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Abstract: The modern world, swaddled in the benefits of civilization, has fostered the development of
science and the introduction of products of technological progress. This has allowed serious individ-
ual health problems, including those associated with viral diseases, to become targets for prophylaxis,
treatment, and even cure. Human immunodeficiency viruses, hepatitis viruses, coronaviruses, and
influenza viruses are among the most disturbing infectious agents in the human experience. Influenza
appears to be one of the oldest viruses known to man; these viruses were among the first to cause
major epidemics and pandemics in human history, collectively causing up to 0.5 million deaths
worldwide each year. The main problem in the fight against influenza viruses is that they mutate
constantly, which leads to molecular changes in antigens, including outer membrane glycoproteins,
which play a critical role in the creation of modern vaccines. Due to the constant microevolution
of the virus, influenza vaccine formulas have to be reviewed and improved every year. Today, flu
vaccines represent an eternal molecular race between a person and a virus, which neither entity seems
likely to win.
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1. Introduction

Of the more than 300 widely recognized human diseases, influenza is one of the
most common [1,2]. Influenza viruses are considered to be quite successful human
pathogens: their persistence in the human population and ability to cause sporadic pan-
demics make them a continuous public health threat. Seasonal influenza causes approxi-
mately 500,000 deaths worldwide [3–6]. Occasionally, and unpredictably, influenza sweeps
the world, infecting 20 to 40% of the population in a single year [7].

The epidemiological picture of influenza is based on many factors such as changes
in the nature of the antigenic properties of the virus, the transmissibility of the virus,
and the susceptibility of the population [8]. In fact, everyone has had the flu at least
once in their life. It is worth clarifying that there are pediatric populations that do not
have influenza until they are naturally exposed, and some vaccinated individuals do
not have a true flu infection until the vaccine fails to protect them against the current
circulating strain. The first mention of the alleged influenza syndrome was noted as
early as 412 BC in the writings of Hippocrates [9]. For many centuries, there have been
global outbreaks of influenza epidemics, most notably in 1510 and 1580 [10], 1688 [11],
and 1693 [12]. Three influenza virus pandemics of the 20th century have affected the
entire globe: 1918-19 (‘Spanish’ flu H1N1)—50 million deaths [13–16], 1957 (‘Asian’ flu,
H2N2)—1 million victims [1,17], 1968 (‘Hong Kong’ flu, H3N2)—0.5 million deaths in
total [18–20], 2009 H1N1pdm09 > 280,000 deaths [21]. Few diseases can match the flu in
terms of contagiousness and number of deaths per year.
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2. The Virus Is a Cosmopolitan Being with Its Own Characteristics

Influenza viruses have no borders and are found on every continent and in every
place where people live. For example, the GIBS database (the global influenza B study)
examined 358,768 cases of influenza registered between 1999 and 2014; influenza was
found in 29 countries around the world, 4 of which were in the Southern Hemisphere, 15
in the intertropical zone, and 10 in the Northern Hemisphere [22]. In temperate zones,
influenza epidemics strongly favor winter. The most intense influenza activity occurs
between November and December according to FluNet [22].

It is harder to predict how influenza activity will manifest in the tropics; outbreaks may
occur sporadically throughout the year or at irregular intervals [23]. Tropical seasons differ
from those of temperate regions, particularly with respect to humidity and temperature;
as these factors fluctuate, influenza activity fluctuates as well [24,25]. This difference has
led to speculation that influenza viruses are transmitted primarily as aerosols during the
winter in temperate regions, whereas direct or indirect contact appears to be responsible
for year-round transmission in the tropics [26].

