
A brief Tutorial on R-based approach 

Costs and benefits of switching from vendor-based to open source pipelines for untargeted 

LC-MS metabolomics. 

 
This tutorial aims to detail step-by-step how the R approach has been developed. We pretend 

to show the way we have applied the different R packages in our data. In this sense, our main 

objective is to help beginners in R language to be able to use the different packages and scripts 

used in the manuscript. Although tutorials may exist for individual pre-processing modules, in 

this document is showed how to stitch together these modules into entire pipelines. 

Nevertheless, we recommend you reading the different manuscripts and tutorials of each R 

package available in the following links: 

 

IPO (Libiseller et al. 2015): 

https://bioconductor.org/packages/release/bioc/vignettes/IPO/inst/doc/IPO.html 

XCMS (Smith et al. 2006):   

https://bioconductor.org/packages/release/bioc/vignettes/xcms/inst/doc/xcms.html 

https://jotsetung.github.io/metabolomics2018/xcms-preprocessing.html 

batchCorr (Brunius et al. 2016): 

https://gitlab.com/CarlBrunius/batchCorr/tree/master/Tutorial 

RAMClustR (Broeckling et al. 2014): 

http://pubs.acs.org/doi/abs/10.1021/ac501530d 

MUVR (Shi et al. 2018): 

https://github.com/CarlBrunius/MUVR/blob/master/README.md 

 

1) Installation. 

 

First, R and RStudio were downloaded from the websites (https://www.r-project.org/, 

https://www.rstudio.com/) and installed on a Windows 7 computer. Second, the different 

packages used were installed in the R environment with the following codes:  

 

install.packages("BiocManager", repos="http://cran.us.r-project.org", 
dependencies=TRUE)  
install.packages("devtools", repos="http://cran.us.r-project.org", 
dependencies=TRUE) 
 



library(devtools) 
library(BiocManager) 
 
BiocManager::install("IPO", version = "3.8") 
BiocManager::install("xcms", version = "3.8") 
install_github("cbroeckl/RAMClustR", build_vignettes = TRUE, dependencies 
= TRUE)  
devtools::install_git("https://gitlab.com/CarlBrunius/batchCorr.git") 

 

library(IPO) 
library(xcms) 
library(RAMClustR) 
library(batchCorr) 
 

 

In order to be able to read the data in the R environment, it is necessary to transform the data 

format into an adequate format (mzML, mzXML, mzData, NetCDF). In our particular case, 

data were collected by an Agilent instrument in a .d format. We transformed this format into 

.mzML using MSConvertGUI software. This tool from proteowizard can be downloaded from 

the website http://proteowizard.sourceforge.net/download.html. This software is easy to use as 

it is shown schematically in the following figure. 

 

   

2) IPO. 

 

The aim of this package is to optimize the xcms parameters. For this purpose, 6 QC files well 

distributed throughout the sequence were selected.   



 

library(xcms)  
library(RColorBrewer)  
library(pander)  
library(magrittr)  
library("IPO", lib.loc="~/R/win-library/3.5") 
library("msdata", lib.loc="~/R/win-library/3.5") 
 

 

The selected files must be saved in a folder within the working directory. If you do not know 

what this directory is, use the command “>getwd()”. In our case, the 6 QC files were located 

in a folder called “QC” and we used the following command to import them into the R 

environment.  

 

#Open files 
datafiles <- list.files("QC", recursive = TRUE, full.names = TRUE, pattern
=".mzML") 
peakpickingParameters <- getDefaultXcmsSetStartingParams('centWave')  
 
 

To work more quickly in R, it is very useful to work in parallel using the different computer 

cores. For this, we use the “doParallel” package. In order to continue working with the 

computer while the R commands are executing, a good number of cores is the numbers of 

available cores minus one. 

