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Abstract: Metabolomics has the potential to greatly impact biomedical research in areas such as
biomarker discovery and understanding molecular mechanisms of disease. However, compound
identification (ID) remains a major challenge in liquid chromatography mass spectrometry-based
metabolomics. This is partly due to a lack of specificity in metabolomics databases. Though impressive
in depth and breadth, the sheer magnitude of currently available databases is in part what makes them
ineffective for many metabolomics studies. While still in pilot phases, our experience suggests that
custom-built databases, developed using empirical data from specific sample types, can significantly
improve confidence in IDs. While the concept of sample type specific databases (STSDBs) and
spectral libraries is not entirely new, inclusion of unique descriptors such as detection frequency and
quality scores, can be used to increase confidence in results. These features can be used alone to
judge the quality of a database entry, or together to provide filtering capabilities. STSDBs rely on
and build upon several available tools for compound ID and are therefore compatible with current
compound ID strategies. Overall, STSDBs can potentially result in a new paradigm for translational
metabolomics, whereby investigators confidently know the identity of compounds following a simple,
single STSDB search.

Keywords: metabolomics; database; spectral library; compound identification;
metabolite identification

1. Introduction

Liquid chromatography mass spectrometry (LC/MS)-based metabolomics has become an important
tool in clinical and translational research. However, identification (ID) of biologically and clinically
relevant compounds remains a major challenge. Depending on the sample preparation method,
a metabolome may be comprised of up to thousands of unique compounds; for example, up to
4200 small compounds have been reported in human plasma [1,2]. In addition to endogenous
compounds, the human metabolome contains several classes of exogenous compounds including
pollutants, drugs, foods, and contributions from the microbiome [3]. Small molecules/compounds
often share identical masses, making it challenging to accurately identify compounds based solely on
mass and/or molecular formula [4,5]. While other technologies, such as gas chromatography mass
spectrometry (GC/MS) and nuclear magnetic resonance (NMR), address many of these issues [6,7]
through, for example, comprehensive GC/MS spectral libraries, many metabolomics projects are

Metabolites 2020, 10, 8; doi:10.3390/metabo10010008 www.mdpi.com/journal/metabolites

http://www.mdpi.com/journal/metabolites
http://www.mdpi.com
https://orcid.org/0000-0002-0425-8012
https://orcid.org/0000-0003-2108-1121
http://www.mdpi.com/2218-1989/10/1/8?type=check_update&version=1
http://dx.doi.org/10.3390/metabo10010008
http://www.mdpi.com/journal/metabolites


Metabolites 2020, 10, 8 2 of 17

conducted using an LC/MS platform. In addition, while many tools have been developed specifically
for plants, natural products, and industrial applications, these are not always applicable for human or
translational studies. Therefore, this perspective article focuses on LC/MS-based clinical metabolomics
and proposes a strategy to improve identification of compounds in these studies.

Identifying compounds in LC/MS studies can be difficult and metabolomics researchers have
developed an array of databases, spectral libraries, novel algorithms, and other tools to address
the various challenges (for review, please see [8,9]). Generally speaking, compound annotation is
conducted using metabolomics databases and/or libraries. Metabolomics databases are searched using
mass only or mass plus formula and include descriptors such as chemical and biological information.
In contrast, MS/MS spectral libraries include data corresponding to the fragmentation of precursor
molecules, whereby experimentally derived spectra are compared to spectra present in the library.
Spectral libraries can contain empirical or in silico derived (i.e., computer generated) spectra. Another
strategy entails the use of customized databases that may include some MS/MS spectra, including
those that focus on specific sample types [10,11]. For the purpose of this perspective article, we are
referring to these as sample type specific databases (STSDBs).

While the idea of STSDBs is not new, the full potential of STSDBs remains to be determined, in part
because they currently exist as simple repositories of data. Our laboratory has recently developed a
computational framework for STSDBs that includes scoring algorithms, thereby improving their utility,
and has developed prototypic STSDBs for bronchoalveolar lavage fluid (BAL) [11] and HEK293 cells.
Importantly, STSDBs rely on several currently available tools for their development and represent a
complementary approach to traditional compound ID. STSDBs not only incorporate the best tools
available from the field to annotate compounds, but offer a means of preserving information to improve
future studies. Our experience suggests that STSDBs can greatly enhance the compound ID workflow;
however, this is by no means the only solution to compound ID and concerted efforts by several
groups would be required to make globally available STSDBs a reality. This article is meant to catalyze
discussion regarding the challenges and benefits of this potentially field-advancing strategy.

The concept behind STSDBs is relatively simple: build a series of databases that are specific for a
sample type using empirically derived data. These sample types can range from plasma or tissues
to specific cell types (e.g., HEK293 cells) and from humans to rodent models. STSDBs are initially
populated using a broad range of samples that represent that sample type; for example, human plasma
would ideally come from males and females ranging in age, body mass index (BMI), disease state,
and other clinically relevant parameters. Conversely, a cell type specific database could include data
from various experimental parameters. Once databases are populated, computational strategies can be
applied that enable scoring of database hits, application of false discovery rates (FDR), and quality
control metrics.

For the purpose of this perspective article, a traditional compound ID workflow is compared to a
proposed STSDB workflow, followed by a discussion of challenges related to traditional compound ID
workflows. This is followed by a proposed framework for developing sample type specific databases
(STSDBs) aimed at addressing these challenges. Finally, a discussion of limitations and advantages of
STSDBs is presented.

2. Traditional Strategies in LC/MS-Based Metabolomics Compound ID

In general, the strategy used to perform compound ID proceeds, in its simplest form, as follows:
obtaining and extracting LC/MS and/or LC/MS/MS data, searching of MS databases and/or MS/MS
libraries, using additional tools to interpret MS/MS spectra, and finally using authentic standards
to verify compound identities [4,12] (Figure 1). With the advent of new tools, this workflow has
grown more complex and more informative, however, the basic steps are essentially the same [8,9].
Unfortunately, this process is often truncated where database and/or library searches fail to provide
unambiguous evidence that an annotation is correct, making interpretation difficult.
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Figure 1. Traditional database (DB) vs. proposed sample type specific database (STSDB) searching 
workflows. The traditional workflow for annotating metabolomics data using databases is shown on 
the left. Typically, an MS database or MS/MS library search is conducted for initial annotation of 
compounds. Results from MS and MS/MS searches may be combined to aid in interpretation and 
authentic standards are used to confirm the identity of the compound. As detailed below, the 
confidence with which a compound is assigned a name (i.e., annotated) is currently assigned to 4 
levels ranging from “unknown” (Level 4) to “Identified” (Level 1). Level 1 confidence currently 
requires matching to a standard (Std). Compound identification using the sample type specific 
database (STSDB) approach is shown on the right whereby MS data (i.e., mass, isotope ratios, and 
formulas) is used to search an STSDB. STSDBs store information on compounds such that higher 
levels of confidence are obtained following a single search. 

