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Abstract: This article reports a targeted metabolomic method for total plasma fatty acids (FAs) of
clinical or nutritional relevance. Thirty-six saturated, unsaturated, or branched-chain FAs with
a chain length of C8-C28 were quantified using reversed-phase liquid chromatography-tandem
mass spectrometry. FAs in plasma (10 µL) were acid-hydrolyzed, extracted, and derivatized
with DAABD-AE (4-[2-(N,N-Dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-
benzoxadiazole) at 60 ◦C for 1 h. Derivatization resulted in a staggering nine orders of magnitude
higher sensitivity compared to underivatized analytes. FAs were measured by multiple-reaction
monitoring using stable isotope internal standards. With physiological and pathological analyte
levels in mind, linearity was established using spiked plasma. Intra-day (n = 15) and inter-day
(n = 20) imprecisions expressed as variation coefficient were ≤10.2% with recovery ranging between
94.5–106.4%. Limits of detection and limit of quantitation ranged between 4.2–14.0 and 15.1–51.3 pmol
per injection, respectively. Age-stratified reference intervals were established in four categories:
<1 month, 1–12 month, 1–18 year, and >18 year. This method was assessed using samples from
patients with disorders affecting FAs metabolism. For the first time, C28:0 and C28:0/C22:0 ratio were
evaluated as novel disease biomarkers. This method can potentially be utilized in diagnosing patients
with inborn errors of metabolism, chronic disease risk estimation, or nutritional applications.
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1. Introduction

Fatty acids (FAs) are carboxyl group-containing compounds with a hydrocarbon chain of variable
length and degree of unsaturation. Widely dispersed in nature, these organic compounds are often
classified based on the number of carbon atoms as short (<6 carbons), medium (6–12 carbons),
long (12–20 carbons), and very-long-chain (≥22 carbons) FAs. In addition to their remarkable
role as fuel molecules, FAs are indispensable constituents of simple and complex lipids, such as
triglycerides, phospholipids, and glycolipids, and their biological activities encompass signaling
pathways, gene expression, and regulation of membrane structure and functions. These diverse
functions substantiate the influence of proper FAs homeostasis on health, well-being, and risk of
disease [1–4]. Disrupted FAs metabolism has been reported in association with several pathological
conditions, including heart disease [5,6], cancer [7,8], insulin resistance, and non-insulin-dependent
diabetes mellitus [9], Alzheimer neuropathology [10], and numerous inborn errors of metabolism [11,12].

The interest in FAs as biomarkers necessitates the availability of reliable analytical methods
for quantitative and qualitative analysis in biological samples. Gas chromatography (GC) and gas
chromatography-mass spectrometry (GC-MS) have been the primary analytical tools for FAs in all types
of samples [13–15]. Analysis using these methods requires significant sample preparation that involves
derivatization to enhance volatility, thermal stability, and chromatographic separation. Electrospray
ionization tandem mass spectrometry (ESI-MS/MS) is a robust and versatile detection technique
with established utilization in research and diagnostics [16]. With liquid chromatography (LC) as a
front-end technology, LC-MS/MS methods represent powerful alternatives to GC and GC-MS due to the
simpler workflow, better sensitivity, and faster analytical time [17]. Over the past years, applications
of LC-MS/MS have expanded significantly in clinical laboratories in areas, such as therapeutic drug
monitoring, drugs of abuse, clinical toxicology, and inborn errors of metabolism [18–21].

Although the analysis of native FAs by LC-MS/MS in the negative ion ESI mode is
theoretically possible, in practice, this approach is often setback due to inefficient ionization
and unpredictable fragmentation pattern [22,23]. Jemal et al., ascribed the suppression of FAs
ionization to the inevitable use of acidic pH required for chromatographic resolution of these
compounds by commonly used reversed-phase chromatographic systems [24]. To overcome
this, we and others utilized carboxylic group derivatization to impart favorable chromatographic,
ionization, and fragmentation properties of FAs [23,25–33]. Various derivatization reagents,
including 2-nitrophenylhydrazine (2NPH) [32], dimethylaminoethanol, 3-picolylamine, or 3-pyridyl
carbinol [26], N-(4-aminomethylphenyl) pyridinium [23,28], 2, 4-dimethoxy-6-piperazin-1-yl
pyrimidine [27], 2,4-bis(diethylamino)-6-hydrazino-1,3,5-triazine [30], 4-[2-(N, N-dimethylamino)
ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE) [25,31], and aminoxy
TMT reagents [30] were utilized in these studies. Albeit chromatographic and mass spectrometric
properties have been in general been improved, these methods were hampered by the long derivatization
reaction time of 24 h [31], the additional demanding steps, such as liquid-liquid extraction to clean
up the resultant derivatives [28,32], requirement of specific instrument configuration not commonly
found in clinical laboratories [26,27], or the lack of diagnostic application and reference interval in
human biological samples [23,28–30]. Further, methods which claimed clinical applicability did not
address the analysis of diagnostically critical branched-chain FAs, such as phytanic acid (PHA; C20:0
branched), and pristanic acid (PRA; C19:0 branched), the primary pathognomonic markers of Refsum
disease (RD) and α-methyl-CoA racemase deficiency [12,25].