Each year, temperate regions experience winter influenza epidemics [23]. It has
been estimated that the mortality resulting from these annual outbreaks has led to deaths
ranging from 0.004% to 0.02% per 100,000 people; most are caused by a variant of the A
virus H1N1 [26–28]. Tropical countries have fared much worse, with some of the highest
global rates of mortality observed due to respiratory diseases; statistics from influenza
pandemics in Mexico, India, Bangladesh, Myanmar, Indonesia, and Guatemala bear this
out [26], [29–31]. In addition, it is difficult to tease out the effects of influenza on its own,
owing to a strong association between influenza and annual mortality from all causes.
In Singapore, influenza associated with concomitant infection with pneumonia, as well
with diseases of the circulatory and respiratory system, was found to be responsible for
14.8 deaths per 100,000 people [32].

3. Remember Me Forever

Influenza is not a shy creature; it does not pass without a trace and because it likes
company, its complications can be dangerous. Bacteria infecting in tandem with influenza
or later as a secondary infection has been documented in 11–35% of laboratory-confirmed in-
fluenza in patients of all ages [33,34]. The players most likely to cause influenza-associated
secondary infection, which often leads to bacterial pneumonia, are Streptococcus pneumo-
niae, Haemophilus influenzae, and Staphylococcus aureus [35].

While influenza is transmitted most often among young people, the highest mortality
rates are seen among older people. The high mortality and morbidity rates in the elderly
have also been observed in those suffering from certain high-risk diseases, including
cardiovascular disease [28], acute myocardial infarction (AMI) [36,37], heart failure [38],
and metabolic diseases such as diabetes mellitus [8,39] and diabetic ketoacidosis [40]. In
addition, influenza exacerbates chronic obstructive pulmonary disease, causing airway
obstruction as a result of airway inflammation, mucus hypersecretion, mucosal edema and
bronchospasm [41], obesity, and kidney disease [42]. In addition to increasing abnormal
glucose levels by 75%, influenza disrupts the daily routine of diabetic patients by reducing
sleep and interfering with physical activity [43].

Influenza may also elicit systemic effects via inflammatory cytokines and prothrom-
botic changes, and these effects are associated with population-level increases in car-
diovascular hospitalizations and deaths from AMI, heart failure, and cerebrovascular
events [33,44,45].

However, rare, neurological complications have also been observed in association with
influenza virus infections. These include febrile seizures, influenza-like encephalitis or en-
cephalopathy, Guillain–Barré syndrome, and exacerbations in patients with epilepsy [35,46,47].
In 1890, the viral pandemic later dubbed the ‘Russian’ or ‘Asian’ flu killed one million
people. Neurological consequences, particularly chronic headaches that manifested months
or years after the pandemic had ended, were well documented [48,49]. While chronic
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fatigue syndrome (myalgic encephalomyelitis) and/or fibromyalgia may be precursors of
neurasthenia, some cases may actually be incidences of post-infectious new daily persistent
headache (NDPH) [50].

4. Stratagems Designed to Elude Host Adaptation

Influenza belongs to the Orthomyxoviridae family of viruses [8]. Viruses in this family
are characterized by negative-sense, single-stranded RNA genome contained within seven
or eight segments; influenza A and B has eight, comprising a 13,500-letter genome [2,51].
Each RNA segment is assembled into a viral ribonucleoprotein complex (vRNP) consisting
of viral RNA, several nucleoprotein (NP) molecules, and viral RNA-dependent RNA
polymerase (RdRp). The surface of influenza A and B viruses, which have a spherical
shape, is permeated with spikes of glycoproteins: the hemagglutinin trimmer (HA) and the
neuraminidase tetramer (NA), as well as the membrane protein M2, which acts as an ion
channel. The basis of the double lipid layer is the matrix protein M1 surrounding the core
of the virion [6,52]. One reason that influenza has been so successful at infecting humans is
the lack of proofreading activity in influenza RNA polymerase, leading to a mutation rate
of approximately one error each time a genome replicates [53]. Each cell can infect the cells
around it with 10,000 new viral mutants, which is key to influenza’s evolutionary strategy.
By constantly changing its glycoprotein sequences, particularly those of the hemagglutinin
(HA) protein responsible for attachment to host cells [54], the virus stays one step ahead
of the human immune system. The virus also alters neuraminidase (NA), its second most
important transmembrane glycoprotein (located in the viral envelope), which helps the
virus gain entry to the cell and is responsible for viral egress [55].