In the context of compound annotation and identification, metabolomics research relies on 
“confidence levels”. “Confidence” is defined by Sumner et al. as ranging from unknown (Level 4) to 
putatively characterized compound classes (Level 3) to putatively annotated compounds (Level 2) to 
identified metabolites (Level 1) [13] (Figure 2). For simplicity, this article refers to these levels as 
ranging from low (Level 4) to high (Level 1). Currently, a simple MS database search will enable a 
user to match masses to compound names with relatively low confidence [13]. Matching an unknown 
spectrum to a spectrum within an MS/MS spectral library can increase confidence to a Level 2. It is 
important to distinguish between “annotation”, which describes Level 2–4 confidence, and 
“identification”, which describes Level 1 confidence. Matching an unknown’s MS/MS spectrum and 
retention time using authentic standards is required to reach Level 1 confidence. It is important to 
note that STSDBs utilize reproducible signals to increase confidence in a compound’s presence but 
not its ID. Rather, it should be emphasized that STSDBs currently improve the compound annotation 
and identification workflow. 

Figure 1. Traditional database (DB) vs. proposed sample type specific database (STSDB) searching
workflows. The traditional workflow for annotating metabolomics data using databases is shown
on the left. Typically, an MS database or MS/MS library search is conducted for initial annotation of
compounds. Results from MS and MS/MS searches may be combined to aid in interpretation and
authentic standards are used to confirm the identity of the compound. As detailed below, the confidence
with which a compound is assigned a name (i.e., annotated) is currently assigned to 4 levels ranging
from “unknown” (Level 4) to “Identified” (Level 1). Level 1 confidence currently requires matching to
a standard (Std). Compound identification using the sample type specific database (STSDB) approach
is shown on the right whereby MS data (i.e., mass, isotope ratios, and formulas) is used to search an
STSDB. STSDBs store information on compounds such that higher levels of confidence are obtained
following a single search.

In the context of compound annotation and identification, metabolomics research relies on
“confidence levels”. “Confidence” is defined by Sumner et al. as ranging from unknown (Level 4) to
putatively characterized compound classes (Level 3) to putatively annotated compounds (Level 2) to
identified metabolites (Level 1) [13] (Figure 2). For simplicity, this article refers to these levels as ranging
from low (Level 4) to high (Level 1). Currently, a simple MS database search will enable a user to match
masses to compound names with relatively low confidence [13]. Matching an unknown spectrum
to a spectrum within an MS/MS spectral library can increase confidence to a Level 2. It is important
to distinguish between “annotation”, which describes Level 2–4 confidence, and “identification”,
which describes Level 1 confidence. Matching an unknown’s MS/MS spectrum and retention time using
authentic standards is required to reach Level 1 confidence. It is important to note that STSDBs utilize
reproducible signals to increase confidence in a compound’s presence but not its ID. Rather, it should
be emphasized that STSDBs currently improve the compound annotation and identification workflow.

Several tools exist for annotating and identifying compounds and no less than 30 metabolomic
databases and libraries currently exist, with functions ranging from compound annotation to disease
classification [14]. While MS/MS libraries are often distinct from MS databases, MS/MS spectra are
also available in several MS databases; for example, the commercially available Metlin contains
16,000 MS/MS spectra with multiple collision energies per compound [15]. In addition to databases,
several in silico tools have been developed that are designed to predict MS/MS fragments based
on chemistry. These include LipidBlast, MetFrag, SIRIUS/CSI-fingerID, and CFM-ID [16–20]. For a
more comprehensive review of currently available tools, please see several excellent recent review
articles [8,9,21,22]. These strategies and tools are important components of a metabolomics informatics
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workflow and are integral to compound annotation and ID, whether using traditional workflows or in
developing STSDBs.

In spite of the rich resources that are available, challenges remain. These are discussed below,
following a brief description of the basic STSDB search strategy.Metabolites 2020, 10, x 4 of 17 
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Figure 2. Currently accepted levels of confidence in metabolomics compound identification.
The confidence with which a compound is assigned a name (i.e., annotated) is currently assigned to
4 levels ranging from unknown (Level 4, low) to putatively characterized compound classes (Level 3,
medium) to putatively annotated compounds (Level 2, high) to identified metabolites (Level 1, highest).
Level 1 confidence currently requires matching to a standard. Because results from previous studies
are stored, including data from authentic standards and MS/MS spectra, STSDBs offer potential for
Level 1–2 confidence following a single DB search.

3. Basic STSDB Strategy

As mentioned, the concept behind STSDBs is to build a series of databases that are specific for
a sample type using empirically derived data. STSDBs may also be referred to as spectral libraries,
metabolite libraries, or personal compound database and library (PCDL, Agilent Technologies).
For simplicity, we are using the word “compound” to denote molecular features extracted from the data
by the feature-finding algorithm. Compounds within STSDBs are initially annotated using all currently
available resources, including MS databases, MS/MS libraries, and in silico tools. A recent article by
Blazenovic, et al., represents an excellent example of a prototypic STSDB, whereby the authors utilized
several tools to identify as many spectra from urine as possible [10]. Completed STSDBs take this one
step further by preserving the resulting dataset in a format that includes scoring algorithms to provide
metrics with which to gauge the match between the unknown compound and the DB to improve utility.
Within each STSDB, the search space is limited to mostly (or entirely) relevant and previously detected
compounds. Importantly, separate STSDBs can be developed that represent artifacts, background
compounds, and/or contaminants from LC/MS experiments. As a whole, STSDBs represent the entirety
of an LC/MS experiment.

The steps of building STSDBs are fairly straightforward (Figure 3): Step (1) Conduct a
comprehensive LC/MS analysis of tens to hundreds of samples representing a single biofluid, tissue,
or cell type; (2) perform untargeted data extraction/mass and time alignment, including collapsing of
like features, to generate a list of compounds; (3) evaluate the reproducibility of the compound and
generate a composite chemical characteristic quality score (described below); (4) calculate the frequency
with which the compound appears in the dataset and use this “Detection Frequency” to calculate
an overall quality score (described below); (5) conduct initial compound annotation using custom



Metabolites 2020, 10, 8 5 of 17

databases and other databases as appropriate for the sample type; (6) perform automated curation of
datasets and provide score assignments (as described below); (7) Use MS/MS and authentic standards
to improve confidence in annotation and/or provide true identification. Other resources, such as NMR
and ion mobility can be used if available; (8) conduct manual and automated curation; (9) continue
testing, refining annotations, and flagging artifacts (repeat steps as new datasets are generated).
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Figure 3. Workflow illustrating the development of STSDBs. MS data is processed and a composite
chemical characteristic quality score (CCC-QS) is derived. The number of times a compound has been
detected is included in an overall quality score (Ov-QS). Compounds are searched using traditional
DBs to obtain initial annotations, resulting in a prototypic STSDB. Additional identifying information
is added to each compound, including MS/MS spectra, collisional cross section (CCS) values, and data
from authentic standards (Stds), if available. The prototypic DB is manually curated to ensure quality
and confidence levels are added to each compound.

A major advantage of the STSDB framework is that it can include an overall quality score (Ov-QS),
which is a composite score comprised of the following: composite compound characteristic quality score
(CCC-QS), which takes a compound’s chemical composition and properties into account, and detection
frequency (DF), which counts the relative number of times a compound has been detected across the
multiple samples used to generate the STSDB. STSDBs can also include confidence ID Levels as a
separate, searchable field. Within the STSDB, these scores/values can be used alone or together for
filtering purposes and are stored with the database entry. If a compound rates well in all of these areas,
and does not match to an artifact DB, one does not need to know what the molecule is in order to
pursue it as a candidate. A compound annotated simply with a sample type and a random number,
such as “compound from human liver sample_###”, for example, can still be considered an important
candidate and reported as such. This is similar to a gene array, where an investigator does not need to
know the function of a gene to recognize it as important in a disease. As with gene arrays, the identity
and function of important candidate compounds require additional follow-up studies; STSDB scores
can simply provide a filter to help determine which compounds to pursue.