Recently, Chen et al. described the analysis of FAs with broad chain length coverage of saturated
C4:0-C26:0 as derivatives of 2-NPH by LC-MS/MS in the negative ion ESI mode [32]. While sensitive and
reproducible, their method has major analytical flaws rendering it unsuitable for clinical applications.
These include: (1) separation of linear and branched-chain isobaric C20:0 (i.e., arachidic acid and PHA)
and isobaric C19:0 (i.e., nonadecanoic acid and PRA) has not been addressed, (2) the use of C19:0
as internal standard (IS) is inappropriate due to potential interference with PRA and invalidates the
results of other FAs that utilize C19:0 as IS, (3) the reference interval of C26:0, the primary marker of
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Zellweger syndrome, reported by Chen et al. of 12.0 ± 5.7 µmol/L is concerning [32]. This value is
significantly higher than the established reference interval in the literature and in clinical laboratories of
≤1.31 µmol/L and seems to be inaccurate, suggesting an unrecognized interference [14,25,34]. Further,
reference intervals of other FAs, such as C8:0 and C10:0, reported by Chen et al., are orders of magnitude
lower than known literature values [14] and should be reevaluated for potential analytical issues.

In the present study, we aimed at developing a high throughput quantitative method for
FAs analysis for diagnostic and nutritional investigations using commonly available LC-MS/MS
instrumentation. For this purpose, saturated, unsaturated, and branched-chain FAs with a chain
length between C8 to C28 were analyzed after DAABD-AE derivatization (Figure 1). Where available,
stable isotope-labeled analogs were used as IS. The method was optimized, validated, and applied to
the analysis of total plasma FAs of healthy individuals and patients with established inborn errors
of metabolisms.
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2. Materials and Methods

2.1. Chemicals and Solvents

The following chemicals were purchased from Tokyo Chemical Industry (Tokyo, Japan): n-octanoic
acid (C8:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid (C16:0), cis-9-hexadecenoic
acid (C16:1), stearic acid (C18:0), γ-linolenic acid (C18:3), cis-5,8,11,14,17-eicosapentaenoic acid
(EPA; C20:5) and arachidonic acid (C20:4). Decanoic acid (C10:0), 9-decenoic acid (C10:1),
oleic acid (C18:1), arachidic acid (C20:0), all-cis-7,10,13,16,19-docosapentaenoic acid (DPA, C22:5),
docosanoic acid (C22:0), tetracosanoic acid (C24:0), hexacosanoic acid (C26:0), DAABD-AE,
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), 4-(dimethylamino) pyridine
(DMAP) and perfluorooctanoic acid (PFOA) were purchased from Sigma-Aldrich (Taufkirchen,
Germany). The following deuterium or 13C labeled analogs used as IS were purchased from Cambridge
Isotopes Laboratories (Tewksbury, MA, USA): 13C4-C8:0, d3-C10:0, d3-C12:0, d3-C14:0, d4-C16:0 and
d3-C18:0. PRA, PHA, d3-PRA, d3-PHA, d4-C22:0, d4-C24:0, and d4-C26:0 were obtained from Dr.
H. J. Ten Brink (Vrije Universiteit Medical Center, Amsterdam, The Netherlands). LC-MS/MS grade
acetonitrile and water were purchased from Merck (Darmstadt, Germany). Merck also supplied us
with HPLC grade hexane, toluene, and heptane.

2.2. Standard Solutions

Stock solutions of C16:0, C18:0, C18:1 and C20:4 at 30 mg/mL were prepared in toluene. Stock
solutions of C12:0, C14:0, and C16:1 at 10 mg/mL were also prepared in toluene. Stock solutions
(3 mg/mL) of C8:0, C10:0, C18:3 and C20:5 were prepared in toluene, whereas those of C22:0 and
C24:0 were prepared in a mixture of toluene: heptane (1:1; v/v). Stock solutions (1 mg/mL) of C10:1,
PRA, PHA, C20:0 and C22:5, 13C4-C8:0, d3-C10:0, d3-C12:0, d3-C14:0, d4-C16:0, d3-C18:0, d3-PRA,
and d3-PHA were prepared in toluene, whereas those of C26:0, d4-C22:0, d4-C24:0 and d4-C26:0 were
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prepared in a mixture of toluene: heptane (1:1; v/v). These solutions were stored in tightly sealed amber
glass screw-cap vials and were stable for at least six months at room temperature. Working solutions
were prepared by diluting appropriate volumes in acetonitrile to produce the desired concentrations.

