.nlm.nih.gov/pubmed/30830484
http://dx.doi.org/10.1016/j.cell.2017.04.026
http://www.ncbi.nlm.nih.gov/pubmed/28502771
http://dx.doi.org/10.3390/ijms21103544
http://www.ncbi.nlm.nih.gov/pubmed/32429572
http://dx.doi.org/10.3389/fimmu.2017.00378
http://www.ncbi.nlm.nih.gov/pubmed/28400772
http://dx.doi.org/10.1016/j.cell.2020.05.032
http://www.ncbi.nlm.nih.gov/pubmed/32492406
http://dx.doi.org/10.1038/ncomms5649
http://www.ncbi.nlm.nih.gov/pubmed/25120092


Metabolites 2020, 10, 492 12 of 18

16. Tian, X.; Zhang, K.; Min, J.; Chen, C.; Cao, Y.; Ding, C.; Liu, W.; Li, J. Metabolomic Analysis of Influenza A
Virus A/WSN/1933 (H1N1) Infected A549 Cells during First Cycle of Viral Replication. Viruses 2019, 11, 1007.
[CrossRef] [PubMed]

17. Niki, M.; Yoshiyama, T.; Nagai, H.; Miyamoto, Y.; Niki, M.; Oinuma, K.I.; Tsubouchi, T.; Kaneko, Y.; Matsumoto, S.;
Sasaki, Y.; et al. Nutritional status positively impacts humoral immunity against its Mycobacterium tuberculosis,
disease progression, and vaccine development. PLoS ONE 2020, 15, e0237062. [CrossRef]

18. German, J.B.; Gillies, L.A.; Smilowitz, J.T.; Zivkovic, A.M.; Watkins, S.M. Lipidomics and lipid profiling in
metabolomics. Curr. Opin. Lipidol. 2007, 18, 66–71. [CrossRef]

19. Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.; Chen, R.; Miriami, E.; Karczewski, K.J.;
Hariharan, M.; Dewey, F.E.; et al. Personal omics profiling reveals dynamic molecular and medical
phenotypes. Cell 2012, 148, 1293–1307. [CrossRef]

20. Petersen, A.K.; Zeilinger, S.; Kastenmuller, G.; Romisch-Margl, W.; Brugger, M.; Peters, A.; Meisinger, C.;
Strauch, K.; Hengstenberg, C.; Pagel, P.; et al. Epigenetics meets metabolomics: An epigenome-wide
association study with blood serum metabolic traits. Hum. Mol. Genet. 2014, 23, 534–545. [CrossRef]

21. Nakaya, H.I.; Li, S.; Pulendran, B. Systems vaccinology: Learning to compute the behavior of vaccine induced
immunity. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 193–205. [CrossRef] [PubMed]

22. Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; et al. Integration of
Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in
Prostate Cancer. Mol. Cell. Proteom. 2016, 15, 154–163. [CrossRef] [PubMed]

23. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep Learning-Based Multi-Omics Integration Robustly
Predicts Survival in Liver Cancer. Clin. Cancer Res. 2018, 24, 1248–1259. [CrossRef] [PubMed]

24. Hakimi, A.A.; Reznik, E.; Lee, C.H.; Creighton, C.J.; Brannon, A.R.; Luna, A.; Aksoy, B.A.; Liu, E.M.; Shen, R.;
Lee, W.; et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 2016, 29, 104–116.
[CrossRef] [PubMed]

25. Hsu, C.W.; Chen, Y.T.; Hsieh, Y.J.; Chang, K.P.; Hsueh, P.C.; Chen, T.W.; Yu, J.S.; Chang, Y.S.; Li, L.; Wu, C.C.
Integrated analyses utilizing metabolomics and transcriptomics reveal perturbation of the polyamine
pathway in oral cavity squamous cell carcinoma. Anal. Chim. Acta 2019, 1050, 113–122. [CrossRef]

26. Zhang, G.; He, P.; Tan, H.; Budhu, A.; Gaedcke, J.; Ghadimi, B.M.; Ried, T.; Yfantis, H.G.; Lee, D.H.; Maitra, A.;
et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth
inhibitory effects in human pancreatic cancer. Clin. Cancer Res. 2013, 19, 4983–4993. [CrossRef]

27. Yang, K.; Xia, B.; Wang, W.; Cheng, J.; Yin, M.; Xie, H.; Li, J.; Ma, L.; Yang, C.; Li, A.; et al. A Comprehensive
Analysis of Metabolomics and Transcriptomics in Cervical Cancer. Sci. Rep. 2017, 7, 43353. [CrossRef]

28. Ghosh, N.; Dutta, M.; Singh, B.; Banerjee, R.; Bhattacharyya, P.; Chaudhury, K. Transcriptomics, proteomics
and metabolomics driven biomarker discovery in COPD: An update. Expert Rev. Mol. Diagn. 2016, 16,
897–913. [CrossRef]

29. Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of
Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [CrossRef]

30. Kelly, R.S.; Chawes, B.L.; Blighe, K.; Virkud, Y.V.; Croteau-Chonka, D.C.; McGeachie, M.J.; Clish, C.B.;
Bullock, K.; Celedon, J.C.; Weiss, S.T.; et al. An Integrative Transcriptomic and Metabolomic Study of Lung
Function in Children With Asthma. Chest 2018, 154, 335–348. [CrossRef]

31. Lee, J.; Banerjee, D. Metabolomics and the Microbiome as Biomarkers in Sepsis. Crit. Care Clin. 2020, 36,
105–113. [CrossRef] [PubMed]

32. Xu, D.; Liao, S.; Li, P.; Zhang, Q.; Lv, Y.; Fu, X.; Yang, M.; Wang, J.; Kong, L. Metabolomics Coupled with
Transcriptomics Approach Deciphering Age Relevance in Sepsis. Aging Dis. 2019, 10, 854–870. [CrossRef] [PubMed]

33. Tang, Z.Z.; Chen, G.; Hong, Q.; Huang, S.; Smith, H.M.; Shah, R.D.; Scholz, M.; Ferguson, J.F. Multi-Omic
Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent
Relationships Between Diet and Metabolites. Front. Genet. 2019, 10, 454. [CrossRef] [PubMed]

34. Zierer, J.; Jackson, M.A.; Kastenmuller, G.; Mangino, M.; Long, T.; Telenti, A.; Mohney, R.P.; Small, K.S.;
Bell, J.T.; Steves, C.J.; et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet.
2018, 50, 790–795. [CrossRef]

