A brief Tutorial on R-based approach

Costs and benefits of switching from vendor-based to open source pipelines for untargeted

LC-MS metabolomics.

This tutorial aims to detail step-by-step how the R approach has been developed. We pretend
to show the way we have applied the different R packages in our data. In this sense, our main
objective is to help beginners in R language to be able to use the different packages and scripts
used in the manuscript. Although tutorials may exist for individual pre-processing modules, in
this document is showed how to stitch together these modules into entire pipelines.
Nevertheless, we recommend you reading the different manuscripts and tutorials of each R

package available in the following links:

IPO (Libiseller et al. 2015):
https://bioconductor.org/packages/release/bioc/vignettes/IPO/inst/doc/IPO.html
XCMS (Smith et al. 2006):

https://bioconductor.org/packages/release/bioc/vignettes/xcms/inst/doc/xcms.html

https://jotsetung.github.io/metabolomics2018/xcms-preprocessing.html

batchCorr (Brunius et al. 2016):

https://gitlab.com/CarlBrunius/batchCorr/tree/master/Tutorial
RAMClustR (Broeckling et al. 2014):
http://pubs.acs.org/doi/abs/10.1021/ac501530d

MUVR (Shi et al. 2018):
https://github.com/CarlBrunius/MUVR/blob/master/README.md

1) Installation.

First, R and RStudio were downloaded from the websites (https:/www.r-project.org/,

https://www.rstudio.com/) and installed on a Windows 7 computer. Second, the different

packages used were installed in the R environment with the following codes:

install.packages("BiocManager", repos="http://cran.us.r-project.org",
dependencies=TRUE)

install.packages("devtools", repos="http://cran.us.r-project.org",
dependencies=TRUE)



Tibrary(devtools)
Tibrary(BiocManager)

BiocManager::install("IP0", version = "3.8")

BiocManager::install("xcms", version = "3.8")
install_github("cbroeckl/RAMClustR", build_vignettes = TRUE, dependencies
= TRUE)
devtools::install_git("https://gitlab.com/CarlBrunius/batchCorr.git")

Tibrary(1IPO)
Tibrary(xcms)
Tibrary (RAMCTustR)
Tibrary(batchcCorr)

In order to be able to read the data in the R environment, it is necessary to transform the data
format into an adequate format (mzML, mzXML, mzData, NetCDF). In our particular case,
data were collected by an Agilent instrument in a .d format. We transformed this format into
.mzML using MSConvertGUI software. This tool from proteowizard can be downloaded from

the website http://proteowizard.sourceforge.net/download.html. This software is easy to use as

it is shown schematically in the following figure.

a5l MSConvertGUI (64-bit) - a X

(@) Listof Fles (O Flle of file names

Fie: | Browse Browse network resource. . e
Remave

Vayo 2018 Muesiras Microbioma y 545%1pool10d L
Mayo 2018 Muestras Microbioma y SJ5\1posi11.d Subset v
Mayo 28}8 Muestras mwcmbuoma y SJS\th%d

i - Mayo 2018 Muestras Microbioma y SJ5\poci13.d T
Input files {'d format] Mayo ZS}SMuewas Microbioma y SJS\IWQH';.d MSlevels: | = Chagedtates: |  |-| |
Mayo 21 Muestras Microbioma y SJS\1pool15.d T T
Mayo 2018 Muestras Microbioma y 5J541pool16.d Sean number. | 2| Number of datapaints: | || |
Mayo 2018 Muestras Microbioma y SJ5\1pocl166.d
Mayo 2016 Muestras Microbioma y 5J5\Tpool17.d Scantime (ssconds): [ | - [ Activation type: | Any v

M.'

Scan evert [ ‘ = [ ‘ Analyzer type:

< >
- Scan polarty: | Any v
Output Directory:

[FAmzMLfles | | e
Output Director Options :
“ Y Output fomat: | mzML  + Ex!znsinn:l | Filter Parameters
(.mzML format)

<Runld>.<ScanNumbers <ScanMumber>. <Charge State> File:"<SourcePath>", Nati

Binary encoding precision: (®) 645t () 32bit
Write index: Use zlib compression;
TPP compatibilty: Package in gzip:

Use numpress linear compression

Use numpress short logged float compression:
Use rumpress positive integer compression:
Combine ion mobilty scans:

SIM as spectra: [] SRM as spectra;

oooooOooM

Presets: | Generic Defaults v| | Save Preset = Start

2) TPO.