2.3. Study Samples

This study was approved by the Al Ain Medical District Human Research Ethics Committee
(ERH-2017-555917-3). All experiments were carried out according to applicable local rules and
regulations. Informed consent was obtained from participants or their parents and/or legal guardian
for study participation.

The reference intervals of plasma total FAs were generated using samples collected from control
subjects (n = 282). A commercially available software package (MedCalc version 19.4.1) was used to
calculate double-sided 95 percentile reference intervals using the non-parametric percentile method.
Plasma samples from patients with genetically confirmed inborn errors of metabolism were also
analyzed (n = 18). Commercially available human plasma used for method development and
optimization was purchased from BioIVT (Westbury, NY, USA). Except during use, samples were
stored at −20 ◦C.

2.4. DAABD-AE Derivatization Reaction Optimization

We examined the concentration of DAABD-AE derivatization reagent and reaction time required to
achieve optimal derivatization yield. Ten µL of standard FAs mixture containing C16:0 at 6000 µmol/L,
C24:0 at 375 µmol/L, C8:0, C12:0, and C20:0 at 75 µmol/L each were placed in 100× 13 mm screw-capped
borosilicate tubes (Marienfeld, Germany) and evaporated to dryness under N2 gas. The residue was
reconstituted in 200 µL of a mixture (1:1:2 v/v/v) of EDC (25 mmol/L in water), DMAP (25 mmol/L in
acetonitrile), and DAABD-AE at different concentrations (2, 5, 7 or 9 mmol/L in acetonitrile). After
incubation at 60 ◦C, the reaction was stopped with 2 mL of 10% acetonitrile in water containing 0.5 g/L
PFOA (mobile phase A) at different time points (15, 30, 45, 60, 90, or 120 min). A portion of 1 µL of the
resultant mixture was then subjected to LC-MS/MS analysis.

To assess sensitivity improvement obtained with DAABD-AE derivatization, we compared the
signal to noise (S/N) ratio (n = 3) of C8:0, C12:0, C16:0, C20:0, and C24:0 with and without derivatization.
These analytes were measured on the same LC-MS/MS system with optimized mass-to-charge (m/z)
transitions, and identical mobile phase composition and injection volumes.

2.5. Sample Preparation

FAs were extracted from plasma as previously described [25] with slight modification. Briefly,
10 µL aliquots of plasma were transferred into 100 × 13 mm screw-capped borosilicate tubes and mixed
with HCl (60 µL, 5.0 mol/L) and 400 µL of the working IS mixture (See Table 1 footnote for individual
IS concentrations). The sealed tubes were then incubated at 100 ◦C for 1 h to release the bound FAs.
After cooling to room temperature, the total FAs content was extracted by 1.0 mL of n-hexane through
3 min of vigorous shaking followed by centrifugation at 3800 rpm for 5 min at 4 ◦C. The hexane phase
was transferred to a new borosilicate test tube and evaporated to dryness under a flow of N2 gas at
room temperature.

DAABD-AE derivatization was achieved by reconstituting the extraction residue in 200 µL of a
mixture (1:1:2 v/v/v) of EDC (25 mmol/L in water), DMAP (25 mmol/L in acetonitrile), and DAABD-AE
(2 mmol/L in acetonitrile), followed by vortex mixing for 30 sec and incubation at 60 ◦C. After 60 min,
2.0 mL of 10% acetonitrile in water containing 0.5 g/L PFOA (mobile phase A) were added to stop the
reaction. Aliquots of the resultant mixture (1 µL) were analyzed by LC-MS/MS.
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Table 1. Retention times, m/z of precursor ion, internal standard (IS), and linear range of studied FAs.

Compound Retention
Time (min) IS * Precursor

Ion (m/z)
Linear Range

(µmol/L) LOD # LOQ §

Octanoic acid, C8:0 1.6 (A) 455.3 0.75–75 9.9 33.0
Decenoic acid, C10:1 2.0 (B) 481.3 -
Decanoic acid, C10:0 2.5 (B) 483.3 3.75–375 14.0 46.7
Lauroleic acid, C12:1 2.8 (C) 509.2 -

Lauric acid, C12:0 3.2 (C) 511.2 7.5–750 12.7 42.3
Tetradecadienoic acid, C14:2 3.0 (D) 535.4 -

Myristoleic acid, C14:1 3.4 (D) 537.4 -
Myristic acid, C14:0 3.8 (D) 539.4 7.5–750 9.0 30.0

Hexadecenoic acid, C16:1w9 3.9 (E) 565.4 7.5–750 8.6 28.7
Palmitic acid, C16:0 4.7 (E) 567.3 60–6000 4.2 14.0

Stearidonic acid, C18:4 3.5 (F) 587.4 -
α-Linolenic acid, C18:3w3 3.8 (F) 589.4 3.75–375 5.1 17.0

Linoleic acid, C18:2w6 4.2 (F) 591.4 -
Oleic acid, C18:1w9 4.9 (F) 593.4 - 5.9 19.7
Stearic acid, C18:0 5.5 (F) 595.4 30–3000 6.8 22.7