Influenza viruses have two main mechanisms of antigenic evolution: antigenic drift
and antigenic shift. Antigenic drift occurs when, due to the high error rate of RNA poly-
merase during replication, mutations accumulate at antigenic sites that in turn produce
virus variants able to elude immune defenses. This frequent phenomenon is common to
both influenza A and B viruses. Antigenic shift is a less frequent but more striking; the seg-
mentation of influenza and other Orthomyxoviridae allows them to undergo reassortment,
which can cause the virus to acquire antigenically novel HA [3]. On the surface of the virion,
HA is presented as a trimeric glycoprotein with a globular head and a proximal region of
the membrane stem. The globular head domain of the HA protein determines the host speci-
ficity and tissue tropism of the virus through its ability to interact with N-acetylneuraminic
(sialic) acid receptors, although receptor distribution and oligosaccharide-associated speci-
ficity varies across tissues and hosts. Thus, the hemagglutinin of human strains of the
virus binds to sialic acid, which forms α-2,6-linkages with galactose, while the protein
of avian strains preferentially binds to an acid containing terminal α-2,3-linkages [56,57].
Seasonal influenza epidemics are driven by antigen drift variants in which minor antigenic
changes in HA and NA accumulate over time, resulting from mutations in the HA and NA
genes due to error-prone viral RNA polymerase and positive selection pressure caused by
pre-existing immunities [58]. The general topology of the NA evolutionary tree is similar
to that of the HA1 tree, showing typical ‘ladder’ gradual evolution, with old strains rapidly
being replaced by newer ones. NA was found to have fewer nucleotide substitutions
over 40 years of evolution compared to HA1; overall, the genetic distance from the tree
root to the most recent cluster of CA04 strains was about 1.5 times greater for HA1 than
for NA [59].

5. WHO and Influenza Viruses: Global Surveillance

The World Health Organization (WHO) estimates that influenza viruses cause 3 to 5 million
cases of severe illness and 250,000 to 500,000 deaths annually worldwide [60–62]. At the
moment, the influenza virus comprises four main groups [8]:

1. A (H1N1pdm09) [63–65].
2. A (H3N2) [51].
3. B/Yamagata lineage [66].
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4. B/Victoria lineage [67,68].

According to WHO, vaccination represents the most effective way to prevent the
disease. Global surveillance of circulating influenza viruses influences the choice of in-
fluenza antigens annually for inclusion in vaccines [69]. Each year during influenza season,
5–15% of the world’s population becomes infected [70]. The global surveillance program
mentioned above, maintained by WHO, generates a large amount of sequence data from
wild-type viral isolates [71]. These data are accessible via databases at the National Center
for Biotechnology Information (NCBI) and the Global Initiative on Sharing All Influenza
Data (GISAID) [55,72,73]. Safe and effective vaccines have been available and in use for
over 60 years. WHO recommends annual vaccination for pregnant women at any stage
of pregnancy, children aged 6 months to 5 years, the elderly (over 65 years), people with
chronic diseases, and healthcare workers [74]. One of the most important things about
the WHO recommendations (2022) [75] is that vaccination choice should be based on clear,
reliable, general criteria. The need is clear, particularly as new indications for vaccination
emerge. However, even as new vaccines become available, responding to the need is
complicated by the limited economic resources of health care systems, even in developed
countries [76]. Influenza vaccines target the production of strain-specific antibodies to the
globular head (HA1) protein hemagglutinin. It is the HA1 domain that contains most of
the antigenic sites that undergo changes during antigenic drift [77]. It is also possible to
use other proteins as targets for the vaccine: neuraminidase and transmembrane protein
M2 [78–80]. Currently, the two vaccine platforms used worldwide are inactivated vaccines
and live-attenuated vaccines (Figure 1).