 

library(doParallel) 
nCore=detectCores()-1 

 

Next, the different parameters for peak peaking were selected. As our data were obtained by a 

high resolution mass spectrometer, the peak picking method was ‘CentWave’. Some 

parameters were optimized by IPO package selecting a reasonable range according to our 

experiments. In this way, min_peakwidth, max_peakwidth and ppm were the optimized 

parameters. However, the noise and prefilter parameters were set at a single value. These 

parameters were selected after observing the current noise level in the chromatograms. The 

selection of the different parameters was performed with the following code: 

 

#PeakPickingParameters 
peakpickingParameters <- getDefaultXcmsSetStartingParams('centWave')  
peakpickingParameters$noise=1000 
peakpickingParameters$value_of_prefilter=(3,800)  
peakpickingParameters$min_peakwidth<- c(8,15) 
peakpickingParameters$max_peakwidth<- c(30,40) 
peakpickingParameters$ppm<- c(25,35) 
param=SnowParam(workers = 5)  



 

 

Once the parameters were selected, the optimization of the parameters set in a range was 

performed by IPO.  

resultPeakpicking <-  
  optimizeXcmsSet(files = datafiles,  
                  params = peakpickingParameters, 
                  BPPARAM = param, 
                  nSlaves = 1,  
                  subdir = NULL, 
                  plot = TRUE)  
 

The IPO optimization is based on Design of Experiments. The results were shown both 

numerically and graphically in contour graphs. 

#best parameter settings: 
#  min_peakwidth: 12.48 
#max_peakwidth: 35 
#ppm: 24 
#mzdiff: 0.00175 
#snthresh: 10 
#noise: 1000 
#prefilter: 3 
#value_of_prefilter: 800 
#mzCenterFun: wMean 
#integrate: 1 
#fitgauss: FALSE 
#verbose.columns: FALSE 

 

 

Analogously to the peak picking optimization, the retention time alignment and grouping 

parameters were also optimized in order to be applying in XCMS package. The optimized 



parameters for retention time alignment using the “obiwarp” method were profStep, response, 

gapInit and gapExtend, and for correspondence using “density” method were bw and mzwid. 

In our study, the parameter minfrac was fixed at value of 0.5. 

 
optimizedXcmsSetObject <- resultPeakpicking$best_settings$xset 
 
retcorGroupParameters <- getDefaultRetGroupStartingParams() 
retcorGroupParameters$profStep <- c(0.33,1) 
retcorGroupParameters$gapExtend <- c(2.1,2.9) 
retcorGroupParameters$minfrac=0.5 
retcorGroupParameters$response=c(9.6,17.6) 
retcorGroupParameters$gapInit=c(0.14, 0.54) 
retcorGroupParameters$mzwid=c(0.023, 0.047)  
 
BiocParallel::register(BiocParallel::SerialParam()) 
 
resultRetcorGroup <- 
  optimizeRetGroup(xset = optimizedXcmsSetObject,  
                   params = retcorGroupParameters,  
                   nSlaves = 1, 
                   subdir = NULL, 
                   plot = TRUE)  
 

 

The results were obtained by the following code and these are shown below: 

writeRScript(resultPeakpicking$best_settings$parameters, resultRetcorGroup
$best_settings) 
xset <- retcor(  
xset, 
method         = "obiwarp", 
plottype       = "none", 
distFunc       = "cor_opt", 
profStep       = 0.3,  
center         = 6, 
response       = 13.84, 
gapInit        = 0.352, 
gapExtend      = 2.436, 
factorDiag     = 2, 
factorGap      = 1, 
localAlignment = 0) 
xset <- group(  
xset, 
method  = "density", 
bw      = 0.879999999999999, 
mzwid   = 0.047, 
minfrac = 0.5, 
minsamp = 1, 
max     = 50)  
 

Despite the optimization made by IPO, the obtained value for bw was considered very low. For 

this reason, this parameter was optimized manually. Different tests were performed with 

different values of bw (from 0.5 to 10). The optimal parameter of bw was chosen when the 



greatest number of features was obtained. In our case, it was obtained at 5.0 as it is showed in 

the next figure. 

 
3) XCMS 

 

Before using XCMS, we imported all data in R analogously to the importation performed 

previously with the 6 QC samples for the IPO optimization. Thus, we pasted the .mzML files 

of all the samples in a folder called “PlasmaData” within the workspace and run the following 

code. 

datafiles <- list.files("PlasmaData", recursive = TRUE, full.names = TRUE, 
pattern=".mzML") 

 

The samples were divided in two subfolders in order to create a phenodata data.frame 

depending on if they are cases or QC samples. 