The aim of this package is to optimize the xcms parameters. For this purpose, 6 QC files well

distributed throughout the sequence were selected.



Tibrary(xcms)

Tibrary(RColorBrewer)

Tibrary(pander)

Tibrary(magrittr)

Tibrary("1P0", 1ib.Toc="~/R/win-Tibrary/3.5")
Tibrary("msdata", Tib.loc="~/R/win-1ibrary/3.5")

The selected files must be saved in a folder within the working directory. If you do not know
what this directory is, use the command “>getwd()”. In our case, the 6 QC files were located
in a folder called “QC” and we used the following command to import them into the R

environment.

#Open files

datafiles <- Tist.files("QC", recursive = TRUE, full.names = TRUE, pattern
=".mzML")
peakpickingParameters <- getDefaultXcmsSetStartingParams('centwave')

To work more quickly in R, it is very useful to work in parallel using the different computer
cores. For this, we use the “doParallel” package. In order to continue working with the
computer while the R commands are executing, a good number of cores is the numbers of

available cores minus one.

Tibrary(doparallel)
nCore=detectCores()-1

Next, the different parameters for peak peaking were selected. As our data were obtained by a
high resolution mass spectrometer, the peak picking method was ‘CentWave’. Some
parameters were optimized by IPO package selecting a reasonable range according to our
experiments. In this way, min_peakwidth, max_peakwidth and ppm were the optimized
parameters. However, the noise and prefilter parameters were set at a single value. These
parameters were selected after observing the current noise level in the chromatograms. The

selection of the different parameters was performed with the following code:

#PeakPickingParameters

peakpickingParameters <- getDefaultXcmsSetStartingParams('centwave')
peakpickingParameters$noise=1000
peakpickingParameters$value_of_prefilter=(3,800)
peakpickingParameters$min_peakwidth<- c(8,15)
peakpickingParameters$max_peakwidth<- c(30,40)
peakpickingParameters$ppm<- c(25,35)

param=SnowParam(workers = 5)



Once the parameters were selected, the optimization of the parameters set in a range was

performed by IPO.

resultPeakpicking <-
optimizexXxcmsSet(files = datafiles,
params = peakpickingParameters,
BPPARAM param,
nslaves 1,
subdir = NULL,
plot = TRUE)

The TPO optimization is based on Design of Experiments. The results were shown both

numerically and graphically in contour graphs.

#best parameter settings:
# min_peakwidth: 12.48
#max_peakwidth: 35

#ppm: 24

#mzdiff: 0.00175
#snthresh: 10

#noise: 1000

#prefilter: 3
#value_of_prefilter: 800
#mzCenterFun: wMean
#integrate: 1

#fitgauss: FALSE
#verbose.columns: FALSE
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Analogously to the peak picking optimization, the retention time alignment and grouping

parameters were also optimized in order to be applying in XCMS package. The optimized



parameters for retention time alignment using the “obiwarp” method were profStep, response,
gaplnit and gapExtend, and for correspondence using “density” method were bw and mzwid.

In our study, the parameter minfrac was fixed at value of 0.5.

optimizedXcmsSetObject <- resultPeakpicking$best_settings$xset

retcorGroupParameters <- getDefaultRetGroupStartingParams()
retcorGroupParameters$profstep <- c(0.33,1)
retcorGroupParameters$gapextend <- c(2.1,2.9)
retcorGroupParameters$minfrac=0.5
retcorGroupParameters$response=c(9.6,17.6)
retcorGroupParameters$gapInit=c(0.14, 0.54)
retcorGroupParameters$mzwid=c(0.023, 0.047)

BiocParallel::register(BiocParallel::SerialParam())

resultRetcorGroup <-
optimizeRetGroup(xset = optimizedxcmsSetoObject,
params = retcorGroupParameters,
nslaves = 1,
subdir = NULL,
plot = TRUE)