Sci. Pharm. 2023, 91, x FOR PEER REVIEW 4 of 13 
 

 

1. A (H1N1pdm09) [63–65]. 
2. A (H3N2) [51]. 
3. B/Yamagata lineage [66]. 
4. B/Victoria lineage [67,68]. 

According to WHO, vaccination represents the most effective way to prevent the 
disease. Global surveillance of circulating influenza viruses influences the choice of in-
fluenza antigens annually for inclusion in vaccines [69]. Each year during influenza sea-
son, 5–15% of the world’s population becomes infected [70]. The global surveillance pro-
gram mentioned above, maintained by WHO, generates a large amount of sequence data 
from wild-type viral isolates [71]. These data are accessible via databases at the National 
Center for Biotechnology Information (NCBI) and the Global Initiative on Sharing All 
Influenza Data (GISAID) [55,72,73]. Safe and effective vaccines have been available and in 
use for over 60 years. WHO recommends annual vaccination for pregnant women at any 
stage of pregnancy, children aged 6 months to 5 years, the elderly (over 65 years), people 
with chronic diseases, and healthcare workers [74]. One of the most important things 
about the WHO recommendations (2022) [75] is that vaccination choice should be based 
on clear, reliable, general criteria. The need is clear, particularly as new indications for 
vaccination emerge. However, even as new vaccines become available, responding to the 
need is complicated by the limited economic resources of health care systems, even in 
developed countries [76]. Influenza vaccines target the production of strain-specific an-
tibodies to the globular head (HA1) protein hemagglutinin. It is the HA1 domain that 
contains most of the antigenic sites that undergo changes during antigenic drift [77]. It is 
also possible to use other proteins as targets for the vaccine: neuraminidase and trans-
membrane protein M2 [78–80]. Currently, the two vaccine platforms used worldwide are 
inactivated vaccines and live-attenuated vaccines (Figure 1). 

 

Figure 1. Major influenza vaccine platforms. 

Interesting approach is also realized in Flublok vaccine, obtained by culturing insect 
cells using the technology of baculovirus expression systems which produce exact ana-
logues of the HA of circulating influenza viruses [81]. 

Figure 1. Major influenza vaccine platforms.

Interesting approach is also realized in Flublok vaccine, obtained by culturing in-
sect cells using the technology of baculovirus expression systems which produce exact
analogues of the HA of circulating influenza viruses [81].

According to the Centers for Disease Control and Prevention (CDC), in 2019–2020, dur-
ing the last flu season before the COVID-19 pandemic, influenza vaccination prevented ap-
proximately 7.5 million influenza cases, 3.7 million of medical visits, 105,000 influenza-related
hospitalizations, and 6300 deaths. In addition, using statistical data, it was calculated
that the flu vaccine reduced the risk of doctor visits for influenza by 40–60%. Moreover,
studies carried out among children in 2022 showed a 75% reduction in the risk of a se-
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vere course of the disease [82]. The CDC suggests that influenza vaccines should be
predominantly quadrivalent.

6. Where Did It Come from, Where Did It Go?

The molecular evolution of the influenza virus through reassortment and the accu-
mulation of mutations allows us to conclude the origin of the virus. Thus, wild birds are
recognized as the progenitors of influenza A virus, and avian viruses have contributed ge-
netic material to most human-infecting viruses, including the H5N1 and H1N1 subtypes [1].
We suppose that the transmission of the influenza virus from wild and domestic animals
and humans might be closely linked.

Scientists continue to debate to what extent the emergence and global spread of new
pandemic human strains of influenza involve birds [83]; it is believed that several segments
in the most recent pandemic strain of influenza (H1N1; swine influenza virus) are likely
to have avian origins [1,84]. Since transmission of influenza, like all viruses, is affected by
how the host community interacts with the environment as well as coevolution between
host and pathogen [85], it is not surprising that the dynamics of influenza incidence among
birds and mammals (including humans) is closely related.