35. Wilmanski, T.; Rappaport, N.; Earls, J.C.; Magis, A.T.; Manor, O.; Lovejoy, J.; Omenn, G.S.; Hood, L.;
Gibbons, S.M.; Price, N.D. Blood metabolome predicts gut microbiome alpha-diversity in humans. Nat.
Biotechnol. 2019, 37, 1217–1228. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/v11111007
http://www.ncbi.nlm.nih.gov/pubmed/31683654
http://dx.doi.org/10.1371/journal.pone.0237062
http://dx.doi.org/10.1097/MOL.0b013e328012d911
http://dx.doi.org/10.1016/j.cell.2012.02.009
http://dx.doi.org/10.1093/hmg/ddt430
http://dx.doi.org/10.1002/wsbm.163
http://www.ncbi.nlm.nih.gov/pubmed/22012654
http://dx.doi.org/10.1074/mcp.M115.052381
http://www.ncbi.nlm.nih.gov/pubmed/26545398
http://dx.doi.org/10.1158/1078-0432.CCR-17-0853
http://www.ncbi.nlm.nih.gov/pubmed/28982688
http://dx.doi.org/10.1016/j.ccell.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26766592
http://dx.doi.org/10.1016/j.aca.2018.10.070
http://dx.doi.org/10.1158/1078-0432.CCR-13-0209
http://dx.doi.org/10.1038/srep43353
http://dx.doi.org/10.1080/14737159.2016.1198258
http://dx.doi.org/10.1007/s12016-018-8712-1
http://dx.doi.org/10.1016/j.chest.2018.05.038
http://dx.doi.org/10.1016/j.ccc.2019.08.008
http://www.ncbi.nlm.nih.gov/pubmed/31733672
http://dx.doi.org/10.14336/AD.2018.1027
http://www.ncbi.nlm.nih.gov/pubmed/31440390
http://dx.doi.org/10.3389/fgene.2019.00454
http://www.ncbi.nlm.nih.gov/pubmed/31164901
http://dx.doi.org/10.1038/s41588-018-0135-7
http://dx.doi.org/10.1038/s41587-019-0233-9
http://www.ncbi.nlm.nih.gov/pubmed/31477923


Metabolites 2020, 10, 492 13 of 18

36. Dao, M.C.; Sokolovska, N.; Brazeilles, R.; Affeldt, S.; Pelloux, V.; Prifti, E.; Chilloux, J.; Verger, E.O.;
Kayser, B.D.; Aron-Wisnewsky, J.; et al. A Data Integration Multi-Omics Approach to Study Calorie
Restriction-Induced Changes in Insulin Sensitivity. Front. Physiol. 2018, 9, 1958. [CrossRef] [PubMed]

37. Kiebish, M.A.; Cullen, J.; Mishra, P.; Ali, A.; Milliman, E.; Rodrigues, L.O.; Chen, E.Y.; Tolstikov, V.; Zhang, L.;
Panagopoulos, K.; et al. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer.
J. Transl. Med. 2020, 18, 10. [CrossRef]

38. Khan, S.R.; Manialawy, Y.; Wheeler, M.B.; Cox, B.J. Unbiased data analytic strategies to improve biomarker
discovery in precision medicine. Drug Discov. Today 2019, 24, 1735–1748. [CrossRef]

39. Lone, A.M.; Tasken, K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front. Immunol.
2013, 4, 130. [CrossRef]

40. Yui, K.; Imataka, G.; Nakamura, H.; Ohara, N.; Naito, Y. Eicosanoids Derived From Arachidonic Acid and
Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders. Curr. Neuropharmacol. 2015, 13,
776–785. [CrossRef]

41. Wijnands, K.A.; Castermans, T.M.; Hommen, M.P.; Meesters, D.M.; Poeze, M. Arginine and citrulline and the
immune response in sepsis. Nutrients 2015, 7, 1426–1463. [CrossRef] [PubMed]

42. Nikolaus, S.; Schulte, B.; Al-Massad, N.; Thieme, F.; Schulte, D.M.; Bethge, J.; Rehman, A.; Tran, F.; Aden, K.;
Hasler, R.; et al. Increased Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel
Diseases. Gastroenterology 2017, 153, 1504–1516. [CrossRef] [PubMed]

43. Lu, J.Y.; Peng, J.H.; Ma, X.J.; Zhang, Y.N.; Zhu, W.; He, X.X.; Ying, L.W.; Bao, Y.Q.; Zhou, J.; Jia, W.P. Metabolic
perturbations of post-load hyperglycemia vs. fasting hyperglycemia. Acta Pharmacol. Sin. 2019, 40, 216–221.
[CrossRef] [PubMed]

44. Long, N.P.; Nghi, T.D.; Kang, Y.P.; Anh, N.H.; Kim, H.M.; Park, S.K.; Kwon, S.W. Toward a Standardized
Strategy of Clinical Metabolomics for the Advancement of Precision Medicine. Metabolites 2020, 10, 51.
[CrossRef] [PubMed]

45. Bergman, M.; Abdul-Ghani, M.; DeFronzo, R.A.; Manco, M.; Sesti, G.; Fiorentino, T.V.; Ceriello, A.; Rhee, M.;
Phillips, L.S.; Chung, S.; et al. Review of methods for detecting glycemic disorders. Diabetes Res. Clin. Pract.
2020, 165, 108233. [CrossRef]

46. Nguyen, C.T.; Shetty, V.; Maresso, A.W. Global metabolomic analysis of a mammalian host infected with
Bacillus anthracis. Infect. Immun. 2015, 83, 4811–4825. [CrossRef]

47. Lee, A.H.; Shannon, C.P.; Amenyogbe, N.; Bennike, T.B.; Diray-Arce, J.; Idoko, O.T.; Gill, E.E.; Ben-Othman, R.;
Pomat, W.S.; van Haren, S.D.; et al. Dynamic molecular changes during the first week of human life follow a
robust developmental trajectory. Nat. Commun. 2019, 10, 1092. [CrossRef]

48. Whittaker, E.; Goldblatt, D.; McIntyre, P.; Levy, O. Neonatal Immunization: Rationale, Current State, and
Future Prospects. Front. Immunol. 2018, 9, 532. [CrossRef]

49. Idoko, O.T.; Smolen, K.K.; Wariri, O.; Imam, A.; Shannon, C.P.; Dibassey, T.; Diray-Arce, J.; Darboe, A.;
Strandmark, J.; Ben-Othman, R.; et al. Clinical Protocol for a Longitudinal Cohort Study Employing Systems
Biol. to Identify Markers of Vaccine Immunogenicity in Newborn Infants in The Gambia and Papua New
Guinea. Front. Pediatr. 2020, 8, 197. [CrossRef]

50. Kumar, V. Immunometabolism: Another Road to Sepsis and Its Therapeutic Targeting. Inflammation 2019, 42,
765–788. [CrossRef]