EPA, C20:5w3 3.8 (H) 613.4 1.9–188 14.0 46.7
Arachidonic acid, C20:4w6 4.2 (H) 615.4 22.5–2250 8.6 28.7

h-γ-Linolenic acid, C20:3w6 4.5 (H) 617.4 -
Eicosadienoic acid, C20:2 5.1 (H) 619.4 -

Gondoic acid, C20:1 5.6 (H) 621.4 -
Arachidic acid, C20:0 6.1 (H) 623.4 0.75–75 9.0 30.0

Pristanic acid, C19:0 branched 5.3 (G) 609.2 0.75–75 11.4 38.0
Phytanic acid, C20:0 branched 5.7 (H) 623.2 0.75–75 9.6 32.0

DHA, C22:6w3 4.1 (I) 639.2 -
DPA, C22:5w3 4.6 (I) 641.2 0.75–75 14.3 47.7
DTA, C22:4w6 4.9 (I) 643.2 -

Docosatrienoic acid, C22:3 5.5 (I) 645.2 -
Docosadienoic acid, C22:2 5.8 (I) 647.2 -

Docosenoic acid, C22:1 6.2 (I) 649.2 -
Docosanoic acid, C22:0 6.6 (I) 651.2 3.75–375 10.3 34.3
Nervonic acid, C24:1 6.6 (J) 677.3 -

Tetracosanoic acid, C24:0 7.1 (J) 679.3 3.75–375 9.8 32.7
Hexacosenoic acid, C26:1 7.1 (K) 705.3 -
Hexacosanoic acid, C26:0 7.9 (K) 707.3 0.15–15 15.1 50.3
Octacosenoic acid, C28:1 7.9 (K) 733.3 -

Montanic acid, C28:0 9.1 (K) 735.3 -

* (A) 13C4 C8:0 at 7.5 µmol/L, (B) d3-C10 at 37.5 µmol/L, (C) d3-C12 at 75 µmol/L, (D) d3-C14 at 75 µmol/L, (E) d4-C16
at 600 µmol/L, (F) d3-C18 at 300 µmol/L, (G) d3-PRA at 7.5 µmol/L, (H) d3-PHA at 7.5 µmol/L, (I) d4-C22 at
37.5 µmol/L, (J) d4-C24 at 37.5 µmol/L, (K) d4-C26 at 1.5 µmol/L; # LOD, limit of detection (pmol/injection); § LOQ,
limit of quantitation (pmol/injection).

2.6. LC-MS/MS System and Operating Conditions

Analyses were conducted on Shimadzu ultra-high-performance liquid chromatography (Nexera
X2) consisting of two solvent delivery pumps, thermostated autosampler, column oven, degasser,
and system controller (Shimadzu, Kyoto, Japan). An LC-MS 8060 triple quadrupole mass spectrometer
equipped with ESI source operating in the positive mode was used for detection (Shimadzu).
LabSolutions software (v 5.86; Shimadzu) running under Microsoft Windows 7 Professional
environment was used to control the system and for data acquisition.

ESI-MS/MS analysis was achieved using N2 as nebulizing (3.0 L/min) and drying gas (10.0 L/min),
whereas argon was used for collision-induced dissociation. Desolvation and ion source temperatures
were set at 250 ◦C and 400 ◦C, respectively. The capillary voltage was +4.0 kV. Chromatographic
separation was accomplished on a 2.1 × 50 mm, 1.7 µm C18 column maintained at 40 ◦C (Acquity
UPLC BEH, Waters, Milford, CT, USA) using 10% acetonitrile in water containing 0.5 g/L PFOA (mobile
phase A), and acetonitrile containing 0.5 g/L PFOA (mobile phase B). The gradient program involved
varying the proportion of solvent B as follow: 0–1 min 40%, 1–3 min from 40% to 65%, 3–3.8 min 65%,
3.8–6 min from 65% to 88%, 6–8.5 min 88% and 8.5–11 min 95%. The column was re-equilibrated for
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4 min using 40% mobile phase B. The flow rate was held at 0.35 mL/min. Table 1 specifies the analytical
parameters employed in this work.

2.7. Method Validation

The linear relationship of analyte concentration versus detector response was assessed using
plasma spiked with standard FAs to produce the concentration ranges shown in Table 1. Intra-day
(n = 15) and inter-day (n = 20) imprecisions expressed as variation coefficient (CV%) were determined
by repeated analysis of spiked plasma samples at two different levels. Analyte recovery was calculated
using the following formula: Analyte recovery (%) = 100 × (measured concentration—endogenous
concentration)/added concentration.