The results were obtained by the following code and these are shown below:

writeRScript(resultPeakpicking$best_settings$parameters, resultRetcorGroup
$best_settings)
xset <- retcor(

xset,

method = "obiwarp",
plottype = "none",
distFunc = "cor_opt",
profStep = 0.3,
center = 6,
response = 13.84,
gapInit = 0.352,
gapExtend = 2.436,
factorbDiag = 2,
factorGap =1,
TocalAlignment = 0)

xset <- group(

xset,

method = "density",

bw = 0.879999999999999,
mzwid = 0.047,

minfrac = 0.5,

minsamp = 1,

max = 50)

Despite the optimization made by IPO, the obtained value for bw was considered very low. For
this reason, this parameter was optimized manually. Different tests were performed with

different values of bw (from 0.5 to 10). The optimal parameter of bw was chosen when the



greatest number of features was obtained. In our case, it was obtained at 5.0 as it is showed in

the next figure.

3) XCMS

Before using XCMS, we imported all data in R analogously to the importation performed
previously with the 6 QC samples for the IPO optimization. Thus, we pasted the .mzML files
of all the samples in a folder called “PlasmaData” within the workspace and run the following
code.

datafiles <- Tist.files("PlasmabData", recursive = TRUE, full.names = TRUE,
pattern=".mzML")

The samples were divided in two subfolders in order to create a phenodata data.frame

depending on if they are cases or QC samples.

# Create a phenodata data.frame

pd <- data.frame(sample_name = sub(basename(datafiles), pattern = ".mzML",
replacement = "", fixed = TRUE),
sample_group = c(rep('case", 306), rep("QCc", 63)),
stringsAsFactors = FALSE)

The peak picking, retention time correction, and feature correspondence were performed using

XCMS with the parameters optimized in the previous step with IPO.

raw_data <- readMsbData(files = datafiles, pdata = new("NAnnotatedDataFrame
", pd), mode = "onDisk")

#PeakPicking Step



cwp <- CentwaveParam(peakwidth = c(12.48, 35), ppm = 24, mzdiff = 0.00175,
snthresh = 10, noise = 1000, prefilter = c(3,800))
xdatalLl <- findChromPeaks(raw_data, param = cwp)

[...Detecting chromatographic peaks in 2519 regions of interest ... OK: 17
55 found.

Detecting mass traces at 24 ppm ... OK

Detecting chromatographic peaks in 2574 regions of interest ... OK: 1825 f
ound.

Detecting mass traces at 24 ppm ... OK

Detecting chromatographic peaks in 2634 regions of interest ... OK: 1849 f
ound. ...]

#Grouping and RT Correction
#RT Correction

BiocParallel::register(BiocParallel::SerialParam())
xdatalL2 <- adjustRtime(xdatalLl, param = ObiwarpParam(gapInit = 0.352, gapE
xtend = 2.436, response = 13.84, binSize = 0.3))

[...Sample number 185 used as center sample.

Aligning 0601429.mzML against 3920435.mzML ... OK
Aligning 0610035.mzML against 3920435.mzML ... ]
#Correspondence

pdp <- PeakDensityParam(sampleGroups = xdatalL2$sample_group, minFraction =
0.5, bw = 5, binSize = 0.047)

xdatalL3 <- groupChrompPeaks(xdatalL2, param = pdp)
Processing 67195 mz slices ... OK

The next step is to look for the peaks which were assigned as missing values (NA) in some
samples because the peak detection algorithm was not able to find them. Therefore, this step

of “filling peaks” is performed with the following code.

xdataL4 <- fillchrompPeaks(xdataL3)

[Defining peak areas for filling-in .... OK

Start integrating peak areas from original files

Requesting 488 missing peaks from 0601429.mzML ... got 394.
Requesting 622 missing peaks from 0610035.mzML ... got 510.
Requesting 553 missing peaks from 0611111.mzML ... got 393.
-

Despite this new step, there are still missing values in the samples for different reasons (e.g.
not present in the biological samples, very low concentrations below the detection limits,
algorithm failures). It is shown below the total number of missing values of all samples before

and after the filling step.