Metabolites 2020, 10, 8 6 of 17

STSDBs offer the ability to understand the distribution of compounds across sample types and
sub-types, even before identity is confirmed using authentic standards. While current search times are
short, investigators can take weeks to months moving from compound annotation to identification.
Ideally, a researcher would only have to search one database/library to achieve at least Level 2
confidence. This is conceivably achieved in a single step using STSDBs through marking compounds as
“previously detected” and assigning quality scores and confidence levels. An investigator simply needs
to look at the output to determine if a compound match is authentic. In addition to greatly improving
the speed of confident annotation and/or identification, there are several other advantages that an
STSDB can offer, as described in detail at the end of this perspective article. First, we will provide an
overview of some known challenges with compound ID and with some commonly used databases.

4. Current Challenges with Compound ID

While many excellent tools are becoming available to improve compound ID, challenges remain.
For example, the time it takes to confidently ID compounds, even when using available tools,
is significant. In the case of human studies, this is in large part due to the fact that these databases
and tools are not entirely applicable to clinical metabolomics, where inclusion of such categories as
theoretical human, xenobiotic, and non-dietary plant compounds may not be relevant. To date, it is
challenging to effectively take sample preparation and instrument-generated artifacts into account,
although this is changing and resources for understanding artifacts are becoming available [23–26].
Since a significant portion of a dataset may be composed of artifacts and non-biologically relevant
compounds [10,27], deciphering and understanding these signals in a sample-specific manner, is vital.
Finally, while studies are able to accurately annotate a larger portion of the data, preserving and fully
utilizing this data remains a challenge.

The choice of database or library can also affect results, as detailed in other recent work [9,28].
For example, quality scores are currently based on chemical information only, not on the probability that
a compound is actually in a sample, nor whether it can be reliably detected in an experimental system.
To date, several strategies are addressing this by, for example, adding additional context to existing
databases. These strategies include better cataloguing of what has been reported by the community and
documentation of known compounds using online databases, including Massbank of North America
(MoNA; www.massbank.us). Additional in silico-based computational tools for identification have
also been developed such as MS-DIAL, LipidBlast, CSI:FingerID, and Metfrag [16,19,20,29–31] and
applied, for example, at critical assessment of small molecule identification (CASMI) contests [28].

As described previously, to obtain a Level 1 confidence requires matching an unknown MS/MS
spectrum and retention time using authentic standards [13]. While it would be challenging to obtain
this information on the possible >40,000 endogenous human compounds [32], this is becoming more
and more possible with the development of comprehensive MS/MS spectral libraries and searching
tools and the reader is encouraged to see [33] for review. However, these resources do not yet take
sample-type specific information into account and mis-annotation remains an issue. In addition,
the exclusive use of authentic standards to confidently ID compounds also assumes that the standards
are available for the compounds of interest. As mentioned above, a significant portion of a dataset
may be due to “noise”, including fragments [27], background contaminants, and sample prep artifacts,
for which standards are neither available nor helpful. While STSDBs do not offer simple solutions to
all of these challenges, they represent a step in the right direction.

5. Challenges with Current Databases

One major challenge with searching non-specific databases is that searching using only neutral
mass values usually results in ambiguous matches where over 100 compounds may match to a single
neutral mass [4]. This issue is not fully resolved with the addition of isotope ratios and formula
generation, nor even by high resolution MS [4,5,34]. A second challenge lies in the fact that the human
metabolome encompasses both endogenous compounds and compounds from the exposome [35],
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adding to the challenge of filtering through multiple database matches. The exposome essentially
comprises all exogenous compounds to which humans can be exposed, including pollutants, foods,
beverages, drugs, and airborne plant and animal particles [3,15,36–38]. While it is unclear how many
exposome compounds can actually be detected in humans using LC/MS-based metabolomics profiling,
their relevance to human health is potentially significant [3]; therefore, informatics strategies must
take these into account. Unfortunately, current strategies entail searching very large databases in an
attempt to match all possible endogenous and exposomic compounds; this results in artificially large
search spaces and an increase in false annotations [4]. In fact, many/most of these generic database
entries are not even found in the sample type being studied, leading to extensive manual curation of
the data. Fortunately, tools are available to assist with this, such as fields within HMDB that indicate if
a molecule has been previously detected and/or quantitated in humans. Smaller, customized databases
have been proposed as a solution to decrease false annotations [4,5,39]. This reinforces the idea that
STSDBs can not only reflect differences in metabolomes across sample types, but could potentially be
used for semi-quantitative comparisons.

Current metabolomics DBs are extremely informative, with up to 100 descriptors available for
each compound [32]. These include compound names, chemical class, biospecimen type, diseases,
and links to other resources. Most databases allow for constrained searching based on some of
the above descriptors; while this results in smaller search spaces, it does not address the issues of
annotation errors and low confidence annotations. While some information is available on which
biospecimen(s) the compounds have been detected, manual curation is still generally required to obtain
this information. In addition to knowing where a compound has been detected, information regarding
the frequency of detection in a given sample type could greatly aid in confidently determining if a
given compound is found in that sample type. When incorporated into a quality scoring algorithm,
as is possible with STSDBs, this information can be used to determine the likelihood that a compound
is present in a given sample type.

Lipids are a unique challenge in MS-based databases because it is impossible to determine exact
species based on neutral mass alone. For example, a mass of 835.6091 may match to PC (20:2(11Z,14Z)/
20:3(5Z,8Z,11Z)) in a simple database search. However, it would be more appropriate to label this
as PC (20:2/20:3), or even as PC (40:5), unless high resolution MSn data can distinguish the location
of double bonds. Level 1 confidence will be difficult to obtain for some lipids even with authentic
standards [40,41]. More precise identification of specific lipids using a variety of solutions unfortunately
is unlikely to be achieved within the current DB frameworks. Conversely, STSDBs may offer improved
lipid annotations due to the fact that once a mass is confidently annotated or identified within a dataset,
its annotation will not change.

6. Challenges with Current Focused DB Approaches

While widely used metabolomics databases are rich in information and essential to the
metabolomics informatics workflow, clearly there are challenges that render them less than ideal for
rapid and confident compound annotation and ID. Conversely, the concept of focused DBs is beginning
to take hold [4,39,42]. Importantly, STSDBs are based on existing resources and yet fill a major void,
namely the systematic organization of databases so that searches can be conducted in a focused and
study-specific manner. This has been recognized in genomics for almost a decade, where tools such
as the Tissue-specific Gene Expression and Regulation (TiGER) and Tissue-Specific Genes Database
(TiSGeD) comprise large scale repositories for analyzing data on tissue-specific gene expression and
regulation in a variety of human tissues [43,44]. Similarly, the Human Proteome project categorizes
peptides and proteins in a sample type specific-related manner [45].