The changes wrought in the environment by human beings affects everything, in-
cluding viruses; the ecology and evolution of influenza viruses has had to adapt to the
development of agriculture and other land use, globalization, and climate change. Climate
change has altered the distribution, composition, and migratory behavior of wild birds,
resulting in dramatic changes to the epidemiology of avian influenza [1,85], including the
ability of the virus to survive in the environment.

Studies of viruses circulating in poultry markets have provided much useful infor-
mation about the transmission of viruses and the processes by which they evolve [86–88].
For example, observation of domestic and wild birds and phylogenetic reconstruction led
to the identification of H5N1 as a pandemic threat as early as 2002, when its distribution
was limited to China and only a few people were infected [89]. Unfortunately, preventive
measures did not completely eradicate the H5N1 virus, and it reappeared in 2003 and
spread throughout Asia, Europe, and Africa over the next four years [90].

Influenza A viruses are more prone to antigenic evolution than influenza B viruses,
whose genetic changes occur more slowly [91–93]. Influenza B virus was found in both
pigs and humans throughout the 20th century; while pigs are naturally infected with
influenza A and influenza C, it is believed that pigs may have initially contracted influenza
B from humans [15].

7. Catch Me If You Can—Alternative Sources of Disease Outbreaks

The risk of an artificial pandemic as a result of a laboratory escape is not hypothetical.
In the past, pathogens have been diverted from the laboratory with serious consequences,
including transmission to others outside the laboratory staff [94–99]. Historical data from
the pandemic influenza of 1977 provide evidence of laboratory outbreaks and deaths caused
by pathogens. It was during this period that the first escape of the virus from the laboratory
in the USSR was recorded. It is believed that the outbreak was not natural, and three
possible sources have been suggested: an accident in the laboratory, a test escape with a live
vaccine, or a deliberate release as a biological weapon [100]. The 2009 H1N1 flu brought
the 1977 epidemic back to the forefront as debunked rumors soon surfaced that it was the
result of a laboratory accident [101,102].

8. How to Emerge from the Molecular Race as a Winner

It seems clear that prevention of future influenza virus epidemics would benefit from
the use of super conservative micro antigens, which change very little over time, to create
vaccines (Figure 2).
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Systems biology approaches have been used to identify early molecular signatures
that can be used to predict subsequent immune responses and better understand the
mechanisms underlying immunogenicity [103–105]. A number of scientists have been
engaged in factor analysis [106,107]; their efforts have provided important data on mRNA
expression and the pattern of gene expression.

A truly universal vaccine that provides lifelong protection against any strain of in-
fluenza with one or more shots may not be achievable, but some variation of this concept
should be considered [108]. As with any project with such a wide scope and complexity,
problems exist that make it difficult to find a universal vaccine:

1. The protruding loops of the HA head vary greatly among viral strains, and head-
binding antibodies do not neutralize viruses that are not closely bound to the im-
munogen [109–111].

2. Up until 2009, the amino acid sequences of the seasonal human H1 strain differed
only by 50–60%; however, since 2009, they have been found to differ by as much
as 80% [112].

3. The emergence of new subtype sequences of archaic sequences from animal reservoirs
poses a challenge for seasonal vaccine antigen selection.

4. As the amino acid sequences of hemagglutinin continue to change [113], the seasonal
inactivated influenza vaccine is reformulated every year in an attempt to match the
strains of the virus predicted to circulate [79,114].

5. The segmented influenza virus genome exchanges RNA segments between genotyp-
ically different influenza viruses, resulting in the formation of new strains and/or
subtypes [83,115], which is called reassortment. Reassortment is an important mecha-
nism for generating a ‘new’ virus [115,116].