51. Conti, M.G.; Angelidou, A.; Diray-Arce, J.; Smolen, K.K.; Lasky-Su, J.; De Curtis, M.; Levy, O. Immunometabolic
approaches to prevent, detect, and treat neonatal sepsis. Pediatr. Res. 2020, 87, 399–405. [CrossRef] [PubMed]

52. Netea, M.G.; Joosten, L.A.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.; Xavier, R.J.
Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098.
[CrossRef] [PubMed]

53. Dang, E.V.; Barbi, J.; Yang, H.Y.; Jinasena, D.; Yu, H.; Zheng, Y.; Bordman, Z.; Fu, J.; Kim, Y.; Yen, H.R.; et al.
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011, 146, 772–784. [CrossRef] [PubMed]

54. Araki, K.; Ahmed, R. AMPK: A metabolic switch for CD8+ T-cell memory. Eur. J. Immunol. 2013, 43, 878–881.
[CrossRef]

55. Lochner, M.; Berod, L.; Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol.
2015, 36, 81–91. [CrossRef]

56. O’Neill, L.A.J.; Kishton, R.J.; Rathmell, J. A guide to immunometabolism for immunologists. Nat. Rev.
Immunol. 2016, 16, 553–565. [CrossRef]

http://dx.doi.org/10.3389/fphys.2018.01958
http://www.ncbi.nlm.nih.gov/pubmed/30804813
http://dx.doi.org/10.1186/s12967-019-02185-y
http://dx.doi.org/10.1016/j.drudis.2019.05.018
http://dx.doi.org/10.3389/fimmu.2013.00130
http://dx.doi.org/10.2174/1570159X13666151102103305
http://dx.doi.org/10.3390/nu7031426
http://www.ncbi.nlm.nih.gov/pubmed/25699985
http://dx.doi.org/10.1053/j.gastro.2017.08.028
http://www.ncbi.nlm.nih.gov/pubmed/28827067
http://dx.doi.org/10.1038/s41401-018-0018-6
http://www.ncbi.nlm.nih.gov/pubmed/29773885
http://dx.doi.org/10.3390/metabo10020051
http://www.ncbi.nlm.nih.gov/pubmed/32013105
http://dx.doi.org/10.1016/j.diabres.2020.108233
http://dx.doi.org/10.1128/IAI.00947-15
http://dx.doi.org/10.1038/s41467-019-08794-x
http://dx.doi.org/10.3389/fimmu.2018.00532
http://dx.doi.org/10.3389/fped.2020.00197
http://dx.doi.org/10.1007/s10753-018-0939-8
http://dx.doi.org/10.1038/s41390-019-0647-6
http://www.ncbi.nlm.nih.gov/pubmed/31689710
http://dx.doi.org/10.1126/science.aaf1098
http://www.ncbi.nlm.nih.gov/pubmed/27102489
http://dx.doi.org/10.1016/j.cell.2011.07.033
http://www.ncbi.nlm.nih.gov/pubmed/21871655
http://dx.doi.org/10.1002/eji.201343483
http://dx.doi.org/10.1016/j.it.2014.12.005
http://dx.doi.org/10.1038/nri.2016.70


Metabolites 2020, 10, 492 14 of 18

57. Mayer, K.A.; Stöckl, J.; Zlabinger, G.J.; Gualdoni, G.A. Hijacking the Supplies: Metabolism as a Novel Facet
of Virus-Host Interaction. Front. Immunol. 2019, 10. [CrossRef]

58. Eisenreich, W.; Rudel, T.; Heesemann, J.; Goebel, W. How Viral and Intracellular Bacterial Pathogens
Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front. Cell. Infect. Microbiol.
2019, 9, 42. [CrossRef]

59. Robinson, J.I.; Weir, W.H.; Crowley, J.R.; Hink, T.; Reske, K.A.; Kwon, J.H.; Burnham, C.D.; Dubberke, E.R.;
Mucha, P.J.; Henderson, J.P. Metabolomic networks connect host-microbiome processes to human
Clostridioides difficile infections. J. Clin. Investig. 2019, 129, 3792–3806. [CrossRef]

60. Zhou, P.; Zhou, N.; Shao, L.; Li, J.; Liu, S.; Meng, X.; Duan, J.; Xiong, X.; Huang, X.; Chen, Y.; et al. Diagnosis
of Clostridium difficile infection using an UPLC-MS based metabolomics method. Metabolomics 2018, 14, 102.
[CrossRef]

61. Lussu, M.; Camboni, T.; Piras, C.; Serra, C.; Del Carratore, F.; Griffin, J.; Atzori, L.; Manzin, A. (1)H NMR
spectroscopy-based metabolomics analysis for the diagnosis of symptomatic E. coli-associated urinary tract
infection (UTI). BMC Microbiol. 2017, 17, 201. [CrossRef] [PubMed]

62. Puebla-Barragan, S.; Renaud, J.; Sumarah, M.; Reid, G. Malodorous biogenic amines in Escherichia coli-caused
urinary tract infections in women-a metabolomics approach. Sci. Rep. 2020, 10, 9703. [CrossRef] [PubMed]

63. Collins, J.M.; Siddiqa, A.; Jones, D.P.; Liu, K.; Kempker, R.R.; Nizam, A.; Shah, N.S.; Ismail, N.; Ouma, S.G.;
Tukvadze, N.; et al. Tryptophan catabolism reflects disease activity in human tuberculosis. JCI Insight 2020, 5.
[CrossRef] [PubMed]

64. De Carvalho, L.P.; Fischer, S.M.; Marrero, J.; Nathan, C.; Ehrt, S.; Rhee, K.Y. Metabolomics of Mycobacterium
tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem. Biol. 2010, 17, 1122–1131.
[CrossRef]

65. Cho, Y.; Park, Y.; Sim, B.; Kim, J.; Lee, H.; Cho, S.-N.; Kang, Y.A.; Lee, S.-G. Identification of serum biomarkers
for active pulmonary tuberculosis using a targeted metabolomics approach. Sci. Rep. 2020, 10, 3825. [CrossRef]

66. Frediani, J.K.; Jones, D.P.; Tukvadze, N.; Uppal, K.; Sanikidze, E.; Kipiani, M.; Tran, V.T.; Hebbar, G.;
Walker, D.I.; Kempker, R.R.; et al. Plasma metabolomics in human pulmonary tuberculosis disease: A pilot
study. PLoS ONE 2014, 9, e108854. [CrossRef]

67. Zhou, A.; Ni, J.; Xu, Z.; Wang, Y.; Lu, S.; Sha, W.; Karakousis, P.C.; Yao, Y.-F. Application of (1)h NMR
spectroscopy-based metabolomics to sera of tuberculosis patients. J. Proteome Res. 2013, 12, 4642–4649. [CrossRef]