Examples of strategies in metabolomics that are similar to STSDBs include the HMDB-supported
serum [1], urine [46], salivary [47], and cerebral spinal fluid (CSF) [48] databases. The newly released
“BinVestigate” at the West Coast Metabolomics Center (WCMC) is a GC/MS-based tool that includes
information regarding sample and disease types, with tools to visualize where compounds have been
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detected. “creDBle [27]” comprises an E. coli-specific resource and the equivalent of a urine STSDB was
presented by Blazenovic et al. [10]. These are some of the first studies, to our knowledge, that attempt
to describe 100% of the data within a dataset. Support for the development of STSDBs is offered
through the Model Organism Metabolomes (MOM) task group of the Metabolomics Society [39] and
through efforts towards a tissue-specific Drosophila melanogaster Atlas [42]. While a definitive step in
the right direction, several issues must be overcome before such tools are effective and adaptable by the
entire clinical metabolomics community. Because the HMDB sub-databases focus on human samples
and include some LC/MS data, we will focus our attention on these.

In our experience, the HMDB biofluid DBs are very useful to understand what compounds have
been detected in a particular biofluid using a variety of technologies and strategies. For example,
they include data from ICP-MS, NMR, and targeted MS/MS runs. However, compounds detected by
these methods, such as lipid mediators and metals, may not be measurable by typical LC/MS-based
metabolomics methods, which is the focus of this perspective article. In addition, they do not include
scoring metrics that can be used to determine the quality of the DB entry and the likelihood that a
compound is present in a given sample type. They are also limited in the number of samples analyzed
to populate the databases and do not stratify the relative quantities observable in various cells or
tissues. Finally, these databases do not attempt to understand 100% of the datasets under study.

For example, while the HMDB CSF database includes 476 compounds that have been confirmed
to exist in human CSF, the DB was generated using seven samples from adult Caucasians [48,49].
Importantly, only 17 of these compounds (3%) were detected using LC/MS, the remaining 97% of
compound identifications were generated using GC, NMR, and targeted methods. Other search
strategies are required to annotate or identify the remaining MS peaks in a CSF LC/MS experiment.
In addition, HMDB reports 4229 “confirmed and highly probable” compounds found in human
serum, with only 96 of these from targeted LC/MS/MS analyses, and none from LC/MS profiling
methods [1]. The HMDB urine and saliva databases have no compounds detected with an LC/MS
method [46,47]. While clearly important and valuable information for metabolomics researchers,
we submit that expanding these databases into an STSDB format could offer a more comprehensive
resource specifically for clinical LC/MS studies.

The currently available HMDB-biofluid, BinVestigate, and creDBle [27] databases likewise
represent a step in the right direction. To further expand and improve on these concepts so that
STSDBs can be widely used by the clinical metabolomics community, several things must happen.
First, we need to develop databases that represent a wider array of clinically relevant sample types.
Second, these databases must be populated by large numbers of samples from a range of disease and
non-disease states. Third, datasets must be automatically and manually curated to annotate as close to
100% of peaks as possible. Fourth, informatics tools must be developed and included that will allow
investigators to make full use of these unique and valuable resources. Our experience suggests that all
of these are possible, although a concerted effort will be required. The following section describes a
framework for achieving the first step.

7. Framework for Developing STSDBs

STSDBs include all of the strengths of general databases, including compound-specific information
and quality scores. While the concept of STSDBs is not entirely new, the newly proposed design and
features of STSDBs may make them extremely attractive to the community. As mentioned, STSDBs
should provide an improved compound annotation and ID workflow through an overall quality score
(Ov-QS- Figures 3 and 4), which includes a composite compound characteristic quality score (CCC-QS)
and relative detection frequency (DF), which counts the number of times a compound has been detected
in a given STSDB. A description of these and the overall utility of STSDBs is demonstrated through
our prototypic STSDBs, which were recently developed for BAL [11] and HEK293 cells. We are using
the term “prototypic” because these STSDBs have not yet been fully curated and the datasets used to
populate these DBs are limited.
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Figure 4. Derivation of the quality scores (QS). MS data are initially assessed for quality within a
dataset using standard metrics such as variability in mass, isotope ratios, and retention time. This is
used to generate a composite compound characteristic quality score (CCC-QS). The number of times a
compound is detected in a sample, i.e., the detection frequency, is included in a final overall quality
score (Ov-QS).

8. Prototypic STSDBs for Bronchoalveolar Lavage (BAL) and HEK293 Cells

Our team has already assembled and tested a prototypic BAL-DB using mouse and human BAL
fluid samples [11]. Data processing followed a typical workflow and included additional steps for
database assembly (Figures 1 and 3). The prototypic BAL database contains a comprehensive list of
reproducibly detected compounds from lipid extracts in positive and negative ionization mode (3163
and 1330 entries), and the aqueous extract in positive ionization mode (689 entries). This prototypic
DB did not include merging or consolidation of positive and negative data, rather they were treated
as separate experiments. Analysis of BAL fluid from an independent study acquired one year later
produced a match rate of 81% to BAL-DB when search constraints of 10 ppm mass accuracy and
1.5 min RT were used. The large retention time window was used to account for the variance in
chromatography between the two experiments which were conducted 1 year apart. This can be
compared to 20% annotation when Metlin was searched with 10 ppm mass accuracy and no RT.
Importantly, the STSDB format allows for information from studies to be preserved. So as more and
more MS/MS spectra and data from authentic standards are included, more BAL-DB entries will match
with a ≥Level 2 confidence. This assumes that all compounds will produce high QSs; importantly,
it also demonstrates the potential when information is stored as a STSDB.

Our BAL-DB demonstrates the utility of our proposed relative detection frequency (DF) statistic.
As mentioned, the DF counts the number of times a compound has been detected in a given STSDB and
relates this to the total number of samples surveyed in that STSDB (i.e., number of times detected/number
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of total samples). As expected, the more samples that are analyzed, the more compounds demonstrate
a high DF. For example, Figure 5 illustrates how the QS will increase relative to the trends seen in
the STSDB (Figure 5). Compounds with lower DFs will have lower quality scores (QS); the more
times a molecule is detected, the higher the DF and the higher the QS. This also verifies that the data
processing steps aligning the compounds by RT and mass are effective. In conclusion, we have already
developed a searchable human and mouse BAL STSDB; however, the current version is prototypic and
therefore does not include the features of a full STSDB.
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Figure 5. Distribution plot of prototypic BAL-DB entries. This figure illustrates how CCC-QS increases
as DF and intensity increase. Samples with a low number of detections and low intensity will have
overall low QS, as seen in the bottom left of the plot. Conversely, a compound that is detected in all
samples with high abundance will have a high QS, as seen in the top right of the plot. The colored bar
on the right indicates the inverse coefficient of variability (CV), with yellow being a high %CV and blue
being a low %CV. Even low intensity compounds will score higher if their DF is high.

One main advantage of STSDBs over conventional DBs is the ability to develop computational
methods to score the quality of database entries. This information is stored in the STSDBs and updated
as new data is added. Evaluation of compound characteristics, including mass (M), isotope ratios
(I), and retention time (RT), is typically achieved through calculating intra-and inter-experiment
coefficients of variation (%CVs). When current databases are used, these CV’s are considered separately
for each compound characteristic. With STSDBs, a single, “composite chemical characteristic” quality
score (CCCS-QS) can be useful to help determine if an entry in the database is potentially relevant to a
study. Together, the CCS-QS and DF comprise a composite Overall Quality Score (Ov-QS). Overall,
three criteria must be met for a compound to be considered authentic: (1) It must have a high Ov-QS
score, (2) MS/MS, CCS, or other data must support its annotation, and (3) the compound has not
been found in an artifact/contaminant DB. Importantly, once this information has been generated and
preserved for a compound, it is immediately available following a DB search.