#Number of missing values before filling step

xdataL3b = featurevalues(xdataL3, value = "into")
sum(is.na(xdataL3b))

[1] 136846

#Number of missing values after filling step
xdataL4b = featurevalues(xdataL4, value = "into")

sum(is.na(xdataL4b))



[1] 43476

Once these steps have been performed, we proceed to extract the integrated areas and the
information of the peaks (mass and retention times) with the following codes. In this step, the
features are named according to their mass and retention times using the “featureDefinitions”

function as follows.

xdatalL5 = featurevalues(xdataL4, value = "into")
xdataL5= t(xdatal5)
featData=featurebDefinitions(xdataL4)
featData=featData@listData
featNames=pasteO(featbData$mzmed,"_", featData$rtmed)
colnames(xdatalL5)=featNames

For example, the first feature (mz: 100.075826364437, rt: 273.94580078125 s) was called
“100.075826364437 273.94580078125”.

Missing value imputation

Imputation of values still missing after XCMS peak filling was performed using an in-house
script based on RandomForest methodology (https://gitlab.com/CarlBrunius/StatTools;
mvImpWrap() function). For it, it is necessary to install firstly the StatTools package.

#Installation of package StatTools
devtools::install_git("https://gitlab.com/CarlBrunius/StatTools.git")

#Missing Value Imputation

nCore=detectCores()-1

cl=makeCluster(nCore)

registerboParallel(cl)

Imp <- StatTools::mvImpwrap(MAT = xdatalL5, method = "RF")
xdatalL5 <- Imp

stopCluster(cl)

#Number of missing values after missing value imputation
sum(is.na(xdataL5))
[1] O

4) BatchCorr

The BatchCorr package aims to normalize the data due to between-batch and within-batch

drifts produced in LC-MS analysis. This normalization strategy is based on the QC samples,



the batches, and the injection order. For these reasons, it is necessary to introduce this
information (injection, batch, and QC/Case) in the R environment.

Previously, a dataframe called “pd” was created with the information of the kind of sample
(QC or Case sample). Therefore, we needed to add in this dataframe two columns to indicate
the injection position and the batch of each sample.

First of all, it is necessary to read a .csv file with the information of injection order and batch

of each sample. This file (in our case is named “pdinjbatch.csv”’) have to be located in the

workspace.

sample_name sample_group batch inj
pool1-r00s ac 1 1
4315311 Case 1 2
4315335 Case i 3
4315359 Case 1 4
4315383 Case 1: 5
4315211 Case 1 ]
pool2 ac 1 7
4315235 Case 1 8
4315259 Case 1: 9
4315283 Case 1 10
617211 Case i 11
617235 Case 1 12
pool3 ac 1 13
617259 Case 1 14
617283 Case 1k 15
3499535 Case 1 16
3499559 Case 1: 17
3499583 Case I 18

pd_injbatch = read.csv(file="pd_injbatch.csv', head = TRUE, sep = ',")

Once this file was loaded in the R environment, the columns “inj” and “batch” were added to
the dataframe pd. For this step, it is needed to make sure that the samples are sorted in both

files (pd and pd_injbatch) in the same way. Below are the instructions to carry out this stage:

# Check the identical order of the samples.

rownames (pd) = pd$sample_name

rownames (pd_injbatch) = pd_injbatch$sample_name
identical(rownames(pd), rownames(pd_injbatch))
[1] TRUE

# Add the “inj” and “batch” columns to the dataframe pd.

pd<- data.frame(pd, inj= pd_injbatch$inj)
pd<- data.frame(pd, batch= pd_injbatch$batch)

To perform the batchCorr package correctly is required that the samples are sorted by their
injection order. If they are not ordered in the previous files in this way, it is mandatory to apply

the following commands.

xdataL5Sort= xdataL5[order(pd$inj),]
pdsort = pd[order(pd$inj),]



The normalization by BatchCorr is performed by means of three steps: 1: between-batch
correspondence/alignment. 2: within-batch intensity drift correction and 3: between-batch
normalization. In the following lines are detailed how we used this package in our data. To
better understanding the scripts and functions, we strongly recommend that you read the

tutorial of this package (https://gitlab.com/CarlBrunius/batchCorr/tree/master/Tutorial)

In order to carry out these 3 steps, we needed these 3 objects: a) dataframe (pd) with
information about batches, sample groups (QC/case) and injection orders; b) peak table without
missing values (xdataL5Sort); ¢) peak table with missing values obtained before filling step.