 

# Create a phenodata data.frame 

pd <- data.frame(sample_name = sub(basename(datafiles), pattern = ".mzML", 
                                   replacement = "", fixed = TRUE), 
                 sample_group = c(rep("Case", 306), rep("QC", 63)), 
                 stringsAsFactors = FALSE)  
 

 

 
The peak picking, retention time correction, and feature correspondence were performed using 

XCMS with the parameters optimized in the previous step with IPO.  

 

raw_data <- readMSData(files = datafiles, pdata = new("NAnnotatedDataFrame
", pd), mode = "onDisk") 

 

#PeakPicking Step 



cwp <- CentWaveParam(peakwidth = c(12.48, 35), ppm = 24, mzdiff = 0.00175, 
snthresh = 10, noise = 1000, prefilter = c(3,800)) 
xdataL1 <- findChromPeaks(raw_data, param = cwp) 
 
[...Detecting chromatographic peaks in 2519 regions of interest ... OK: 17
55 found. 
Detecting mass traces at 24 ppm ... OK 
Detecting chromatographic peaks in 2574 regions of interest ... OK: 1825 f
ound. 
Detecting mass traces at 24 ppm ... OK 
Detecting chromatographic peaks in 2634 regions of interest ... OK: 1849 f
ound. ...] 

#Grouping and RT Correction 

#RT Correction 
 
BiocParallel::register(BiocParallel::SerialParam()) 
xdataL2 <- adjustRtime(xdataL1, param = ObiwarpParam(gapInit = 0.352, gapE
xtend = 2.436, response = 13.84, binSize = 0.3)) 
 
[...Sample number 185 used as center sample. 
Aligning 0601429.mzML against 3920435.mzML ... OK 
Aligning 0610035.mzML against 3920435.mzML ... ] 
 

 
#Correspondence 
pdp <- PeakDensityParam(sampleGroups = xdataL2$sample_group, minFraction = 
0.5, bw = 5, binSize = 0.047)  
 
xdataL3 <- groupChromPeaks(xdataL2, param = pdp)  
Processing 67195 mz slices ... OK 

 

The next step is to look for the peaks which were assigned as missing values (NA) in some 

samples because the peak detection algorithm was not able to find them. Therefore, this step 

of “filling peaks” is performed with the following code.  

 

xdataL4 <- fillChromPeaks(xdataL3) 

[Defining peak areas for filling-in .... OK 
Start integrating peak areas from original files 
Requesting 488 missing peaks from 0601429.mzML ... got 394. 
Requesting 622 missing peaks from 0610035.mzML ... got 510. 
Requesting 553 missing peaks from 0611111.mzML ... got 393.  
...] 

 

Despite this new step, there are still missing values in the samples for different reasons (e.g. 

not present in the biological samples, very low concentrations below the detection limits, 

algorithm failures). It is shown below the total number of missing values of all samples before 

and after the filling step.  

#Number of missing values before filling step 
xdataL3b = featureValues(xdataL3, value = "into") 
sum(is.na(xdataL3b)) 
[1] 136846 
#Number of missing values after filling step 
xdataL4b = featureValues(xdataL4, value = "into") 
sum(is.na(xdataL4b)) 



[1] 43476 
 

 

Once these steps have been performed, we proceed to extract the integrated areas and the 

information of the peaks (mass and retention times) with the following codes. In this step, the 

features are named according to their mass and retention times using the “featureDefinitions” 

function as follows.   

 
xdataL5 = featureValues(xdataL4, value = "into") 
xdataL5= t(xdataL5) 
featData=featureDefinitions(xdataL4) 
featData=featData@listData 
featNames=paste0(featData$mzmed,"_",featData$rtmed) 
colnames(xdataL5)=featNames  
 
 

For example, the first feature (mz: 100.075826364437, rt: 273.94580078125 s) was called 

“100.075826364437_273.94580078125”. 