9. STSDB Computational Strategies

Currently no algorithm addresses the reproducibility of compounds in a database. Rather,
common statistical methods are utilized to explain each compound’s characteristics (mass, isotope



Metabolites 2020, 10, 8 11 of 17

ratios) separately. We propose a scoring metric that combines these properties into a single score,
the CCC-QS. We then include DF to produce an Ov-QS. This will represent a major improvement to the
workflow by introducing algorithms that confirm each individual compound’s annotation following a
single database search and measures the frequency of its presence in each STSDB. Rather than rigorous
validation post hoc to data collection, detected compounds are stored as previously detected and/or
validated compounds with reliability scores.

These scores are updated as more evidence is collected for each compound. The CCCS-QS
will be computed using the measured characteristics (RT, mass, isotope ratios) using computational
methods that are generalizable across a number of challenges, including those developed by our
co-author [50,51]. Composite compound characteristic quality scoring algorithm: The compound
characteristics of mass (M), isotope ratio (I) of the monoisotopic and M + 1 peak, and RT are used in a
novel algorithm to score the reproducibility of a compound. For our purpose, ∆M, ∆I and ∆RT are the
measured differences between the compound’s mean and replicate values. The ∆M, ∆I and ∆RT of each
replicate of a measured compound is modelled to statistically measure the chance that each replicate is
from the same compound (Figure 6). From these modeled distributions, the compound composite
probability is computed from the independent probabilities for each compound (Equation (1)).

Pi = P(∆Mi) ∗ P(∆Ii) ∗ P(∆RTi) (1)

Si = ni/N ∗ Pi (2)

Each probability is then weighted by the relative detection frequency (DF) of replicate observations
and then the final composite score S is computed for each compound (Equation (2)).

A composite score ranges from 0 to 1.0, where 1.0 would represent a perfectly reproducible
compound that is detected in every sample. Finally, Bayesian updating of the models and scores
are used as new replicate data is acquired. After updating, the compound composite scores Si are
computed as the product of the Pi determined from these posterior distributions and the manually
updated ni and N values. Because of the exponential distribution, the final score for each compound is
always on a scale of 0–1.0. The method uses compound reproducibility, which is weighted according
to how many replicates have been observed, together with the other described scoring components,
and updates the database as new samples are acquired and added. Figure 6 shows distributions of M,
I, and RT for our prototypic HEK-DB (blue lines) where more replicates result in higher quality scores.Metabolites 2020, 10, x 12 of 17 
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10. Limitations of STSDBs

While STSDBs have tremendous potential, there are also limitations. Although inclusion of RT
is used in the development of STSDBs, through the calculation of the CCC-QS, importantly RT is
not required to search the STSDBs. Undoubtedly inclusion of RT will improve annotation results.
However, the added value of RT in the search of STSDBs is still unknown. Importantly, STSDBs reduce
the search space so the likelihood of obtaining multiple matches for the same compound is lower
than it would be if conventionally large databases are used. Unfortunately, we are not able to fully
evaluate this variable until algorithm development has been completed and statistics can be generated.
However, compounds with multiple unresolved DB matches can be flagged and given a higher priority
in obtaining orthogonal identifying information. Finally, datasets and STSDBs can be used to develop
and test RT indices, whereby the order in which a molecule elutes can be taken into account [52].
RT indices will allow users the benefits of RT even when LC methods different than those used to
create the STSDB are used.

It should be noted that routinely used sample preparation and LC/MS methods will not allow for
the detection of all compounds. We address this in our own lab by developing targeted methods for
compounds (e.g., oxylipins, nucleotides [53,54]) that are not typically detected in our LC/MS profiling
studies. The purpose of STSDBs is not to provide 100% coverage of a particular metabolome; rather, if a
compound can be detected using standard methods, it will become part of an STSDB. In other words,
the purpose is to create databases of compounds consistently detected using standard LC/MS methods.

It is also important to recognize that Level 1 ID still requires matching to authentic standards.
It is unknown how close an investigator will come to confidently annotating 100% of the extracted
dataset when using an STSDB. It is important to again note the difference between “annotation”,
which describes Level 2–3 confidence, and “identification”, which describes Level 1 confidence.
While not exclusively an issue with STSDBs, the identification of isomers is an additional challenge.
Based on an evaluation of prototypic STSDBs for BAL, plasma, HEK293, and HaCaT cells, we find that
even with a prototypic STSDB, which has not yet undergone manual curation, we would obtain high
(>0.90) Ov-QSs for 75% of compounds. Subsequent versions will have fewer Level 3 and more Level
2 annotations as manual curation and MS/MS data are incorporated. Because they are reproducibly
detected and manually validated database entries, we argue that compounds with high Ov-QSs are
“real” compounds, even if they have not been assigned a compound name. In the long run, this may
result in modified confidence levels, an effort that is already underway [9].

11. Advantages of STSDBs

There are several ways STSDBs provide advantages to traditional compound ID strategies.
For example, the improved rate of identification when focused databases are used has already been
demonstrated using the HMDB serum and urine databases [1,46] and creDBle [27] again, this is because
once a compound’s identity has been verified using authentic standards, it is always identified in
the STSDB. The resulting reduction in search space dramatically reduces the rate of false positives.
Conversely, searching can be conducted in an iterative fashion across several STSDBs and any
compounds that do not match an STSDB can be searched using other DBs and libraries; therefore,
the issue with “false negatives”, is minimal. Our BAL STSDB [11] also supports an improved
identification rate using STSDBs.

STSDBs also allow investigators to confidently annotate the most common unknowns, so that
clinically relevant, but unknown, compounds are still pursued. For example, if a molecule that has
been detected in >80% of a dataset comprised of 200 liver samples produces an interpretable MS/MS
spectrum when fragmented, and is not an artifact, a researcher can be reasonably sure the molecule
is part of the liver metabolome, even if he/she cannot definitively identify it. In addition, once that
compound is identified, results can be uploaded into the STSDB, improving future results. Finally,
STSDBs enable researchers to reduce the number of possible identities for the uncommon unknowns,
largely by reducing the effective search space.
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In addition to focusing on biofluids and cells, STSDBs can be developed for any number of
purposes. For example, searching a “contaminant” DB can quickly determine if compounds are
biologically relevant or due to processing. Similarly, an “in-source fragment” DB can be developed for
a specific instrument platform and shared amongst users. These cannot be based on theoretical or
in silico data, they require empirically-derived datasets. Indeed, as mentioned previously, resources
such as these are becoming available [24,39]. These types of databases are also critical to the field
of metabolomics as a whole, where such DBs can be cross-checked by any metabolomics laboratory.
Finally, STSDBs represent a convenient means of sharing information amongst users with either
instrument platforms, biospecimens, or disease interests in common. For example, an STSDB could
be developed for cancer, with corresponding fields to indicate the type of cancer where a compound
has been detected. Overall, the development of STSDBs can be considered an important first step
towards the development of a Human Metabolome Atlas, whereby compounds can be compared
across tissues/cells.