In order to obtain this last peak table (xdataL3bsort), we applied the following code:

xdataL3b = featurevalues(xdataL3, value = "into")
xdataL3b= t(xdatalL3b)
featData=featurebDefinitions(xdataL4)
featData=featData@listData
featNames=pasteO(featData$mzmed,"_", featData$rtmed)
colnames (xdataL3b)=featNames
xdataL3bSort=xdataL3b[order(pd$inj),]

Step 1. Between-batch correspondence/alignment

The aim of the first step is to align the features misaligned between batches. Firstly, it is
fundamental to extract the retention times and masses from each feature using the function

“peakInfo”. As our features were called, “mass_rt”, we applied the function as follows:

peakIn <- peakInfo(PT = xdatalL3bSort, sep = '_', start = 1)

* mz rt
feature_1 100.0758 273.94580
feature_ 2 100.1120  200.78700
feature_3 101.0791 273.85098
feature_4 102.0547 89.85000
feature_5 103.0541 304.76999
feature_6 104.0522 89.84962
feature_7 1041061 1484.32019

Secondly, we used the "alignBatches" function to carry out the purpose of this first step.

alignBat <- alignBatches(peakInfo = peakIn, PeakTabNoFill = xdataL3bSort,
PeakTabFilled = xdataL5Sort, batches = pdSort$batch, sampleGroups = pdSort
$grp, selectGroup = 'QC')

IMPORTANT NOTIFICATION



There are no alignment candidates. Therefore,
between-batch alignment is not possible.
consider expanding mzdiff and/or rtdiff
of that correspondence is accurate between batches.
Returning NULL.

This output indicates that no alignment candidates were found and, consequently, that no
between-batch alignment was possible. This fact reflects that this stage was carried out

correctly in the previous step with XCMS package.

Step 2. Within-batch intensity drift correction
The second step aims to normalize and correct the drifts produced throughout each batch. In
addition, the features with a RSD higher than 30% in QC samples after the normalization were

filtered.

We used the functions "getbatch" and "correctDrift" to extract each batch, and carry out the

normalization, respectively.

batchB_F <- getBatch(peakTable = xdatalL5Sort, meta = pdSort, batch = pdSor
t$batch, select = '1")

batchl <- correctDrift(peakTable = batchB_F$peakTable, injections = batchB
_F$meta$inj, sampleGroups = batchB_F$meta$sample_group, QCID = 'QC', G = s
eq(5,35,by=3), modelNames c('VWE', '"VEE'))#
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Type 'citation("mclust™)' for citing this R package in publications.

Mclust fitting ...
I

100%

MCTust final model with 14 clusters and VEE geometry.
BIC performed in 14.54 seconds and clustering in 0.91 seconds.

Calculation of QC drift profiles performed.

Drift correction of 12 out of 14 clusters using QC samples only.
Corrected peak table in $TestFeatsCorr

Filtering by QC cv < 0.3 -> 1205 features out of 1312 kept in the peak tab
Te.

Peak table in $TestFeatsFinal, final variables in $finalvars and cluster i
nfo in $actionInfo.



# Batch 2
batchA_F <- getBatch(peakTable = xdatalL5Sort, meta = pdSort, batch = pdSor
t$batch, select = '2'")

batch2 <- correctDrift(peakTable = batchA_F$peakTable, injections = batchA
_F$meta$inj, sampleGroups = batchA_F$meta$sample_group, QCID = 'QC', G = s
eq(5,35,by=3), modelNames c('VWE', '"VEE'))#

Mclust fitting ...
I

100%

MClust final model with 14 clusters and VEE geometry.
BIC performed in 24.26 seconds and clustering in 1.25 seconds.