 

Missing value imputation 

 

Imputation of values still missing after XCMS peak filling was performed using an in-house 

script based on RandomForest methodology (https://gitlab.com/CarlBrunius/StatTools; 

mvImpWrap() function). For it, it is necessary to install firstly the StatTools package. 

 
#Installation of package StatTools 
devtools::install_git("https://gitlab.com/CarlBrunius/StatTools.git") 

 
#Missing Value Imputation 
nCore=detectCores()-1  
cl=makeCluster(nCore) 
registerDoParallel(cl) 
Imp <- StatTools::mvImpWrap(MAT = xdataL5, method = "RF") 
xdataL5 <- Imp 
stopCluster(cl)  
 
#Number of missing values after missing value imputation 
sum(is.na(xdataL5)) 
[1] 0 

 

4) BatchCorr 

 

The BatchCorr package aims to normalize the data due to between-batch and within-batch 

drifts produced in LC-MS analysis. This normalization strategy is based on the QC samples, 



the batches, and the injection order. For these reasons, it is necessary to introduce this 

information (injection, batch, and QC/Case) in the R environment.  

Previously, a dataframe called “pd” was created with the information of the kind of sample 

(QC or Case sample). Therefore, we needed to add in this dataframe two columns to indicate 

the injection position and the batch of each sample.  

First of all, it is necessary to read a .csv file with the information of injection order and batch 

of each sample. This file (in our case is named “pdinjbatch.csv”) have to be located in the 

workspace.  

 
pd_injbatch = read.csv(file='pd_injbatch.csv', head = TRUE, sep = ',') 

 

Once this file was loaded in the R environment, the columns “inj” and “batch” were added to 

the dataframe pd. For this step, it is needed to make sure that the samples are sorted in both 

files (pd and pd_injbatch) in the same way. Below are the instructions to carry out this stage: 

 

# Check the identical order of the samples. 

rownames(pd) = pd$sample_name 
rownames(pd_injbatch) = pd_injbatch$sample_name 
identical(rownames(pd), rownames(pd_injbatch)) 
[1] TRUE 
 
# Add the “inj” and “batch” columns to the dataframe pd. 

pd<- data.frame(pd, inj= pd_injbatch$inj) 
pd<- data.frame(pd, batch= pd_injbatch$batch) 

 

To perform the batchCorr package correctly is required that the samples are sorted by their 

injection order. If they are not ordered in the previous files in this way, it is mandatory to apply 

the following commands. 

 

xdataL5Sort= xdataL5[order(pd$inj),] 
pdSort = pd[order(pd$inj),] 
 



 

The normalization by BatchCorr is performed by means of three steps: 1: between-batch 

correspondence/alignment. 2: within-batch intensity drift correction and 3: between-batch 

normalization. In the following lines are detailed how we used this package in our data. To 

better understanding the scripts and functions, we strongly recommend that you read the 

tutorial of this package (https://gitlab.com/CarlBrunius/batchCorr/tree/master/Tutorial) 

 

In order to carry out these 3 steps, we needed these 3 objects: a) dataframe (pd) with 

information about batches, sample groups (QC/case) and injection orders; b) peak table without 

missing values (xdataL5Sort); c) peak table with missing values obtained before filling step. 

In order to obtain this last peak table (xdataL3bSort), we applied the following code:   

 

xdataL3b = featureValues(xdataL3, value = "into") 
xdataL3b= t(xdataL3b) 
featData=featureDefinitions(xdataL4) 
featData=featData@listData 
featNames=paste0(featData$mzmed,"_",featData$rtmed) 
colnames(xdataL3b)=featNames 
xdataL3bSort=xdataL3b[order(pd$inj),] 

 

Step 1. Between-batch correspondence/alignment 

 

The aim of the first step is to align the features misaligned between batches. Firstly, it is 

fundamental to extract the retention times and masses from each feature using the function 

“peakInfo”. As our features were called, “mass_rt”, we applied the function as follows: 

 

peakIn <- peakInfo(PT = xdataL3bSort, sep = '_', start = 1)  
 

 
 
 

Secondly, we used the "alignBatches" function to carry out the purpose of this first step. 

 
alignBat <- alignBatches(peakInfo = peakIn, PeakTabNoFill = xdataL3bSort, 
PeakTabFilled = xdataL5Sort, batches = pdSort$batch, sampleGroups = pdSort
$grp, selectGroup = 'QC') 
 
IMPORTANT NOTIFICATION 



 
There are no alignment candidates. Therefore, 
  between-batch alignment is not possible. 
Consider expanding mzdiff and/or rtdiff 
  of that correspondence is accurate between batches. 
Returning NULL. 
 