STSDBs can make manual annotation of datasets less daunting. While manual curation seems
impossible for a set of 50,000 theoretical compounds, manual curation is achievable for STSDBs,
especially if conducted by multiple groups. Our prototypic BAL database contains <5000 compounds,
which can be manually curated to produce a final STSDB. More fully populated and curated STSDBs
will contain whatever number of compounds are reproducibly detected in that specific sample type.
After that, it is relatively straightforward to add compounds to the database as more samples are
added and more compound identities are established. Community members can aid in this effort,
as demonstrated by the widely used the Global Natural Products Social Molecular Networking tool [55].

Building a series of STSDBs can also greatly expand our understanding of non-biological LC/MS
peaks. This includes acquisition artifacts such as in-source fragments, and data extraction artifacts such
as incorrect mass assignments caused by incorrectly assigned charge carriers. These also include ions
introduced from reagents and materials used in the sample preparation process. Knowing the identity
of these compounds will enable researchers to rapidly eliminate them from their list of compounds.
Again, this can be accomplished using a series of “artifact/contaminant/fragmentation databases”.

Finally, STSDBs allow for FDR strategies to be applied. For example, in proteomics, FDR for peptide
identification relies on the fact that protein databases are well curated and relatively static. FDR is
achieved by reversing the sequences in these databases and searching data against this presumably
false, reverse-databases. Once an STSDB has been developed, FDR tools can be built, for example,
based on compounds that are not in the database or not biologically plausible. The development of
such tools has begun to be explored in metabolomics [56] and others have already proposed that small
search spaces can improve annotation [5].

12. The Way Forward

While STSDBs appear to offer significant advantages over conventional DB searching strategies,
the actual development of these resources faces its own set of challenges. For example, the extensive
funding required for building a series of STSDBs would likely have to come from multiple sources;
as such, a global effort by multiple laboratories is likely required. One may legitimately ask why an
investigator cannot simply submit more experimental data to existing DBs. As mentioned, expansion
of the HMDB-biofluid DBs to include scoring algorithms is one way forward that seems feasible
and one we personally hope gains support. Alternatively, it has been suggested that additional
metadata could be uploaded into other, general DBs. This is potentially feasible, although it may be
challenging to integrate the proposed scoring algorithms into general databases. Further, the main
advantages of STSDBs stem from the fact that they comprise constrained spaces, where manual
curation, near-complete interpretation of an LC/MS run, FDR, and RT indices are made more feasible.
While it may be possible to restructure existing DBs, they too have considerable value as-is and it
seems that the community could benefit from both strategies.
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Regardless of the actual implementation strategy, resources would be required to conduct
sample preparation, analysis on multiple LC/MS platforms, and initial data analysis; this would
be needed for each STSDB developed. Similarly, it would be necessary to develop and maintain
infrastructure and standards for building, storing and accessing STSDBs. Finally, acquiring high
quality and well-characterized samples would require the collaborative efforts of several clinical
groups. This in itself would require efforts aimed at standardizing methods. Funding agencies and
international/national organizations could conceivably provide the forward momentum necessary to get
started. As an international affiliation with dedicated task groups, the Metabolomics Society is perhaps
ideally situated to provide support, e.g., through a forum, for such an effort. While limitations clearly
exist, we submit that STSDBs still provide not just a step, but a dramatic leap in the right direction.

Author Contributions: N.A.R. conceived of the sample type databases, provided project guidance, and wrote the
manuscript. S.W. designed and populated the B.A.L. and H.E.K. databases, designed algorithms, and performed
data preparation and analysis. R.R. contributed technical writing and improvements for the database design.
All authors edited and proof read the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was partially supported by NIH/NHLBI R01HL123385 (to Dr. Reisdorph). No external
funding was used for the APC. Contents are the authors’ sole responsibility and do not necessarily represent
official NIH views.

Acknowledgments: The authors would like to acknowledge Charmion Cruickshank-Quinn, Yasmeen
Nkrumah-Elie and Cole Michel for their help generating some of the figures.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.;
Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [CrossRef] [PubMed]

2. Yang, Y.; Cruickshank, C.; Armstrong, M.; Mahaffey, S.; Reisdorph, R.; Reisdorph, N. New sample preparation
approach for mass spectrometry-based profiling of plasma results in improved coverage of metabolome.
J. Chromatogr. A 2013, 1300, 217–226. [CrossRef]

3. Jones, D.P. Sequencing the exposome: A call to action. Toxicol. Rep. 2016, 3, 29–45. [CrossRef] [PubMed]
4. Matsuda, F. Rethinking Mass Spectrometry-Based Small Molecule Identification Strategies in Metabolomics.

Mass Spectr. 2014, 3, S0038. [CrossRef] [PubMed]
5. Matsuda, F.; Shinbo, Y.; Oikawa, A.; Hirai, M.Y.; Fiehn, O.; Kanaya, S.; Saito, K. Assessment of metabolome

annotation quality: A method for evaluating the false discovery rate of elemental composition searches.
PLoS ONE 2009, 4, e7490. [CrossRef]

6. Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted
Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30–34. [CrossRef]

7. Bingol, K. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods.
High Throughput 2018, 7, 9. [CrossRef]

8. Misra, B.B.; Mohapatra, S. Tools and resources for metabolomics research community: A 2017–2018 update.
Electrophoresis 2019, 40, 227–246. [CrossRef]

9. Blazenovic, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of
LC-MS/MS Data in Metabolomics. Metabolites 2018, 8, 31. [CrossRef]

10. Blazenovic, I.; Kind, T.; Sa, M.R.; Ji, J.; Vaniya, A.; Wancewicz, B.; Roberts, B.S.; Torbasinovic, H.; Lee, T.;
Mehta, S.S.; et al. Structure Annotation of All Mass Spectra in Untargeted Metabolomics. Anal. Chem. 2019,
91, 2155–2162. [CrossRef]

11. Walmsley, S.; Cruickshank-Quinn, C.; Quinn, K.; Zhang, X.; Petrache, I.; Bowler, R.P.; Reisdorph, R.;
Reisdorph, N. A prototypic small molecule database for bronchoalveolar lavage-based metabolomics.
Sci. Data 2018, 5, 180060. [CrossRef] [PubMed]

12. Kim, Y.M.; Heyman, H.M. Mass Spectrometry-Based Metabolomics. Methods Mol. Biol. 2018, 1775, 107–118.
[CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0016957
http://www.ncbi.nlm.nih.gov/pubmed/21359215
http://dx.doi.org/10.1016/j.chroma.2013.04.030
http://dx.doi.org/10.1016/j.toxrep.2015.11.009
http://www.ncbi.nlm.nih.gov/pubmed/26722641
http://dx.doi.org/10.5702/massspectrometry.S0038
http://www.ncbi.nlm.nih.gov/pubmed/26819881
http://dx.doi.org/10.1371/journal.pone.0007490
http://dx.doi.org/10.1002/0471142727.mb3004s114
http://dx.doi.org/10.3390/ht7020009
http://dx.doi.org/10.1002/elps.201800428
http://dx.doi.org/10.3390/metabo8020031
http://dx.doi.org/10.1021/acs.analchem.8b04698
http://dx.doi.org/10.1038/sdata.2018.60
http://www.ncbi.nlm.nih.gov/pubmed/29664467
http://dx.doi.org/10.1007/978-1-4939-7804-5_10
http://www.ncbi.nlm.nih.gov/pubmed/29876813


Metabolites 2020, 10, 8 15 of 17

13. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.;
Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working
Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef] [PubMed]