Calculation of QC drift profiles performed.

Drift correction of 13 out of 14 clusters using QC samples only.
Corrected peak table in $TestFeatsCorr

Filtering by QC cv < 0.3 -> 1110 features out of 1312 kept in the peak tab
Te.

Peak table in $TestFeatsFinal, final variables in $finalvars and cluster i
nfo in $actionInfo.

# Batch 3
batchH_F <- getBatch(peakTable = xdatalL5Sort, meta = pdSort, batch = pdSor
t$batch, select = '3")

batch3 <- correctDrift(peakTable = batchH_F$peakTable, injections = batchH

_F$meta$inj, sampleGroups = batchH_F$meta$sample_group, QCID = 'QC', G = s
eq(5,35,by=3) ,modeTNames = c('VVE', 'VEE'))

Mclust fitting ...
|

100%

MClust final model with 8 clusters and VEE geometry.
BIC performed in 10.59 seconds and clustering in 0.22 seconds.

Calculation of QC drift profiles performed.

Drift correction of 4 out of 8 clusters using QC samples only.
Corrected peak table in $TestFeatsCorr

Filtering by QC cv < 0.3 -> 701 features out of 1312 kept in the peak tabl
e

Peak table in $TestFeatsFinal, final variables in $finalvars and cluster i
nfo in $actioninfo.

Step 3. Between-batch normalization

The third step aims to merge the drift-corrected data (mergeBatches() function) and normalize

the effects between batches (normalizeBatches() function).



mergedData <- mergeBatches(list(batchl, batch2, batch3))
normbata <- normalizeBatches(peakTable = mergedbata$peakTable, batches = p
dsort$batch, sampleGroup = pdSort$sample_group, population = 'all')

Once these functions were carried out, we extracted the peakTable (features and intensities)
and exported it in a .csv file.

PTnorm <- normbata$peakTable
write.csv(PTnorm, file="PTnorm_F.csv")

A good way to observe how the data has been transformed with this package is using Principal
Component Analysis (PCA). In the following lines, it is shown the code for PCA analysis used
for the three data sets (raw data, data after within-batch normalization step and data after

between-batch normalization step).

pcal <- prcomp(x = xdatalL5Sort, center = T, scale. = T)
pca2 <- prcomp(x = mergedData$peakTable, center = T, scale. = T)
pca3 <- prcomp(x = PTnorm, center = T, scale. = T)

It is shown below the code to create the graphs that show the scores plots of each PCA model.
par(mfrow=c(1,3))

plot(pcal$x[,2:3], col=pdSort$batch, main = 'raw')
plot(pca2$x[,2:3], col=pdSort$batch, main = 'within')
plot(pca3$x[,2:3], col=pdSort$batch, main = 'between')

raw within between

5) RAMClust



The aim of this package is to perform the annotation step. Briefly, it consists of grouping all
MS signals related to a single compound (isotopes, adducts, isomers, fragments products, etc.)
into a single file called “feature”. To perform this step, the package RAMClust is mainly based
on two parameters: (i) similarity in their retention times (st) and (ii) correlation in the

abundances across different samples (sr).

Tibrary(RAMClustR)

Unlike the TPO package that allows optimizing the parameters for XCMS, there is still no
package to optimize the mentioned RAMClust parameters, st and sr. So, we created our own
methods and functions to optimize these values and achieve a better result of the annotation.
In this way, the functions getRamSt and plotClust were created (see Annex).