68. Weiner, J., 3rd; Parida, S.K.; Maertzdorf, J.; Black, G.F.; Repsilber, D.; Telaar, A.; Mohney, R.P.;
Arndt-Sullivan, C.; Ganoza, C.A.; Fae, K.C.; et al. Biomarkers of inflammation, immunosuppression
and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS ONE
2012, 7, e40221. [CrossRef]

69. Sun, L.; Li, J.Q.; Ren, N.; Qi, H.; Dong, F.; Xiao, J.; Xu, F.; Jiao, W.W.; Shen, C.; Song, W.Q.; et al. Utility of
Novel Plasma Metabolic Markers in the Diagnosis of Pediatric Tuberculosis: A Classification and Regression
Tree Analysis Approach. J. Proteome Res. 2016, 15, 3118–3125. [CrossRef]

70. Weiner, J., 3rd; Maertzdorf, J.; Sutherland, J.S.; Duffy, F.J.; Thompson, E.; Suliman, S.; McEwen, G.; Thiel, B.;
Parida, S.K.; Zyla, J.; et al. Metabolite changes in blood predict the onset of tuberculosis. Nat. Commun. 2018,
9, 5208. [CrossRef]

71. Duffy, F.J.; Weiner, J., 3rd; Hansen, S.; Tabb, D.L.; Suliman, S.; Thompson, E.; Maertzdorf, J.; Shankar, S.;
Tromp, G.; Parida, S.; et al. Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis
and Disease Outcome. Front. Immunol. 2019, 10, 527. [CrossRef] [PubMed]

72. Lee, W.; VanderVen, B.C.; Fahey, R.J.; Russell, D.G. Intracellular Mycobacterium tuberculosis exploits
host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 2013, 288, 6788–6800. [CrossRef] [PubMed]

73. Kinsella, R.J.; Fitzpatrick, D.A.; Creevey, C.J.; McInerney, J.O. Fatty acid biosynthesis in Mycobacterium
tuberculosis: Lateral gene transfer, adaptive evolution, and gene duplication. Proc. Natl. Acad. Sci. USA
2003, 100, 10320–10325. [CrossRef] [PubMed]

74. MacGurn, J.A.; Cox, J.S. A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome
maturation arrest identifies components of the ESX-1 secretion system. Infect. Immun. 2007, 75, 2668–2678.
[CrossRef] [PubMed]

75. Garg, S.K.; Volpe, E.; Palmieri, G.; Mattei, M.; Galati, D.; Martino, A.; Piccioni, M.S.; Valente, E.; Bonanno, E.;
De Vito, P.; et al. Sphingosine 1–Phosphate Induces Antimicrobial Activity Both In Vitro and In Vivo. J. Infect.
Dis. 2004, 189, 2129–2138. [CrossRef]

http://dx.doi.org/10.3389/fimmu.2019.01533
http://dx.doi.org/10.3389/fcimb.2019.00042
http://dx.doi.org/10.1172/JCI126905
http://dx.doi.org/10.1007/s11306-018-1397-x
http://dx.doi.org/10.1186/s12866-017-1108-1
http://www.ncbi.nlm.nih.gov/pubmed/28934947
http://dx.doi.org/10.1038/s41598-020-66662-x
http://www.ncbi.nlm.nih.gov/pubmed/32546787
http://dx.doi.org/10.1172/jci.insight.137131
http://www.ncbi.nlm.nih.gov/pubmed/32369456
http://dx.doi.org/10.1016/j.chembiol.2010.08.009
http://dx.doi.org/10.1038/s41598-020-60669-0
http://dx.doi.org/10.1371/journal.pone.0108854
http://dx.doi.org/10.1021/pr4007359
http://dx.doi.org/10.1371/annotation/b7f554bc-ad78-4745-9cd6-e14954d6a01d
http://dx.doi.org/10.1021/acs.jproteome.6b00228
http://dx.doi.org/10.1038/s41467-018-07635-7
http://dx.doi.org/10.3389/fimmu.2019.00527
http://www.ncbi.nlm.nih.gov/pubmed/30967866
http://dx.doi.org/10.1074/jbc.M112.445056
http://www.ncbi.nlm.nih.gov/pubmed/23306194
http://dx.doi.org/10.1073/pnas.1737230100
http://www.ncbi.nlm.nih.gov/pubmed/12917487
http://dx.doi.org/10.1128/IAI.01872-06
http://www.ncbi.nlm.nih.gov/pubmed/17353284
http://dx.doi.org/10.1086/386286


Metabolites 2020, 10, 492 15 of 18

76. Shrinet, J.; Shastri, J.S.; Gaind, R.; Bhavesh, N.S.; Sunil, S. Serum metabolomics analysis of patients with
chikungunya and dengue mono/co-infections reveals distinct metabolite signatures in the three disease
conditions. Sci. Rep. 2016, 6, 36833. [CrossRef]

77. Cui, L.; Lee, Y.H.; Kumar, Y.; Xu, F.; Lu, K.; Ooi, E.E.; Tannenbaum, S.R.; Ong, C.N. Serum metabolome and
lipidome changes in adult patients with primary dengue infection. PLoS Negl. Trop. Dis. 2013, 7, e2373. [CrossRef]

78. Cui, L.; Lee, Y.H.; Thein, T.L.; Fang, J.; Pang, J.; Ooi, E.E.; Leo, Y.S.; Ong, C.N.; Tannenbaum, S.R. Serum
Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever.
PLoS Negl. Trop. Dis. 2016, 10, e0004607. [CrossRef]

79. Cui, L.; Pang, J.; Lee, Y.H.; Ooi, E.E.; Ong, C.N.; Leo, Y.S.; Tannenbaum, S.R. Serum metabolome changes in
adult patients with severe dengue in the critical and recovery phases of dengue infection. PLoS Negl. Trop.
Dis. 2018, 12, e0006217. [CrossRef]

80. Dickens, A.M.; Anthony, D.C.; Deutsch, R.; Mielke, M.M.; Claridge, T.D.; Grant, I.; Franklin, D.; Rosario, D.;
Marcotte, T.; Letendre, S.; et al. Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural
mechanism regulating shifts in cognitive states of HIV-infected patients. AIDS 2015, 29, 559–569. [CrossRef]

81. Chan, E.Y.; Sutton, J.N.; Jacobs, J.M.; Bondarenko, A.; Smith, R.D.; Katze, M.G. Dynamic host energetics
and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells:
Analysis by multiplexed label-free mass spectrometry. J. Virol. 2009, 83, 9283–9295. [CrossRef]