14. Henry, V.J.; Bandrowski, A.E.; Pepin, A.S.; Gonzalez, B.J.; Desfeux, A. OMICtools: An informative directory
for multi-omic data analysis. Database 2014, 2014. [CrossRef]

15. Warth, B.; Spangler, S.; Fang, M.; Johnson, C.H.; Forsberg, E.M.; Granados, A.; Martin, R.L.;
Domingo-Almenara, X.; Huan, T.; Rinehart, D.; et al. Exposome-Scale Investigations Guided by Global
Metabolomics, Pathway Analysis, and Cognitive Computing. Anal. Chem. 2017. [CrossRef]

16. Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: Incorporating
strategies beyond in silico fragmentation. J. Cheminformatics 2016, 8, 3. [CrossRef]

17. Allen, F.; Pon, A.; Wilson, M.; Greiner, R.; Wishart, D. CFM-ID: A web server for annotation, spectrum
prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 2014, 42, W94–W99.
[CrossRef]

18. Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass
spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. [CrossRef]

19. Duhrkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.;
Rousu, J.; Bocker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure
information. Nat. Methods 2019, 16, 299–302. [CrossRef]

20. Duhrkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Bocker, S. Searching molecular structure databases with tandem
mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [CrossRef]

21. Barupal, D.K.; Fan, S.; Fiehn, O. Integrating bioinformatics approaches for a comprehensive interpretation of
metabolomics datasets. Curr. Opin. Biotechnol. 2018, 54, 1–9. [CrossRef] [PubMed]

22. Hufsky, F.; Bocker, S. Mining molecular structure databases: Identification of small molecules based on
fragmentation mass spectrometry data. Mass Spectrom. Rev. 2017, 36, 624–633. [CrossRef] [PubMed]

23. Yang, X.; Neta, P.; Stein, S.E. Extending a Tandem Mass Spectral Library to Include MS(2) Spectra of Fragment
Ions Produced In-Source and MS(n) Spectra. J. Am. Soc. Mass Spectrom. 2017, 28, 2280–2287. [CrossRef]
[PubMed]

24. Lawson, T.N.; Weber, R.J.; Jones, M.R.; Chetwynd, A.J.; Rodri Guez-Blanco, G.; Di Guida, R.; Viant, M.R.;
Dunn, W.B. msPurity: Automated Evaluation of Precursor Ion Purity for Mass Spectrometry-Based
Fragmentation in Metabolomics. Anal. Chem. 2017, 89, 2432–2439. [CrossRef]

25. Chaffin, M.D.; Cao, L.; Deik, A.A.; Clish, C.B.; Hu, F.B.; Martinez-Gonzalez, M.A.; Razquin, C.; Bullo, M.;
Corella, D.; Gomez-Gracia, E.; et al. MetProc: Separating measurement artifacts from true metabolites in an
untargeted metabolomics experiment. J. Proteome Res. 2018. [CrossRef]

26. Mitchell, J.M.; Flight, R.M.; Wang, Q.J.; Higashi, R.M.; Fan, T.W.; Lane, A.N.; Moseley, H.N.B. New methods
to identify high peak density artifacts in Fourier transform mass spectra and to mitigate their effects on
high-throughput metabolomic data analysis. Metabolomics 2018, 14, 125. [CrossRef]

27. Mahieu, N.G.; Patti, G.J. Systems-Level Annotation of a Metabolomics Data Set Reduces 25,000 Features to
Fewer than 1000 Unique Metabolites. Anal. Chem. 2017, 89, 10397–10406. [CrossRef]

28. Schymanski, E.L.; Ruttkies, C.; Krauss, M.; Brouard, C.; Kind, T.; Duhrkop, K.; Allen, F.; Vaniya, A.;
Verdegem, D.; Bocker, S.; et al. Critical Assessment of Small Molecule Identification 2016: Automated
methods. J. Cheminformatics 2017, 9, 22. [CrossRef]

29. Lai, Z.; Kind, T.; Fiehn, O. Using Accurate Mass Gas Chromatography-Mass Spectrometry with the MINE
Database for Epimetabolite Annotation. Anal. Chem. 2017, 89. [CrossRef]

30. Cajka, T.; Fiehn, O. LC-MS-Based Lipidomics and Automated Identification of Lipids Using the LipidBlast
In-Silico MS/MS Library. Methods Mol. Biol. 2017, 1609, 149–170. [CrossRef]

31. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.;
Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis.
Nat. Methods 2015, 12, 523–526. [CrossRef] [PubMed]

32. Wishart, D.S.; Jewison, T.; Guo, A.C.; Wilson, M.; Knox, C.; Liu, Y.; Djoumbou, Y.; Mandal, R.; Aziat, F.;
Dong, E.; et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013, 41, D801–D807.
[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://dx.doi.org/10.1093/database/bau069
http://dx.doi.org/10.1021/acs.analchem.7b02759
http://dx.doi.org/10.1186/s13321-016-0115-9
http://dx.doi.org/10.1093/nar/gku436
http://dx.doi.org/10.1038/nmeth.2551
http://dx.doi.org/10.1038/s41592-019-0344-8
http://dx.doi.org/10.1073/pnas.1509788112
http://dx.doi.org/10.1016/j.copbio.2018.01.010
http://www.ncbi.nlm.nih.gov/pubmed/29413745
http://dx.doi.org/10.1002/mas.21489
http://www.ncbi.nlm.nih.gov/pubmed/26763615
http://dx.doi.org/10.1007/s13361-017-1748-2
http://www.ncbi.nlm.nih.gov/pubmed/28721670
http://dx.doi.org/10.1021/acs.analchem.6b04358
http://dx.doi.org/10.1021/acs.jproteome.8b00893
http://dx.doi.org/10.1007/s11306-018-1426-9
http://dx.doi.org/10.1021/acs.analchem.7b02380
http://dx.doi.org/10.1186/s13321-017-0207-1
http://dx.doi.org/10.1021/acs.analchem.7b01134
http://dx.doi.org/10.1007/978-1-4939-6996-8_14
http://dx.doi.org/10.1038/nmeth.3393
http://www.ncbi.nlm.nih.gov/pubmed/25938372
http://dx.doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693


Metabolites 2020, 10, 8 16 of 17

33. Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.;
Arita, M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev.
2018, 37, 513–532. [CrossRef] [PubMed]

34. Kind, T.; Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate
mass spectrometry. BMC Bioinformatics 2007, 8, 105. [CrossRef]

35. Athersuch, T.J. The role of metabolomics in characterizing the human exposome. Bioanalysis 2012, 4, 2207–2212.
[CrossRef]

36. Andra, S.S.; Austin, C.; Patel, D.; Dolios, G.; Awawda, M.; Arora, M. Trends in the application of
high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the
environmental chemical space of the human exposome. Environ. Int. 2017, 100, 32–61. [CrossRef]

37. Uppal, K.; Walker, D.I.; Liu, K.; Li, S.; Go, Y.M.; Jones, D.P. Computational Metabolomics: A Framework for
the Million Metabolome. Chem. Res. Toxicol. 2016, 29, 1956–1975. [CrossRef]

38. Putignani, L.; Dallapiccola, B. Foodomics as part of the host-microbiota-exposome interplay. J. Proteomics
2016, 147, 3–20. [CrossRef]

39. Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How close are we to complete annotation of metabolomes?
Curr. Opin. Chem. Biol. 2017, 36, 64–69. [CrossRef]