This output indicates that no alignment candidates were found and, consequently, that no 

between-batch alignment was possible. This fact reflects that this stage was carried out 

correctly in the previous step with XCMS package. 

 

Step 2. Within-batch intensity drift correction 

The second step aims to normalize and correct the drifts produced throughout each batch. In 

addition, the features with a RSD higher than 30% in QC samples after the normalization were 

filtered.  

 

We used the functions "getbatch" and "correctDrift" to extract each batch, and carry out the 

normalization, respectively.  

 

batchB_F <- getBatch(peakTable = xdataL5Sort, meta = pdSort, batch = pdSor
t$batch, select = '1') 
 
batch1 <- correctDrift(peakTable = batchB_F$peakTable, injections = batchB
_F$meta$inj, sampleGroups = batchB_F$meta$sample_group, QCID = 'QC', G = s
eq(5,35,by=3), modelNames = c('VVE', 'VEE'))# 
 
    __  ___________    __  _____________ 
   /  |/  / ____/ /   / / / / ___/_  __/ 
  / /|_/ / /   / /   / / / /\__ \ / /    
 / /  / / /___/ /___/ /_/ /___/ // /     
/_/  /_/\____/_____/\____//____//_/    version 5.4.2 
Type 'citation("mclust")' for citing this R package in publications. 
 
Mclust fitting ... 
  |=======================================================================
=========================================================================| 
100% 
 
MClust final model with 14 clusters and VEE geometry. 
BIC performed in 14.54 seconds and clustering in 0.91 seconds. 
 
Calculation of QC drift profiles performed. 
 
Drift correction of 12 out of 14 clusters using QC samples only. 
Corrected peak table in $TestFeatsCorr 
 
Filtering by QC CV < 0.3 -> 1205 features out of 1312 kept in the peak tab
le. 
Peak table in $TestFeatsFinal, final variables in $finalVars and cluster i
nfo in $actionInfo. 
 



# Batch 2 
batchA_F <- getBatch(peakTable = xdataL5Sort, meta = pdSort, batch = pdSor
t$batch, select = '2') 
 
batch2 <- correctDrift(peakTable = batchA_F$peakTable, injections = batchA
_F$meta$inj, sampleGroups = batchA_F$meta$sample_group, QCID = 'QC', G = s
eq(5,35,by=3), modelNames = c('VVE', 'VEE'))# 
 
Mclust fitting ... 
  |=======================================================================
=========================================================================| 
100% 
 
MClust final model with 14 clusters and VEE geometry. 
BIC performed in 24.26 seconds and clustering in 1.25 seconds. 
 
Calculation of QC drift profiles performed. 
 
Drift correction of 13 out of 14 clusters using QC samples only. 
Corrected peak table in $TestFeatsCorr 
 
Filtering by QC CV < 0.3 -> 1110 features out of 1312 kept in the peak tab
le. 
Peak table in $TestFeatsFinal, final variables in $finalVars and cluster i
nfo in $actionInfo. 
 
# Batch 3 
batchH_F <- getBatch(peakTable = xdataL5Sort, meta = pdSort, batch = pdSor
t$batch, select = '3') 
 
batch3 <- correctDrift(peakTable = batchH_F$peakTable, injections = batchH
_F$meta$inj, sampleGroups = batchH_F$meta$sample_group, QCID = 'QC', G = s
eq(5,35,by=3),modelNames = c('VVE', 'VEE')) 
 
 
Mclust fitting ... 
  |=======================================================================
=========================================================================| 
100% 
 
MClust final model with 8 clusters and VEE geometry. 
BIC performed in 10.59 seconds and clustering in 0.22 seconds. 
 