82. Hollenbaugh, J.A.; Munger, J.; Kim, B. Metabolite profiles of human immunodeficiency virus infected CD4+

T cells and macrophages using LC-MS/MS analysis. Virology 2011, 415, 153–159. [CrossRef] [PubMed]
83. Scarpellini, B.; Zanoni, M.; Sucupira, M.C.; Truong, H.M.; Janini, L.M.; Segurado, I.D.; Diaz, R.S. Plasma

Metabolomics Biosignature According to HIV Stage of Infection, Pace of Disease Progression, Viremia Level
and Immunological Response to Treatment. PLoS ONE 2016, 11, e0161920. [CrossRef] [PubMed]

84. Serezani, C.H.; Ballinger, M.N.; Aronoff, D.M.; Peters-Golden, M. Cyclic AMP: Master regulator of innate
immune cell function. Am. J. Respir. Cell Mol. Biol. 2008, 39, 127–132. [CrossRef] [PubMed]

85. Banoei, M.M.; Vogel, H.J.; Weljie, A.M.; Kumar, A.; Yende, S.; Angus, D.C.; Winston, B.W.; Canadian Critical
Care Translational Biology Group. Plasma metabolomics for the diagnosis and prognosis of H1N1 influenza
pneumonia. Crit. Care 2017, 21, 97. [CrossRef] [PubMed]

86. Wang, Q.; Fang, P.; He, R.; Li, M.; Yu, H.; Zhou, L.; Yi, Y.; Wang, F.; Rong, Y.; Zhang, Y.; et al. O-GlcNAc
transferase promotes influenza A virus-induced cytokine storm by targeting interferon regulatory factor-5.
Sci. Adv. 2020, 6, eaaz7086. [CrossRef] [PubMed]

87. Cui, L.; Zheng, D.; Lee, Y.H.; Chan, T.K.; Kumar, Y.; Ho, W.E.; Chen, J.Z.; Tannenbaum, S.R.; Ong, C.N.
Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in
a Murine Model of Influenza Pneumonia. Sci. Rep. 2016, 6, 26076. [CrossRef]

88. Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; Hlh Across Speciality
Collaboration, U.K. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020,
395, 1033–1034. [CrossRef]

89. Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.;
Hansen, K.C.; Hod, E.A.; et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating
with IL-6 levels and renal status. JCI Insight 2020, 5. [CrossRef]

90. Song, J.W.; Lam, S.M.; Fan, X.; Cao, W.J.; Wang, S.Y.; Tian, H.; Chua, G.H.; Zhang, C.; Meng, F.P.; Xu, Z.; et al.
Omics-Driven Systems Interrogation of Metabolic Dysregulation in COVID-19 Pathogenesis. Cell Metab.
2020, 32, 188–202.e5. [CrossRef]

91. Hong, W. Combating COVID-19 with Chloroquine. J. Mol. Cell Biol. 2020, 12, 249–250. [CrossRef] [PubMed]
92. Wu, D.; Shu, T.; Yang, X.; Song, J.-X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma

metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020, 7, 1157–1168. [CrossRef]
93. Bogdan, C.; Rollinghoff, M.; Diefenbach, A. Reactive oxygen and reactive nitrogen intermediates in innate

and specific immunity. Curr. Opin. Immunol. 2000, 12, 64–76. [CrossRef]
94. Appelberg, R. Macrophage nutriprive antimicrobial mechanisms. J. Leukoc. Biol. 2006, 79, 1117–1128.

[CrossRef]
95. Spooner, R.; Yilmaz, O. The role of reactive-oxygen-species in microbial persistence and inflammation. Int. J.

Mol. Sci. 2011, 12, 334–352. [CrossRef]
96. Nathan, C.; Shiloh, M.U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian

hosts and microbial pathogens. Proc. Natl. Acad Sci. USA 2000, 97, 8841–8848. [CrossRef]

http://dx.doi.org/10.1038/srep36833
http://dx.doi.org/10.1371/journal.pntd.0002373
http://dx.doi.org/10.1371/journal.pntd.0004607
http://dx.doi.org/10.1371/journal.pntd.0006217
http://dx.doi.org/10.1097/QAD.0000000000000580
http://dx.doi.org/10.1128/JVI.00814-09
http://dx.doi.org/10.1016/j.virol.2011.04.007
http://www.ncbi.nlm.nih.gov/pubmed/21565377
http://dx.doi.org/10.1371/journal.pone.0161920
http://www.ncbi.nlm.nih.gov/pubmed/27941971
http://dx.doi.org/10.1165/rcmb.2008-0091TR
http://www.ncbi.nlm.nih.gov/pubmed/18323530
http://dx.doi.org/10.1186/s13054-017-1672-7
http://www.ncbi.nlm.nih.gov/pubmed/28424077
http://dx.doi.org/10.1126/sciadv.aaz7086
http://www.ncbi.nlm.nih.gov/pubmed/32494619
http://dx.doi.org/10.1038/srep26076
http://dx.doi.org/10.1016/S0140-6736(20)30628-0
http://dx.doi.org/10.1172/jci.insight.140327
http://dx.doi.org/10.1016/j.cmet.2020.06.016
http://dx.doi.org/10.1093/jmcb/mjaa015
http://www.ncbi.nlm.nih.gov/pubmed/32236561
http://dx.doi.org/10.1093/nsr/nwaa086
http://dx.doi.org/10.1016/S0952-7915(99)00052-7
http://dx.doi.org/10.1189/jlb.0206079
http://dx.doi.org/10.3390/ijms12010334
http://dx.doi.org/10.1073/pnas.97.16.8841


Metabolites 2020, 10, 492 16 of 18

97. Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic
requirements of cell proliferation. Science 2009, 324, 1029–1033. [CrossRef]

98. Escoll, P.; Buchrieser, C. Metabolic reprogramming of host cells upon bacterial infection: Why shift to a
Warburg-like metabolism? FEBS J. 2018, 285, 2146–2160. [CrossRef]

99. Hu, J.; Jin, K.; He, Z.G.; Zhang, H. Citrate lyase CitE in Mycobacterium tuberculosis contributes to
mycobacterial survival under hypoxic conditions. PLoS ONE 2020, 15, e0230786. [CrossRef]

100. Dai, Z.L.; Li, X.L.; Xi, P.B.; Zhang, J.; Wu, G.; Zhu, W.Y. L-Glutamine regulates amino acid utilization by
intestinal bacteria. Amino Acids 2013, 45, 501–512. [CrossRef]

101. Eisenreich, W.; Heesemann, J.; Rudel, T.; Goebel, W. Metabolic host responses to infection by intracellular
bacterial pathogens. Front. Cell. Infect. Microbiol. 2013, 3, 24. [CrossRef] [PubMed]