40. Pauling, J.; Klipp, E. Computational Lipidomics and Lipid Bioinformatics: Filling In the Blanks.
J. Integr. Bioinform. 2016, 13, 299. [CrossRef]

41. Hancock, S.E.; Poad, B.L.; Batarseh, A.; Abbott, S.K.; Mitchell, T.W. Advances and unresolved challenges in
the structural characterization of isomeric lipids. Anal. Biochem. 2017, 524, 45–55. [CrossRef] [PubMed]

42. Chintapalli, V.R.; Al Bratty, M.; Korzekwa, D.; Watson, D.G.; Dow, J.A. Mapping an atlas of tissue-specific
Drosophila melanogaster metabolomes by high resolution mass spectrometry. PLoS ONE 2013, 8, e78066.
[CrossRef] [PubMed]

43. Xiao, S.J.; Zhang, C.; Zou, Q.; Ji, Z.L. TiSGeD: A database for tissue-specific genes. Bioinformatics 2010,
26, 1273–1275. [CrossRef] [PubMed]

44. Liu, X.; Yu, X.; Zack, D.J.; Zhu, H.; Qian, J. TiGER: A database for tissue-specific gene expression and
regulation. BMC Bioinformatics 2008, 9, 271. [CrossRef]

45. Omenn, G.S.; Lane, L.; Lundberg, E.K.; Overall, C.M.; Deutsch, E.W. Progress on the HUPO Draft Human
Proteome: 2017 Metrics of the Human Proteome Project. J. Proteome Res. 2017, 16, 4281–4287. [CrossRef]

46. Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.;
Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [CrossRef]

47. Dame, Z.T.; Aziat, F.; Mandal, R.; Krishnamurthy, R.; Bouatra, S.; Borzouie, S.; Guo, A.C.; Sajed, T.; Deng, L.;
Lin, H.; et al. The human saliva metabolome. Metabolomics 2015, 11, 1864–1883. [CrossRef]

48. Mandal, R.; Guo, A.C.; Chaudhary, K.K.; Liu, P.; Yallou, F.S.; Dong, E.; Aziat, F.; Wishart, D.S. Multi-platform
characterization of the human cerebrospinal fluid metabolome: A comprehensive and quantitative update.
Genome Med. 2012, 4, 38. [CrossRef]

49. Wishart, D.S.; Lewis, M.J.; Morrissey, J.A.; Flegel, M.D.; Jeroncic, K.; Xiong, Y.; Cheng, D.; Eisner, R.;
Gautam, B.; Tzur, D.; et al. The human cerebrospinal fluid metabolome. J. Chromatogr. B 2008, 871, 164–173.
[CrossRef]

50. Chen, G.; Walmsley, S.; Cheung, G.C.M.; Chen, L.; Cheng, C.Y.; Beuerman, R.W.; Wong, T.Y.; Zhou, L.;
Choi, H. Customized Consensus Spectral Library Building for Untargeted Quantitative Metabolomics
Analysis with Data Independent Acquisition Mass Spectrometry and MetaboDIA Workflow. Anal. Chem.
2017, 89, 4897–4906. [CrossRef]

51. Fermin, D.; Walmsley, S.J.; Gingras, A.C.; Choi, H.; Nesvizhskii, A.I. LuciPHOr: Algorithm for
phosphorylation site localization with false localization rate estimation using modified target-decoy approach.
Mol. Cell. Proteomics 2013, 12, 3409–3419. [CrossRef] [PubMed]

52. Zheng, S.J.; Liu, S.J.; Zhu, Q.F.; Guo, N.; Wang, Y.L.; Yuan, B.F.; Feng, Y.Q. Establishment of Liquid
Chromatography Retention Index Based on Chemical Labeling for Metabolomic Analysis. Anal. Chem. 2018,
90, 8412–8420. [CrossRef] [PubMed]

53. Crouch, M.J.; Kosaraju, R.; Guesdon, W.; Armstrong, M.; Reisdorph, N.; Jain, R.; Fenton, J.; Shaikh, S.R.
Frontline Science: A reduction in DHA-derived mediators in male obesity contributes toward defects in
select B cell subsets and circulating antibody. J. Leukoc. Biol. 2018. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/mas.21535
http://www.ncbi.nlm.nih.gov/pubmed/28436590
http://dx.doi.org/10.1186/1471-2105-8-105
http://dx.doi.org/10.4155/bio.12.211
http://dx.doi.org/10.1016/j.envint.2016.11.026
http://dx.doi.org/10.1021/acs.chemrestox.6b00179
http://dx.doi.org/10.1016/j.jprot.2016.04.033
http://dx.doi.org/10.1016/j.cbpa.2017.01.001
http://dx.doi.org/10.1515/jib-2016-299
http://dx.doi.org/10.1016/j.ab.2016.09.014
http://www.ncbi.nlm.nih.gov/pubmed/27651163
http://dx.doi.org/10.1371/journal.pone.0078066
http://www.ncbi.nlm.nih.gov/pubmed/24205093
http://dx.doi.org/10.1093/bioinformatics/btq109
http://www.ncbi.nlm.nih.gov/pubmed/20223836
http://dx.doi.org/10.1186/1471-2105-9-271
http://dx.doi.org/10.1021/acs.jproteome.7b00375
http://dx.doi.org/10.1371/journal.pone.0073076
http://dx.doi.org/10.1007/s11306-015-0840-5
http://dx.doi.org/10.1186/gm337
http://dx.doi.org/10.1016/j.jchromb.2008.05.001
http://dx.doi.org/10.1021/acs.analchem.6b05006
http://dx.doi.org/10.1074/mcp.M113.028928
http://www.ncbi.nlm.nih.gov/pubmed/23918812
http://dx.doi.org/10.1021/acs.analchem.8b00901
http://www.ncbi.nlm.nih.gov/pubmed/29924596
http://dx.doi.org/10.1002/JLB.3HI1017-405RR
http://www.ncbi.nlm.nih.gov/pubmed/30576001


Metabolites 2020, 10, 8 17 of 17

54. Martens, C.R.; Denman, B.A.; Mazzo, M.R.; Armstrong, M.L.; Reisdorph, N.; McQueen, M.B.; Chonchol, M.;
Seals, D.R. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy
middle-aged and older adults. Nat. Commun. 2018, 9, 1286. [CrossRef]

55. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.;
Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural
Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [CrossRef]

56. Scheubert, K.; Hufsky, F.; Petras, D.; Wang, M.; Nothias, L.F.; Duhrkop, K.; Bandeira, N.; Dorrestein, P.C.;
Bocker, S. Significance estimation for large scale metabolomics annotations by spectral matching. Nat. Commun.
2017, 8, 1494. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41467-018-03421-7
http://dx.doi.org/10.1038/nbt.3597
http://dx.doi.org/10.1038/s41467-017-01318-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Traditional Strategies in LC/MS-Based Metabolomics Compound ID 
	Basic STSDB Strategy 
	Current Challenges with Compound ID 
	Challenges with Current Databases 
	Challenges with Current Focused DB Approaches 
	Framework for Developing STSDBs 
	Prototypic STSDBs for Bronchoalveolar Lavage (BAL) and HEK293 Cells 
	STSDB Computational Strategies 
	Limitations of STSDBs 
	Advantages of STSDBs 
	The Way Forward 
	References