Calculation of QC drift profiles performed. 
 
Drift correction of 4 out of 8 clusters using QC samples only. 
Corrected peak table in $TestFeatsCorr 
 
Filtering by QC CV < 0.3 -> 701 features out of 1312 kept in the peak tabl
e. 
Peak table in $TestFeatsFinal, final variables in $finalVars and cluster i
nfo in $actionInfo. 
 

Step 3. Between-batch normalization 

 

The third step aims to merge the drift-corrected data (mergeBatches() function) and normalize 

the effects between batches (normalizeBatches() function).  

 



mergedData <- mergeBatches(list(batch1, batch2, batch3)) 
normData <- normalizeBatches(peakTable = mergedData$peakTable, batches = p
dSort$batch, sampleGroup = pdSort$sample_group, population = 'all') 
 

Once these functions were carried out, we extracted the peakTable (features and intensities) 

and exported it in a .csv file.  

 
PTnorm <- normData$peakTable 
write.csv(PTnorm, file="PTnorm_F.csv") 
 

 

A good way to observe how the data has been transformed with this package is using Principal 

Component Analysis (PCA). In the following lines, it is shown the code for PCA analysis used 

for the three data sets (raw data, data after within-batch normalization step and data after 

between-batch normalization step).   

 
pca1 <- prcomp(x = xdataL5Sort, center = T, scale. = T) 
pca2 <- prcomp(x = mergedData$peakTable, center = T, scale. = T) 
pca3 <- prcomp(x = PTnorm, center = T, scale. = T) 

 

It is shown below the code to create the graphs that show the scores plots of each PCA model. 

par(mfrow=c(1,3)) 
plot(pca1$x[,2:3], col=pdSort$batch, main = 'raw') 
plot(pca2$x[,2:3], col=pdSort$batch, main = 'within') 
plot(pca3$x[,2:3], col=pdSort$batch, main = 'between') 

 

 

 

5) RAMClust  

 



The aim of this package is to perform the annotation step. Briefly, it consists of grouping all 

MS signals related to a single compound (isotopes, adducts, isomers, fragments products, etc.) 

into a single file called “feature”. To perform this step, the package RAMClust is mainly based 

on two parameters: (i) similarity in their retention times (st) and (ii) correlation in the 

abundances across different samples (sr).    

 
library(RAMClustR) 
 

 

Unlike the IPO package that allows optimizing the parameters for XCMS, there is still no 

package to optimize the mentioned RAMClust parameters, st and sr. So, we created our own 

methods and functions to optimize these values and achieve a better result of the annotation. 

In this way, the functions getRamSt and plotClust were created (see Annex).  

The getRamSt function aims to obtain the optimal value of the st parameter. 

 

getRamSt(xdataL4) 
[1] 1.33 

 

 

 

Once the st parameter was optimized, we applied the ramclustR function with this st value 

and a range of sr parameter (sr = 0.3, 0.4, 0.5). In this script, we used the plotClust function to 

obtain the plots of 20 features in order to observe the groupings of the signals and obtain the 

optimal sr value.  

expDes=defineExperiment(force.skip = T) 
sr=c(.3,.4,.5) 
st=1.33 
maxt=c(5)  
par=expand.grid(st=st,sr=sr,maxt=maxt) 
str(par) 
'data.frame': 3 obs. of  3 variables: 
 $ st  : num  1.33 1.33 1.33 
 $ sr  : num  0.3 0.4 0.5 



 $ maxt: num  5 5 5 
 - attr(*, "out.attrs")=List of 2 
  ..$ dim     : Named int  1 3 1 
  .. ..- attr(*, "names")= chr  "st" "sr" "maxt" 
  ..$ dimnames:List of 3 
  .. ..$ st  : chr "st=1.33" 
  .. ..$ sr  : chr  "sr=0.3" "sr=0.4" "sr=0.5" 
  .. ..$ maxt: chr "maxt=5" 
 