102. Marrero, J.; Rhee, K.Y.; Schnappinger, D.; Pethe, K.; Ehrt, S. Gluconeogenic carbon flow of tricarboxylic acid
cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc. Natl.
Acad. Sci. USA 2010, 107, 9819–9824. [CrossRef] [PubMed]

103. Sanchez, E.L.; Lagunoff, M. Viral activation of cellular metabolism. Virology 2015, 479–480, 609–618. [CrossRef]
[PubMed]

104. Izquierdo-Useros, N.; Naranjo-Gomez, M.; Erkizia, I.; Puertas, M.C.; Borras, F.E.; Blanco, J.; Martinez-Picado, J.
HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog. 2010, 6, e1000740.
[CrossRef] [PubMed]

105. Sitole, L.J.; Williams, A.A.; Meyer, D. Metabonomic analysis of HIV-infected biofluids. Mol. Biosyst. 2013, 9,
18–28. [CrossRef]

106. Nakaya, H.I.; Pulendran, B. Vaccinology in the era of high-throughput biology. Philos. Trans. R. Soc. Lond. B
Biol. Sci. 2015, 370. [CrossRef]

107. Nakaya, H.I.; Pulendran, B. Systems vaccinology: Its promise and challenge for HIV vaccine development.
Curr. Opin. HIV AIDS 2012, 7, 24–31. [CrossRef]

108. Pulendran, B.; Li, S.; Nakaya, H.I. Systems Vaccinology. Immunity 2010, 33, 516–529. [CrossRef]
109. Borriello, F.; van Haren, S.D.; Levy, O. First International Precision Vaccines Conference: Multidisciplinary

Approaches to Next-Generation Vaccines. Msphere 2018, 3. [CrossRef]
110. Hagan, T.; Cortese, M.; Rouphael, N.; Boudreau, C.; Linde, C.; Maddur, M.S.; Das, J.; Wang, H.; Guthmiller, J.;

Zheng, N.Y.; et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans.
Cell 2019, 178, 1313–1328 e1313. [CrossRef]

111. Khan, A.; Shin, O.S.; Na, J.; Kim, J.K.; Seong, R.K.; Park, M.S.; Noh, J.Y.; Song, J.Y.; Cheong, H.J.; Park, Y.H.;
et al. A Systems Vaccinology Approach Reveals the Mechanisms of Immunogenic Responses to Hantavax
Vaccination in Humans. Sci. Rep. 2019, 9, 4760. [CrossRef] [PubMed]

112. Dhur, A.; Galan, P.; Hercberg, S. Folate status and the immune system. Prog. Food Nutr. Sci. 1991, 15, 43–60.
[PubMed]

113. Oh, K.Y.; Kang, M.J.; Choi, W.A.; Kwon, J.W.; Kim, B.J.; Yu, J.; Hong, S.J. Association Between Serum IgE
Levels and the CTLA4 + 49A/G and FCER1B-654C/T Polymorphisms in Korean Children With Asthma.
Allergy Asthma Immunol. Res. 2010, 2, 127–133. [CrossRef] [PubMed]

114. Manzetti, S.; Zhang, J.; van der Spoel, D. Thiamin function, metabolism, uptake, and transport. Biochemistry
2014, 53, 821–835. [CrossRef] [PubMed]

115. Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the
microbial world. Int. J. Med. Chem. 2014, 2014, 202784. [CrossRef]

116. Ferreira, A.M.; Ferrari, M.I.; Trostchansky, A.; Batthyany, C.; Souza, J.M.; Alvarez, M.N.; Lopez, G.V.;
Baker, P.R.; Schopfer, F.J.; O’Donnell, V.; et al. Macrophage activation induces formation of the
anti-inflammatory lipid cholesteryl-nitrolinoleate. Biochem. J. 2009, 417, 223–234. [CrossRef] [PubMed]

117. Naito, T.; Irie, H.; Tsujimoto, K.; Ikeda, K.; Arakawa, T.; Koyama, A.H. Antiviral effect of arginine against
herpes simplex virus type 1. Int. J. Mol. Med. 2009, 23, 495–499. [CrossRef]

118. Goll, J.B.; Li, S.; Edwards, J.L.; Bosinger, S.E.; Jensen, T.L.; Wang, Y.; Hooper, W.F.; Gelber, C.E.; Sanders, K.L.;
Anderson, E.J.; et al. Transcriptomic and Metabolic Responses to a Live-Attenuated Francisella tularensis
Vaccine. Vaccines 2020, 8, 412. [CrossRef]

119. Kuhtreiber, W.M.; Tran, L.; Kim, T.; Dybala, M.; Nguyen, B.; Plager, S.; Huang, D.; Janes, S.; Defusco, A.;
Baum, D.; et al. Long-term reduction in hyperglycemia in advanced type 1 diabetes: The value of induced
aerobic glycolysis with BCG vaccinations. NPJ Vaccines 2018, 3, 23. [CrossRef]

http://dx.doi.org/10.1126/science.1160809
http://dx.doi.org/10.1111/febs.14446
http://dx.doi.org/10.1371/journal.pone.0230786
http://dx.doi.org/10.1007/s00726-012-1264-4
http://dx.doi.org/10.3389/fcimb.2013.00024
http://www.ncbi.nlm.nih.gov/pubmed/23847769
http://dx.doi.org/10.1073/pnas.1000715107
http://www.ncbi.nlm.nih.gov/pubmed/20439709
http://dx.doi.org/10.1016/j.virol.2015.02.038
http://www.ncbi.nlm.nih.gov/pubmed/25812764
http://dx.doi.org/10.1371/journal.ppat.1000740
http://www.ncbi.nlm.nih.gov/pubmed/20360840
http://dx.doi.org/10.1039/C2MB25318F
http://dx.doi.org/10.1098/rstb.2014.0146
http://dx.doi.org/10.1097/COH.0b013e32834dc37b
http://dx.doi.org/10.1016/j.immuni.2010.10.006
http://dx.doi.org/10.1128/mSphere.00214-18
http://dx.doi.org/10.1016/j.cell.2019.08.010
http://dx.doi.org/10.1038/s41598-019-41205-1
http://www.ncbi.nlm.nih.gov/pubmed/30886186
http://www.ncbi.nlm.nih.gov/pubmed/1887065
http://dx.doi.org/10.4168/aair.2010.2.2.127
http://www.ncbi.nlm.nih.gov/pubmed/20358027
http://dx.doi.org/10.1021/bi401618y
http://www.ncbi.nlm.nih.gov/pubmed/24460461
http://dx.doi.org/10.1155/2014/202784
http://dx.doi.org/10.1042/BJ20080701
http://www.ncbi.nlm.nih.gov/pubmed/18671672
http://dx.doi.org/10.3892/ijmm_00000156
http://dx.doi.org/10.3390/vaccines8030412
http://dx.doi.org/10.1038/s41541-018-0062-8