The getRamSt function aims to obtain the optimal value of the st parameter.

getRamsSt(xdataL4)
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Once the st parameter was optimized, we applied the ramclustR function with this st value
and a range of sr parameter (sr = 0.3, 0.4, 0.5). In this script, we used the plotClust function to
obtain the plots of 20 features in order to observe the groupings of the signals and obtain the

optimal sr value.

expbDes=defineExperiment(force.skip = T)
sr=c(.3,.4,.5)

st=1.33

maxt=c(5)
par=expand.grid(st=st,sr=sr,maxt=maxt)
str(par)

'data.frame': 3 obs. of 3 variables:

$ st :num 1.33 1.33 1.33
$ sr : num 0.3 0.4 0.5



$ maxt: num 5 55
- attr(*, "out.attrs")=List of 2
.8 dim : Named int 13 1
..- attr(*, "names")= chr
..$ dimnames:List of 3
..$ st : chr "st=1.33"
..$ sr : chr "sr=0.3" "sr=0.4" "sr=0.5"
..$ maxt: chr "maxt=5"

st" "sr maxt"

nClust=nSing=sizeMax=s1izeMed=sizeMean=numeric(nrow(par))
nFeat=Tist()
samps=sample(1:205,20)
register(bpstart(SnowParam(7))) # Choose as many cores as you can/want
for (i in l:nrow(par)) {
RRP=ramclustR(ms='PTnorm_F.csv', st = par$st[i], sr=par$sr[i], maxt = pa
r$maxt, timepos = 2, sampNameCol = 1, featdelim = '_', ExpDes = expDes)
nClust[i]=Tength(RRP$cmpd)
nsing[i]=RRP$nsing
sizeMax[1]=max (RRP$nfeat)
sizeMed[i]=median(RRP$nfeat)
sizeMean[i]=mean(RRP$nfeat)
nFeat[[i]]=RRP$nfeat
pdf(file=paste0('clusts_par',i,"'.pdf"'),width=15,height=8)
par(mfrow=c(4,5),mar=c(4,4,2,0)+.5)
clusts=round(c(2:6,seq(7,max(RRP$featclus),length.out = 15)))
for (c in clusts) {
plotClust(ram = RRP,clustnr = c,xcmsData = xdatalL4,samps = samps)

}
dev.off(Q)

Then, the results were obtained for each combination of values. To choose the optimal sr value,
we visually inspected the generated files. In the following figure, examples of correct or
incorrect annotation cases are shown. In this way, the optimized sr value was chosen where the
greatest number of features with a correct annotation was obtained, (a value of 0.3 was obtained

in our case).

cbind(par,nClust,nSing,sizeMax,sizeMean, sizeMed)

st sr maxt nClust nSing sizeMax sizeMean sizeMed
11.33 0.3 5 213 306 16 3.778302 3
2 1.33 0.4 5 213 257 17 4.009434 3
3 1.33 0.5 5 204 217 19 4.384236 3
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Finally, we applied the ramclustR function with the optimal values of st and sr.

RC1 <- ramclustR(ms='PTnorm_F.csv',

featdelim = "_",
st = 1.33,

sr = 0.3,
ExpDes=expDes,
sampNameCol =

D

organizing dataset
normalizing dataset

calcuTlating ramclustR similarity: nblocks = 1
1 RAMClust feature similarity matrix calculated and stored:
RAMClust distances converted to distance object

fastcluster based clustering complete
dynamicTreeCut based pruning complete
RAMClust has condensed 1109 features into 213 spectra

collapsing feature into spectral signal intensities
writing msp formatted spectra
msp file complete

RC1 <- do.findmain(RCl, mode =
10)
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100 of 213
110 of 213

"positive", mzabs.error = 0.02, ppm.error



120 of 213
130 of 213
140 of 213
150 of 213
160 of 213
170 of 213
180 of 213
190 of 213
200 of 213
210 of 213
plotting findmain annotation results
finished

6) Export Data.

The last step of pre-processing corresponds to the export of data to use them in statistical
analyses. We exported both the features annotated by RAMClustR and the signals that were
not assigned to any cluster (singletons). In the following lines it is showed how the exportation

was performed. The tidyverse package is necessary.

Tibrary(tidyverse)

#Look for the ion with the highest intensity in each group obtained by RAMClustR

Max_int<- Tapply(RC1l$M.ann, function(x) x[which.max(x$int), 1)
Molecular_ions <- bind_rows(Max_int)

Molecular_ions$name <- paste(round(Molecular_ions$mz,4), round(RCl$clrt,2)
, Sep - u_u

PTnorm_F2_mz <- colnames(PTnorm_F2) [-1] %>% str_split(.,"\\2") %% Tlapply(
.,function(x) x[1]) %>% unlist() %>%as.numeric()

#check if it works for your data with the following table. The number of TRUES should be the

same to the cluster number.