nClust=nSing=sizeMax=sizeMed=sizeMean=numeric(nrow(par)) 
nFeat=list() 
samps=sample(1:205,20) 
register(bpstart(SnowParam(7))) # Choose as many cores as you can/want 
for (i in 1:nrow(par)) {  
  RRP=ramclustR(ms='PTnorm_F.csv', st = par$st[i], sr=par$sr[i], maxt = pa
r$maxt, timepos = 2, sampNameCol = 1, featdelim = '_', ExpDes = expDes)   
  nClust[i]=length(RRP$cmpd)   
  nSing[i]=RRP$nsing  
  sizeMax[i]=max(RRP$nfeat)  
  sizeMed[i]=median(RRP$nfeat)  
  sizeMean[i]=mean(RRP$nfeat)  
  nFeat[[i]]=RRP$nfeat  
  pdf(file=paste0('clusts_par',i,'.pdf'),width=15,height=8) 
  par(mfrow=c(4,5),mar=c(4,4,2,0)+.5) 
  clusts=round(c(2:6,seq(7,max(RRP$featclus),length.out = 15))) 
  for (c in clusts) { 
    plotClust(ram = RRP,clustnr = c,xcmsData = xdataL4,samps = samps)  
  }  
  dev.off()   
} 

 

Then, the results were obtained for each combination of values. To choose the optimal sr value, 

we visually inspected the generated files. In the following figure, examples of correct or 

incorrect annotation cases are shown. In this way, the optimized sr value was chosen where the 

greatest number of features with a correct annotation was obtained, (a value of 0.3 was obtained 

in our case). 

 

cbind(par,nClust,nSing,sizeMax,sizeMean,sizeMed) 
    st  sr maxt nClust nSing sizeMax sizeMean sizeMed 
1 1.33 0.3    5    213   306      16 3.778302       3 
2 1.33 0.4    5    213   257      17 4.009434       3 
3 1.33 0.5    5    204   217      19 4.384236       3 

 



 

 

Finally, we applied the ramclustR function with the optimal values of st and sr. 

 
RC1 <- ramclustR(ms='PTnorm_F.csv',  
                 featdelim = "_",  
                 st = 1.33, 
                 sr = 0.3, 
                 ExpDes=expDes,  
                 sampNameCol = 1) 
  organizing dataset  
  normalizing dataset  
calculating ramclustR similarity: nblocks =  1  
1  RAMClust feature similarity matrix calculated and stored:  
RAMClust distances converted to distance object  
fastcluster based clustering complete  
dynamicTreeCut based pruning complete  
RAMClust has condensed 1109 features into 213 spectra  
collapsing feature into spectral signal intensities  
writing msp formatted spectra  
msp file complete  

 

RC1 <- do.findmain(RC1, mode = "positive", mzabs.error = 0.02, ppm.error = 
10) 
10 of 213  
20 of 213  
30 of 213  
40 of 213  
50 of 213  
60 of 213  
70 of 213  
80 of 213  
90 of 213  
100 of 213  
110 of 213  



120 of 213  
130 of 213  
140 of 213  
150 of 213  
160 of 213  
170 of 213  
180 of 213  
190 of 213  
200 of 213  
210 of 213  
plotting findmain annotation results  
finished  

 

6) Export Data. 

 

The last step of pre-processing corresponds to the export of data to use them in statistical 

analyses. We exported both the features annotated by RAMClustR and the signals that were 

not assigned to any cluster (singletons). In the following lines it is showed how the exportation 

was performed. The tidyverse package is necessary.  

 

library(tidyverse) 

 

#Look for the ion with the highest intensity in each group obtained by RAMClustR 

Max_int<- lapply(RC1$M.ann, function(x) x[which.max(x$int), ]) 
Molecular_ions <- bind_rows(Max_int) 
Molecular_ions$name <- paste(round(Molecular_ions$mz,4), round(RC1$clrt,2)
, sep = "_") 
PTnorm_F2_mz <- colnames(PTnorm_F2)[-1] %>% str_split(.,"\\_") %>% lapply(
.,function(x) x[1]) %>% unlist() %>%as.numeric() 

 

#check if it works for your data with the following table. The number of TRUES should be the 

same to the cluster number. 