Metabolites 2020, 10, 492 17 of 18

120. McClenathan, B.M.; Stewart, D.A.; Spooner, C.E.; Pathmasiri, W.W.; Burgess, J.P.; McRitchie, S.L.; Choi, Y.S.;
Sumner, S.C. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using
nuclear magnetic resonance metabolomics. Vaccine 2017, 35, 1238–1245. [CrossRef]

121. McClenathan, B.M.; Edwards, K.M. Vaccine safety: An evolving evidence-based science. Br. J. Clin. Pharmacol.
2019, 85, 2649–2651. [CrossRef] [PubMed]

122. Arts, R.J.; Joosten, L.A.; Netea, M.G. Immunometabolic circuits in trained immunity. Semin. Immunol. 2016,
28, 425–430. [CrossRef]

123. Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252.
[CrossRef] [PubMed]

124. Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [CrossRef]
125. Ren, W.; Rajendran, R.; Zhao, Y.; Tan, B.; Wu, G.; Bazer, F.W.; Zhu, G.; Peng, Y.; Huang, X.; Deng, J.; et al. Amino

Acids As Mediators of Metabolic Cross Talk between Host and Pathogen. Front. Immunol. 2018, 9, 319. [CrossRef]
126. Ren, W.; Duan, J.; Yin, J.; Liu, G.; Cao, Z.; Xiong, X.; Chen, S.; Li, T.; Yin, Y.; Hou, Y.; et al. Dietary L-glutamine

supplementation modulates microbial community and activates innate immunity in the mouse intestine.
Amino Acids 2014, 46, 2403–2413. [CrossRef] [PubMed]

127. Koeken, V.; Lachmandas, E.; Riza, A.; Matzaraki, V.; Li, Y.; Kumar, V.; Oosting, M.; Joosten, L.A.B.; Netea, M.G.;
van Crevel, R. Role of Glutamine Metabolism in Host Defense Against Mycobacterium tuberculosis Infection.
J. Infect. Dis. 2019, 219, 1662–1670. [CrossRef] [PubMed]

128. Karinch, A.M.; Pan, M.; Lin, C.M.; Strange, R.; Souba, W.W. Glutamine metabolism in sepsis and infection.
J. Nutr. 2001, 131, 2535S–2538S; discussion 2550S–2551S. [CrossRef]

129. Ma, E.H.; Bantug, G.; Griss, T.; Condotta, S.; Johnson, R.M.; Samborska, B.; Mainolfi, N.; Suri, V.; Guak, H.;
Balmer, M.L.; et al. Serine Is an Essential Metabolite for Effector T Cell Expansion. Cell Metab. 2017, 25,
345–357. [CrossRef]

130. Passalacqua, K.D.; Lu, J.; Goodfellow, I.; Kolawole, A.O.; Arche, J.R.; Maddox, R.J.; Carnahan, K.E.;
O’Riordan, M.X.D.; Wobus, C.E. Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus.
mBio 2019, 10. [CrossRef]

131. Hayek, I.; Fischer, F.; Schulze-Luehrmann, J.; Dettmer, K.; Sobotta, K.; Schatz, V.; Kohl, L.; Boden, K.; Lang, R.;
Oefner, P.J.; et al. Limitation of TCA Cycle Intermediates Represents an Oxygen-Independent Nutritional
Antibacterial Effector Mechanism of Macrophages. Cell Rep. 2019, 26, 3502–3510. [CrossRef] [PubMed]

132. Ulas, T.; Pirr, S.; Fehlhaber, B.; Bickes, M.S.; Loof, T.G.; Vogl, T.; Mellinger, L.; Heinemann, A.S.; Burgmann, J.;
Schoning, J.; et al. S100-alarmin-induced innate immune programming protects newborn infants from sepsis.
Nat. Immunol. 2017, 18, 622–632. [CrossRef]

133. Dreschers, S.; Ohl, K.; Lehrke, M.; Mollmann, J.; Denecke, B.; Costa, I.; Vogl, T.; Viemann, D.; Roth, J.;
Orlikowsky, T.; et al. Impaired cellular energy metabolism in cord blood macrophages contributes to abortive
response toward inflammatory threats. Nat. Commun. 2019, 10, 1685. [CrossRef] [PubMed]

134. Yin, J.; Ren, W.; Huang, X.; Deng, J.; Li, T.; Yin, Y. Potential Mechanisms Connecting Purine Metabolism and
Cancer Therapy. Front. Immunol. 2018, 9, 1697. [CrossRef] [PubMed]

135. Yegutkin, G.G. Nucleotide-and nucleoside-converting ectoenzymes: Important modulators of purinergic
signalling cascade. Biochim. Biophys. Acta 2008, 1783, 673–694. [CrossRef] [PubMed]

136. Rai, B.; Kaur, J.; Jacobs, R.; Anand, S.C. Adenosine deaminase in saliva as a diagnostic marker of squamous
cell carcinoma of tongue. Clin. Oral Investig. 2011, 15, 347–349. [CrossRef]

137. Passos, D.F.; Bernardes, V.M.; da Silva, J.L.G.; Schetinger, M.R.C.; Leal, D.B.R. Adenosine signaling and
adenosine deaminase regulation of immune responses: Impact on the immunopathogenesis of HIV infection.
Purinergic Signal. 2018, 14, 309–320. [CrossRef]

138. Staley, C.; Weingarden, A.R.; Khoruts, A.; Sadowsky, M.J. Interaction of gut microbiota with bile acid
metabolism and its influence on disease states. Appl. Microbiol. Biotechnol. 2017, 101, 47–64. [CrossRef]

139. Oh, J.Z.; Ravindran, R.; Chassaing, B.; Carvalho, F.A.; Maddur, M.S.; Bower, M.; Hakimpour, P.; Gill, K.P.;
Nakaya, H.I.; Yarovinsky, F.; et al. TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody
Responses to Seasonal Influenza Vaccination. Immunity 2014, 41, 478–492. [CrossRef]