Limits of detection (LOD) were determined by recording the minimum concentrations that reliably
produced S/N of 3. The limits of quantitation (LOQ) were calculated by establishing the analyte levels
that produced S/N ratio of 10. Post-processing stability of DAABD-FA derivatives at 4◦C was examined
by repeatedly analyzing the reaction mixture of a plasma sample that was stored in the autosampler
tray for 168 h (7 days) after sample preparation.

3. Results and Discussion

3.1. Derivatization of FAs with DAABD-AE

In principle, analysis of unaltered FAs by LC-MS/MS can be achieved in the negative ESI mode
using anion transitions generated from the elimination of water or carbon dioxide. In practice, neither
of these transitions is adequately useful for reliable quantitation in complex matrices. This study
aims to develop a simple, sensitive, and selective LC-MS/MS method to routinely quantify a broad
range of FAs in small plasma volume for clinical evaluations. As shown in Figure 1, FAs were reacted
with DAABD-AE to form stable amides with high proton affinity, ionization efficiency, and improved
chromatographic properties. Collision-induced fragmentation produced a positively chargeable
tertiary amine moiety with a mass-to-charge (m/z) ratio of 151originating from the derivatization
reagent and was common to all studied analytes [25]. This m/z transition is detectable by positive ion
ESI-MS/MS and was used conveniently to detect the studied FAs. In comparison with negative ion
ESI-MS/MS detection of native FAs anions, the positive ion modification achieved through DAABD-AE
derivatization resulted in significant improvement in detection sensitivity. To demonstrate the effect
of derivatization on analytical sensitivity, we compared underivatized FAs with their DAABD-FA
amides counterparts using the same LC-MS/MS system. Native FAs were analyzed under optimized
conditions in the negative ESI mode, whereas DAABD-derivatives were analyzed by positive ESI.
By comparing the S/N ratios normalized to the amount injected (µg), the sensitivity of DAABD-FA
amides was a staggering nine orders of magnitude higher compared to native analytes irrespective of
the FA chain length. This superior improvement of sensitivity determined a large number of FAs in
a relatively small sample volume of 10 µL, an important consideration in the pediatric population.
Figure 2 depicts representative chromatograms obtained with 2 µg of native C16:0 on column detected
using m/z 255.3 > 237.5 (A) and 5 fg of DAABD-C16:0 on column detected at m/z 567.3 > 151.1 (B).

3.2. Method Development

3.2.1. Derivatization of FAs with DAABD-AE

The extraction of total FAs from a diminutive plasma volume (10 µL) was done as previously
described [25]. Coupling of DAABD-AE with FAs was achieved using published conditions with
minor modifications to accommodate the qualitative and quantitative diversity of analytes in this
study [20,21,25,35,36]. This modification involved a facile single-step derivatization protocol that
involves the use of premixed reagents added directly to the residual plasma extract followed by
incubation at 60 ◦C for 1 h. When various DAABD-AE concentrations were tested, we confirmed that
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2.0 mmol/L is adequate to achieve the desired derivatization yield. Figure 3A shows the derivatization
yield of DAABD-FAs as a function of time, and Figure 3B illustrates the effect of DAABD-AE
concentration on the derivatization yield. Predictably, derivatization with DAABD-AE imparted
superb chromatographic, ionization, and fragmentation characteristic that allowed for multiplexed
sensitive determination of a wide variety of clinically and nutritionally relevant FAs, including species
at the extreme ends of the high and low abundance using 10 µL of plasma. In a recent work, Volpato et al.
described that the derivatization of FAs with DAABD-AE can be achieved if the reaction mixture is
incubated for 24 h at room temperature [31]. Our 1 h reaction conditions protocol is more practical
than that of Volpato et al., as it allows for processing and reporting clinical samples without delay [31].Metabolites 2020, 10, x FOR PEER REVIEW 7 of 16 
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3.2.2. Chromatographic Separation

Separation of DAABD-FAs by reversed-phase chromatography was achieved using a gradient
program that increases the organic percentage of the mobile phase while maintaining constant ionic
strength of the ion-pairing agent PFOA. Chemical standards and stable isotope IS were used for
positive compound confirmation. FAs with shorter, branched, or unsaturated chains eluted faster than
the longer, linear, or saturated FA compounds. Under the conditions used in this work, DAABD-C8:0
eluted first at 1.6 min, whereas that of DAABD-C28:0 eluted last at 9.1 min. Retention times for the
studied FAs are shown in Table 1. With a column conditioning step, the injection-to-injection time was
15 min. This relatively short analysis time is an important consideration in high volume service labs,
where competition on instrument time is high, and shorter analysis time is desirable. Figure 4 shows a
representative multiple reaction monitoring LC-MS/MS, overlaid with chromatograms obtained by the
current method.
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3.2.3. Linearity, LOD, and LOQ