PTnorm_F2_mz %in% Molecular_ions$mz %>% table() 
FALSE  TRUE  
  896   213  
 
PTnorm_F2_molecularIons_rawInt<- PTnorm_F2[,-1][,PTnorm_F2_mz %in% Molecul
ar_ions$mz] 

 

#Look for the singletons 

clustered_mz<- lapply(RC1$M.ann, function (x) x$mz) %>% unlist() %>% as.nu
meric() 
singletons <- PTnorm_F2[,-1][,!PTnorm_F2_mz%in%clustered_mz] 

 

#Combine singletons and molecular ions 

PTnorm_F2_ramclust_annotedPT <- cbind.data.frame(PTnorm_F2_molecularIons_r
awInt, singletons) 



  

rownames(PTnorm_F2_ramclust_annotedPT) <- paste0("PTnorm_F2",rownames(PTno
rm_F2_ramclust_annotedPT)) 

 

colnames(PTnorm_F2_ramclust_annotedPT) <- paste0("PTnorm_F2",colnames(PTno
rm_F2_ramclust_annotedPT)) 

 

write.csv(PTnorm_F2_ramclust_annotedPT, file = "PTnorm_F2_ramclust_annoted
PT0920.csv") 

 

Finally, a .csv file (samples vs intensities of each feature) was obtained in the working 

directory. This can be imported into different statistical software to perform the corresponding 

tests that are desired. 

 

We hope this guide allows you to use R in the same way that we have used it in our work.  

 

Good luck and thanks for your interest in this tutorial. 

 

Álvaro Fernández and Carl Brunius  

 

PS. Please don’t hesitate to contact us if you have problems with the codes and functions or 

any suggestions or questions. 

 

alvaroferochoa@ugr.es 

carl.brunius@chalmers.se 

 

 

 

Annex 
 
getRamSt: 
 
getRamSt <- function(XObj) { 
  featInfo <- featureDefinitions(XObj) 
  hist((featInfo$rtmax-featInfo$rtmin)/2) 
  st <- round(median(featInfo$rtmax-featInfo$rtmin)/2, digits = 2) 
  abline(v=st) 
  return(st) 
} 

 



 
plotClust: 
 
plotClust=function(ram,clustnr,xcmsData,samps,dtime=5,dmz=.05) { 
  if(missing(samps)) { 
    nSamp=nrow(ram$SpecAbund) 
    samps=1:nSamp 
  } else nSamp=length(samps) 
  whichFeats=which(ram$featclus==clustnr) 
  peakMeta=cbind(ram$fmz,ram$frt) 
  pkMetaGrp=peakMeta[whichFeats,] 
  rtr=ram$clrt[clustnr]+c(-dtime,dtime) 
  rtr[rtr<0]=0 
  mzr=cbind(ram$fmz[whichFeats]-dmz,ram$fmz[whichFeats]+dmz) 
  chr <- chromatogram(xcmsData, mz = mzr, rt = rtr) 
  plot(0:1,0:1,type='n',axes=F,xlab='Retention time (s)', ylab='Intensity 
(AU)',main=paste0('RAM cluster ',clustnr,'; RT ',signif(ram$clrt[clustnr],
5),'s')) 
  box(bty='l') 
  for (pk in 1:length(whichFeats)) { 
    rts=ints=list() 
    for (samp in 1:nSamp) { 
      rts[[samp]]=chr[pk,samps[samp]]@rtime 
      ints[[samp]]=chr[pk,samps[samp]]@intensity 
    } 
    nrts=min(sapply(rts,length)) 
    rts=sapply(rts,function(x) x[1:nrts]) 
    rts=rowMeans(rts) 
    ints=sapply(ints,function(x) x[1:nrts]) 
    ints=rowMeans(ints,na.rm=T) 
    par(new=T) 
    plot(rts,ints,type='l',col=pk+1,ylim=c(0,max(ints,na.rm=T)),axes=F,xla
b='',ylab='') 
  } 
  axis(1) 
  legend('topright',legend = paste0('F',whichFeats,'@mz',signif(pkMetaGrp[
,1],5)), lty=1,col=(1:length(whichFeats))+1,bty='n') 
} 

 