140. Kloverpris, H.N.; Kazer, S.W.; Mjosberg, J.; Mabuka, J.M.; Wellmann, A.; Ndhlovu, Z.; Yadon, M.C.;
Nhamoyebonde, S.; Muenchhoff, M.; Simoni, Y.; et al. Innate Lymphoid Cells Are Depleted Irreversibly
during Acute HIV-1 Infection in the Absence of Viral Suppression. Immunity 2016, 44, 391–405. [CrossRef]

http://dx.doi.org/10.1016/j.vaccine.2017.01.056
http://dx.doi.org/10.1111/bcp.14080
http://www.ncbi.nlm.nih.gov/pubmed/31373717
http://dx.doi.org/10.1016/j.smim.2016.09.002
http://dx.doi.org/10.1017/S000711450769936X
http://www.ncbi.nlm.nih.gov/pubmed/17403271
http://dx.doi.org/10.1007/s00726-009-0269-0
http://dx.doi.org/10.3389/fimmu.2018.00319
http://dx.doi.org/10.1007/s00726-014-1793-0
http://www.ncbi.nlm.nih.gov/pubmed/25023447
http://dx.doi.org/10.1093/infdis/jiy709
http://www.ncbi.nlm.nih.gov/pubmed/30541099
http://dx.doi.org/10.1093/jn/131.9.2535S
http://dx.doi.org/10.1016/j.cmet.2016.12.011
http://dx.doi.org/10.1128/mBio.02175-18
http://dx.doi.org/10.1016/j.celrep.2019.02.103
http://www.ncbi.nlm.nih.gov/pubmed/30917307
http://dx.doi.org/10.1038/ni.3745
http://dx.doi.org/10.1038/s41467-019-09359-8
http://www.ncbi.nlm.nih.gov/pubmed/30976008
http://dx.doi.org/10.3389/fimmu.2018.01697
http://www.ncbi.nlm.nih.gov/pubmed/30105018
http://dx.doi.org/10.1016/j.bbamcr.2008.01.024
http://www.ncbi.nlm.nih.gov/pubmed/18302942
http://dx.doi.org/10.1007/s00784-010-0404-z
http://dx.doi.org/10.1007/s11302-018-9619-2
http://dx.doi.org/10.1007/s00253-016-8006-6
http://dx.doi.org/10.1016/j.immuni.2014.08.009
http://dx.doi.org/10.1016/j.immuni.2016.01.006


Metabolites 2020, 10, 492 18 of 18

141. Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol.
Case Stud. 2015, 1, a000588. [CrossRef] [PubMed]

142. Tsugawa, H.; Satoh, A.; Uchino, H.; Cajka, T.; Arita, M.; Arita, M. Mass Spectrometry Data Repository
Enhances Novel Metabolite Discoveries with Advances in Computational Metabolomics. Metabolites 2019, 9,
119. [CrossRef] [PubMed]

143. Deelen, J.; Kettunen, J.; Fischer, K.; van der Spek, A.; Trompet, S.; Kastenmuller, G.; Boyd, A.; Zierer, J.;
van den Akker, E.B.; Ala-Korpela, M.; et al. A metabolic profile of all-cause mortality risk identified in an
observational study of 44,168 individuals. Nat. Commun. 2019, 10, 3346. [CrossRef] [PubMed]

144. Food and Drug Administration, HHS. Medical devices; clinical chemistry and clinical toxicology devices;
classification of newborn screening test systems for amino acids, free carnitine, and acylcarnitines using
tandem mass spectrometry. Final rule. Fed. Regist. 2004, 69, 68254–68255.

145. Patel, R. Maldi-tof ms for the diagnosis of infectious diseases. Clin. Chem. 2015, 61, 100–111. [CrossRef]
146. Herman, W.A.; Devey, G.B. Future Trends in Medical Device Technologies: A Ten-Year Forecast. Food Drug

Adm. Cent. Devices Radiol. Health 2011.
147. Wilson, I.D. Metabolic phenotyping by liquid chromatography-mass spectrometry to study human health

and disease. Anal. Chem. 2015, 87, 2519. [CrossRef]
148. Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic phenotyping in health and disease. Cell 2008, 134, 714–717.

[CrossRef]
149. Fernandez-Garcia, M.; Rojo, D.; Rey-Stolle, F.; Garcia, A.; Barbas, C. Metabolomic-Based Methods in Diagnosis

and Monitoring Infection Progression. Exp. Suppl. 2018, 109, 283–315. [CrossRef]
150. Zurfluh, S.; Baumgartner, T.; Meier, M.A.; Ottiger, M.; Voegeli, A.; Bernasconi, L.; Neyer, P.; Mueller, B.;

Schuetz, P. The role of metabolomic markers for patients with infectious diseases: Implications for risk
stratification and therapeutic modulation. Expert Rev. Anti Infect. Ther. 2018, 16, 133–142. [CrossRef]

151. Beger, R.D.; Schmidt, M.A.; Kaddurah-Daouk, R. Current Concepts in Pharmacometabolomics, Biomarker
Discovery, and Precision Medicine. Metabolites 2020, 10, 129. [CrossRef] [PubMed]

152. Bhattacharya, S.; Andorf, S.; Gomes, L.; Dunn, P.; Schaefer, H.; Pontius, J.; Berger, P.; Desborough, V.; Smith, T.;
Campbell, J.; et al. ImmPort: Disseminating data to the public for the future of immunology. Immunol. Res.
2014, 58, 234–239. [CrossRef] [PubMed]

153. Bhattacharya, S.; Dunn, P.; Thomas, C.G.; Smith, B.; Schaefer, H.; Chen, J.; Hu, Z.; Zalocusky, K.A.;
Shankar, R.D.; Shen-Orr, S.S.; et al. ImmPort, toward repurposing of open access immunological assay data
for translational and clinical research. Sci. Data 2018, 5, 180015. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1101/mcs.a000588
http://www.ncbi.nlm.nih.gov/pubmed/27148576
http://dx.doi.org/10.3390/metabo9060119
http://www.ncbi.nlm.nih.gov/pubmed/31238512
http://dx.doi.org/10.1038/s41467-019-11311-9
http://www.ncbi.nlm.nih.gov/pubmed/31431621
http://dx.doi.org/10.1373/clinchem.2014.221770
http://dx.doi.org/10.1021/acs.analchem.5b00409
http://dx.doi.org/10.1016/j.cell.2008.08.026
http://dx.doi.org/10.1007/978-3-319-74932-7_7
http://dx.doi.org/10.1080/14787210.2018.1426460
http://dx.doi.org/10.3390/metabo10040129
http://www.ncbi.nlm.nih.gov/pubmed/32230776
http://dx.doi.org/10.1007/s12026-014-8516-1
http://www.ncbi.nlm.nih.gov/pubmed/24791905
http://dx.doi.org/10.1038/sdata.2018.15
http://www.ncbi.nlm.nih.gov/pubmed/29485622
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Metabolomics—An Emerging Tool to Complement Other Systems Immunology Platforms 
	Immunometabolism 
	Impact of Infection on Host Metabolic Signatures 
	Metabolic Signatures of Vaccine-Induced Responses 
	Shared Metabolic Pathways Across Infection and Vaccination Studies 
	Integrative Metabolomics—Challenges and Emerging Horizons 
	Conclusions 
	References