Linearity was assessed using plasma samples spiked with commercially available standard FAs.
The studied concentration ranges of FAs were selected to encompass physiological and pathological
circumstances (Table 1). Compensation for potential analytical flaws was achieved by using appropriate
stable isotope IS analogs. For compounds with no commercially available IS, the stable isotope analog
with the nearest chain length was used (Table 1). Regression analysis by plotting the detector response
of the analyte to IS ratio against the spiked concentration confirmed linear relationships (r ≥ 0.995) in
the studied concentration ranges (Table 1). LOD and LOQ were established for analytes for which
standard material is available commercially. As shown in Table 1, LOD (LOQ) expressed as pmol per
injection ranged between 4.2 (14.0) for C16:0 and 15.1 (50.3) for C26:0. Despite that high sensitivity
achieved in this work, the lower and higher limits of the dynamic range were selected to allow for
reliable determination of normal and abnormal levels regardless of endogenous analyte abundance
being at the high or the low end of the concentration spectrum.

3.2.4. Imprecision and Recovery

Imprecision was evaluated by calculating the CV% of intra-day (n = 15), and inter-day (n = 20)
studies using plasma spiked at two different FAs levels. With intra-day and inter-day CV% of less
than 10.2% and 10.0%, respectively, the method described here is adequately reproducible (Table 2).
The recovery of FAs calculated from spiked samples ranged from 94.5 to 106.4% (Table 2). DAABD-FA
derivatives were stable for 72 h post-processing when kept in capped vials at 4 ◦C in the dark.

3.3. Determination of FAs Reference Intervals

In the present study, a total of 282 samples from control individuals were analyzed. Non-parametric
double-sided 95 percentile reference intervals stratified according to age were established in four
categories: Less than 1 month (n = 59), 1 to 12 months (n = 30), 1 to 18 years (n = 71), and more than
18 years (n = 122). Table 3 provides a summary of the reference intervals of total plasma FAs in µmol/L
units obtained in this study.
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Table 2. Recovery, intra-day, and inter-day precision of FAs were analyzed by the current method.

Compound Sample Concentration
(µ mol/L)

Intra-Day (n = 15) Inter-Day (n = 20) Recovery (%)

Mean SD CV (%) Mean SD CV (%)

C8:0
QC 1 38.0 36.6 2.4 6.6 36.3 0.6 1.8

98.7QC 2 72.4 73.4 2.5 3.4 73.4 2.5 3.4

C10:0
QC 1 86.2 88.2 3.9 4.4 87.3 2.0 2.3

101.0QC 2 282.4 281.6 9.1 3.2 284.3 3.5 1.2

C12:0
QC 1 209.7 201.7 7.9 3.9 200.9 3.7 1.8

98.5QC 2 580.5 588.7 11.7 2.0 584.9 5.3 0.9

C14:0
QC 1 315.2 308.2 21.6 7.0 314.6 3.7 1.2

99.2QC 2 693.1 685.6 8.0 1.2 695.7 7.1 1.0

C16:1
QC 1 406.6 397.8 25.0 6.3 398.5 3.9 1.0

98.8QC 2 675.7 671.9 28.8 4.3 675.7 8.8 1.3

C16:0
QC 1 3663.1 3610.3 367.6 10.2 3697.7 46.0 1.2

99.5QC 2 5538.9 5620.3 213.7 3.8 5367.8 534.3 10.0

C18:3w3
QC 1 124.8 129.9 7.5 5.8 127.6 8.5 6.7

100.8QC 2 330.8 325.6 21.9 6.7 324.8 3.8 1.2

C18:0
QC 1 1655.4 1639.7 113.3 6.9 1640.6 35.1 2.1

99.4QC 2 2902.7 2889.7 39.8 1.4 2895.6 63.8 2.2

C20:5w3
QC 1 94.9 94.6 2.5 2.6 95.8 2.5 2.6

101.1QC 2 177.2 181.7 6.5 3.6 179.7 2.4 1.3

C20:4
QC 1 1340.2 1546.2 67.3 4.4 1621.3 145.4 9.0

106.4QC 2 2214.1 1965.4 41.8 2.1 2224.7 36.7 1.7

C20:0
QC 1 32.5 33.5 0.4 1.3 31.2 1.3 4.3

94.5QC 2 75.4 67.8 2.0 2.9 67.0 2.5 3.7

Pristanic
QC 1 16.6 16.9 0.6 3.4 16.4 1.0 6.2

98.5QC 2 55.9 55.1 2.3 4.2 53.4 2.0 3.8

Phytanic QC 1 16.8 17.0 1.0 5.7 16.3 0.4 2.3
98.0QC 2 56.2 55.0 2.0 3.6 54.1 1.5 2.8

C22:5w6
QC 1 42.6 42.9 3.9 9.1 43.3 1.2 2.7

101.5QC 2 70.2 72.0 3.2 4.4 71.2 1.9 2.7

C22:0
QC 1 124.9 124.0 2.0 1.6 123.3 1.4 1.2

99.2QC 2 317.7 317.5 12.6 4.0 314.4 5.1 1.6

C24.0
QC 1 126.0 127.6 2.6 2.1 124.2 1.6 1.3

100.8QC 2 309.1 315.8 7.2 2.3 313.4 2.3 0.7

C26.0
QC 1 3.8 3.7 0.1 3.0 3.7 0.1 1.5

97.8QC 2 11.8 11.4 0.2 1.9 11.7 0.2 1.5

Shown also are the reference intervals of the sum in mmol/L units of total FAs, saturated FAs,
monounsaturated FAs (MUFA), and polyunsaturated FAs (PUFA). The reference intervals obtained in
this study are comparable with those published in the literature [14].