PTnorm_F2_mz %in% Molecular_ions$mz %>% table()
FALSE TRUE
896 213

PTnorm_F2_molecularIons_rawInt<- PThnorm_F2[,-1][,PTnorm_F2_mz %in% Molecul
ar_ions$mz]

#Look for the singletons

clustered_mz<- Tapply(RC1l$M.ann, function (x) x$mz) %>% unlist() %>% as.nu
meric()
singletons <- PTnorm_F2[,-1][,!PTnorm_F2_mz%in%clustered_mz]

#Combine singletons and molecular ions

PTnorm_F2_ramclust_annotedPT <- cbind.data.frame(PTnorm_F2_molecularIons_r
awInt, singletons)



rownames (PTnorm_F2_ramclust_annotedPT) <- paste0("PTnorm_F2",rownames(PTnho
rm_F2_ramclust_annotedPT))

colnames (PTnorm_F2_ramclust_annotedPT) <- paste0("PTnorm_F2",colnames(PTho
rm_F2_ramclust_annotedPT))

write.csv(PTnorm_F2_ramclust_annotedPT, file = "PTnorm_F2_ramclust_annoted
PT0920.csv")

Finally, a .csv file (samples vs intensities of each feature) was obtained in the working
directory. This can be imported into different statistical software to perform the corresponding

tests that are desired.

We hope this guide allows you to use R in the same way that we have used it in our work.

Good luck and thanks for your interest in this tutorial.

Alvaro Fernandez and Carl Brunius

PS. Please don’t hesitate to contact us if you have problems with the codes and functions or

any suggestions or questions.

alvaroferochoa@ugr.es

carl.brunius@chalmers.se

Annex

getRamSt:

getRamSt <- function(xobj) {
featinfo <- featureDefinitions(X0obj)
hist((featInfo$rtmax-featInfo$rtmin)/2)
st <- round(median(featInfo$rtmax-featinfo$rtmin)/2, digits = 2)
abTline(v=st)
return(st)



plotClust:

plotClust=function(ram,clustnr,xcmsData,samps,dtime=5,dmz=.05) {
if(missing(samps)) {
nSamp=nrow(ram$SpecAbund)
samps=1:nSamp
} else nsamp=Tength(samps)
whichFeats=which(ram$featclus==clustnr)
peakMeta=cbind(ram$fmz, ram$frt)
pkMetaGrp=peakMeta[whichFeats,]
rtr=ram$cirt[clustnr]+c(-dtime,dtime)
rtrlrtr<0]=0
mzr=cbind(ram$fmz[whichFeats]-dmz, ram$fmz[whichFeats]+dmz)
chr <- chromatogram(xcmsbata, mz = mzr, rt = rtr)
plot(0:1,0:1,type="n",axes=F,xlab="Retention time (s)', ylab='Intensity
(AU) ' ,main=paste0('RAM cluster ',clustnr,'; RT ',signif(ram$cirt[clustnr],
5),"'s'))
box(bty="'1")
for (pk in 1l:Tength(whichFeats)) {
rts=ints=1ist()
for (samp in 1l:nSamp) {
rts[[samp]]l=chr[pk,samps[samp]]l@rtime
ints[[samp]]=chr[pk,samps[samp]]@intensity
3
nrts=min(sapply(rts, Tength))
rts=sapply(rts,function(x) x[1l:nrts])
rts=rowMeans(rts)
ints=sapply(ints, function(x) x[1l:nrts])
ints=rowMeans(ints,na.rm=T)
par(new=T)
plot(rts,ints,type='1",col=pk+1,ylim=c(0,max(ints,na.rm=T)),axes=F,xla
b="",ylab="")

}

axis(l)

legend('topright',Tegend = pasteO('F',whichFeats, '@mz',signif(pkMetaGrp[
,11,5)), Tty=1,col=(1l:Tength(whichFeats))+1l,bty="'n")
}