3.4. Diagnostic Application on Samples from Patients with Inborn Errors of Metabolism

The diagnostic utility of the current method was evaluated using samples from patients
(n = 18) with the following inborn errors of metabolism: Peroxisome biogenesis defect (PBD),
X-linked adrenoleukodystrophy (X-ALD), adrenomyeloneuropathy (AMN), and RD. Results from
five representative patients are shown in Table 4. In clinical laboratories, patients with PBD, X-ALD,
and AMN are routinely diagnosed based on elevated plasma C26:0 and C26:0/C22:0 ratio. In this
work, for the first time, we evaluated C28:0 and the C28:0/C22:0 ratio in these patients and observed
significant elevations compared to controls (p < 0.0001). While C26:0 and its ratio to C22:0 are widely
accepted as reliable diagnostic markers for peroxisomal disorders, C28:0 and its ratio to C22:0 described
in this work are additional biomarkers with the potential to discriminate patients with PBDs from
healthy individuals. This is of special importance in patients with subtle biochemical disruptions,
such as patients 2, 4, and 5, shown in Table 4. Nonetheless, to establish C28:0 and its ratio to C22:0
as biomarkers of PBDs, additional studies are required to assess the diagnostic utility using a larger
patients sample size that takes into account the clinical and genetic heterogeneity of PBDs. Interestingly,
C28:0 and its C22:0 ratio was within the respective reference intervals in the patient with RD. This is not
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unexpected as this disorder is characterized by isolated PHA elevation due to deficiency of phytanoyl
CoA hydroxylase, an enzyme not known to disrupt the peroxisomal β-oxidation pathway.

Table 3. Age-stratified reference intervals of total fatty acids in plasma (µmol/L).

Compound <1 Month 1–12 Month 1–18 Year >18 Year

Low High Low High Low High Low High

Octanoic acid, C8:0 22 53 21 60 22 62 18 41
Decenoic acid, C10:1 0.2 1.7 0.2 2.3 0.1 1.3 0.1 1.1

Decanoic acid, C10:0 12 46 9 60 10 57 9 41
Lauroleic acid, C12:1 0.1 4.0 0.2 2.8 0.2 1.6 0.2 2.4

Lauric acid, C12:0 21 165 19 211 25 202 35 152
Tetradecadienoic acid, C14:2 0.1 4.1 0.2 9.4 0.2 4.3 0.1 3.6

Myristoleic acid, C14:1 0.7 6.8 0.8 10.1 1.0 20.5 1.2 14.2
Myristic acid, C14:0 35 367 43 327 37 293 40 337

Hexadecenoic acid, C16:1w9 163 654 74 517 49 590 72 514
Palmitic acid, C16:0 1304 3654 1289 3595 554 3411 1238 3999

Stearidonic acid, C18:4 0.0 21.1 0.1 17.5 0.2 27.2 0 29
α-Linolenic acid, C18:3w3 0.5 46.9 1.6 66.8 5.7 62.7 3 44

Linoleic acid, C18:2w6 216 1750 620 2544 655 2193 672 2961
Oleic acid, C18:1w9 925 3250 1237 4943 857 4041 816 4433
Stearic acid, C18:0 562 1410 580 1553 253 1414 511 1507

EPA, C20:5w3 10 118 7 73 9 92 6 88
Arachidonic acid, C20:4w6 622 1652 303 1316 122 1155 275 1576

h-γ-Linolenic acid, C20:3w6 30 111 17 113 29 149 23 131
Eicosadienoic acid, C20:2 4 33 5 38 5 23 5 22

Gondoic acid, C20:1 6 36 8 49 5 38 6 35
Arachidic acid, C20:0 11 37 5 40 5 28 5 33

Pristanic acid, C19:0 branched 1.1 3.0 1.1 2.8 1.2 3.0 1.3 3.0
Phytanic acid, C20:0 branched 1.6 3.6 1.8 4.9 1.7 10.3 1.8 8.0

DHA, C22:6w3 9 60 15 64 5 45 4 39
DPA, C22:5w3 13 88 7 73 8 52 4 43
DTA, C22:4w6 19 68 14 64 14 53 9 61

Docosatrienoic acid, C22:3 1 7 0 5 1 6 0 4
Docosadienoic acid, C22:2 3 15 3 14 2 11 2 10

Docosenoic acid, C22:1 15 45 14 35 12 38 11 39
Docosanoic acid, C22:0 27 60 21 100 28 70 28 77
Nervonic acid, C24:1 77 257 82 220 54 210 68 267

Tetracosanoic acid, C24:0 18 59 17 70 21 65 17 76
Hexacosenoic acid, C26:1 0.9 3.2 0.3 2.0 0.2 1.9 0.2 1.9
Hexacosanoic acid, C26:0 0.3 1.0 0.2 1.0 0.2 1.2 0.3 1.1
Octacosenoic acid, C28:1 0.01 0.10 0.00 0.16 0.00 0.10 0.01 0.09

Montanic acid, C28:0 0.07 0.19 0.04 0.18 0.03 0.20 0.03 0.15
Total fatty acids (mmol/L) 4.1 14.1 4.4 16.2 2.8 14.4 3.9 16.6

Total saturated fatty
acids (mmol/L) 2.0 5.9 2.0 6.0 1.0 5.6 1.9 6.3

Total MUFA (mmol/L) 1.2 4.3 1.4 5.8 1.0 4.9 1.0 5.3
Total PUFA (mmol/L) 0.9 4.0 1.0 4.4 0.9 3.9 1.0 5.0

3.5. Method Comparison

A group of FAs, namely, C22:0, C24:0, and C26:0 for which standard GC-MS methods are available,
were used to demonstrate method comparison. These compounds are valued diagnostic markers for
inborn errors of metabolism associated with peroxisomal dysfunctions. Plasma samples from patients
with an established diagnosis of peroxisomal disease (n=18) and samples from unaffected individuals
(n = 63) were used for comparison. Bland-Altman analysis suggests that the results obtained by the
current method, which fall within the 95% confidence interval, are accurate and comparable to those
obtained by gold-standard GC-MS (Figure 5).
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Table 4. Concentrations of relevant FAs in patients with peroxisomal disorders (µmol/L).

Patient 1 2 3 4 5
Reference
Interval

Age 10 day 10.8 year 2.6 year 22.2 year 2 year
Sex F M F M F

Diagnosis Severe PBD X-ALD RD AMN Mild PBD

PRA 1.6 1.9 3.7 1.7 4.2 1.2–3.0
PHA 4.3 4.3 23.2 4.7 15.2 1.7–10.3
C22:0 46.9 40.1 47.0 52.3 25.1 21–100
C24:0 63.8 57.0 28.0 86.7 24.5 17–76
C26:0 17.4 2.2 0.9 3.0 2.1 0.2–1.2
C28:0 1.82 0.38 0.19 0.38 0.20 0.03–0.2

C24:0/C22:0 1.36 1.42 0.76 1.66 0.98 ≤1.20
C26:0/C22:0 0.372 0.054 0.019 0.057 0.082 ≤0.022
C28:0/C22:0 0.0388 0.0094 0.0041 0.0073 0.0080 ≤0.0045
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Compared with other published LC-MS/MS methods for FAs [23,25–33], our method is superior
because of the following: (1) Simultaneous analysis of 36 clinically relevant saturated, unsaturated,
and branched-chain FAs species between C8-C28, (2) differentiation between diagnostically significant
branched-chain FAs (i.e., PRA and PHA) and their linear-chain antipodes (C19:0 and C20:0),
(3) establishment of age-specific reference intervals that are in agreement with the literature [14,34]
technical simplicity (i.e., single-step derivatization with no need for derivatives clean up after reaction)
that allows for high throughput routine analysis suitable for large volume service laboratories,
and (4) utilization of standard LC-MS/MS instrumentation commonly found in clinical laboratories.

4. Conclusions

We have reported a new LC-MS/MS approach for the quantification of 36 FAs that range in
chain length between C8 and C28. This approach utilizes the superior LC-MS/MS characteristics
that DAABD-AE, as a derivatization reagent, imparts onto carboxylic acid compounds. Compared
to native FAs analysis, DAABD-FA derivatization improved the detection sensitivity by nine orders
of magnitude. This superb sensitivity allowed for carrying out this assay using as little as 10 µL
of plasma with adequate precision and accuracy, as shown by method comparison with GC-MS.
Our method offers equally high coverage for medium-, long-, and very-long-chain FAs that are
clinically or nutritionally significant, including MUFA, PUFA, saturated, and branched-chain FAs.
As such, it can potentially be utilized in the diagnosis and monitoring of patients with various inborn
errors of metabolism, such as peroxisomal and mitochondrial FA oxidation, as well as defects involving
arachidonic acid metabolism. In addition, circulatory FAs measured by our method may provide
estimates of chronic disease risk (e.g., cardiovascular diseases and cancer), as well as providing
guidance of appropriate dietary recommendations. Given the important clues on diagnostic hallmarks
and dietary biomarkers it provides, we anticipate this method to find widespread utilization in clinical
and nutritional applications.
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