To genuinely provide long-term protection, a universal vaccine must break the annual
vaccination cycle. Long-term protection of at least 1 year, but preferably for several seasons,
is one of the four criteria established for a universal influenza vaccine by the NIAID
(National Institute of Allergy and Infectious Diseases) [117], but no one has yet discovered
how to achieve this goal. Prosaic but important factors such as immunization schedules,
formulations, doses, and adjuvants need to be taken into consideration [118]. Despite these
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inherent difficulties, many next-generation vaccines are currently under development, and
WHO expects a universal influenza A vaccine to enter expanded clinical trials as early
as 2027 [118,119].

Given that influenza viruses will continue to coexist with humans and other animals,
consideration should be given to the study of long-lived immune responses to natural
infection and to the translation of this knowledge into the development of vaccines that
induce long-term, ideally life-long immunity. This can be achieved by using more advanced
adjuvants to stimulate the desired innate immune sensors in precisely defined cell types, or
by delivering vaccines in ways that enhance antigen and epitope integrity [120].

The increased availability of viral gene sequencing promises much wider distribution
and the ability to rapidly detect the emergence and spread of new viral variants. Synthetic
biology now allows digitally transmitted sequences to be quickly converted into genes
that code for new flu variants. SAM® (self-amplifying mRNA) vaccine technology, a new
technology under development, promises fully synthetic vaccines. The platform combines
self-amplifying mRNA and a synthetic, liposomal, nonviral delivery system. SAM RNA
is produced from a cell-free enzymatic transcription reaction, and it encodes the antigen
of interest and an RNA-dependent RNA polymerase. The lipid delivery system provides
efficient delivery of the RNA cargo to muscle cells at the site of injection and protection of
the RNA from enzymatic degradation during delivery. After delivery, the mRNA directs the
expression of the polymerase, which amplifies the RNA intra-cytoplasmically and launches
the expression of a subgenomic message that directs high-level target antigen expression.
The innate immunity perceives replicating RNA as if it were a virus, triggering a robust
adaptive immune response [121,122]. If SAM technology lives up to its promises, pandemic
vaccine batches could be produced using portable production devices deployed around
the world based on electronic information transmitted from a synthetic virus reference
laboratory. Combined, these technologies could greatly improve our ability to respond
effectively to the continuous change in influenza viruses and their associated seasonal and
pandemic disease threats [123].

As an alternative to creating vaccines based on influenza virus protein antigens,
long-term vaccines are also being developed using conserved regions of the genome of
RNA viruses. Indeed, as influenza viruses have shown us, it is impossible to predict
the emergence of new mutations of RNA viruses. Modern vaccines are vulnerable to
these unpredictable shifts in nucleotide sequences since the principle of their action and
effectiveness depends on the presence of the certain specific extended amino acid sequences
in the peptide chains of the pathogen that play the role of antigen. For this reason, the use
of conserved amino acid sequences of RNA virus surface proteins, such HA and NA, has
little chance of long-term success. In fact, these proteins are constantly changing. However,
the nucleic acids of RNA viruses contain extended, highly conserved regions that hardly
change over time, which represents an ideal target for therapeutic development. It has been
impossible to hit this target so far because the concept has been poorly studied. However,
these vaccines can be versatile and very effective. Oligonucleotides have been acting as
excellent adjuvants for decades [123,124], and more and more data are accumulating that
show that they can be antigens as well. We may be running out of options with modern
vaccines, which depend on the amino acid sequences of RNA virus proteins, but we are well
on the way to creating new, less limited options with universal oligonucleotide vaccines.

Two obstacles stand in the way of the development of oligonucleotide vaccines: the
lack of knowledge concerning antibodies capable of penetrating cells and attacking the
unique nucleic acid sequences of RNA viruses, and the unknown antigen presentation
ability of dendritic cells with respect to nucleic acids. At the same time, there is no doubt
that oligonucleotide vaccines based on highly conserved regions of the RNA virus genomes
have great potential in the prevention of viral diseases, despite the fact that they do not yet
fit within the framework of modern concepts of immunology [125].
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9. Conclusions

Influenza viruses are among the most serious infectious agents circulating in the
human population, periodically causing epidemics and even pandemics. Influenza viruses
claim hundreds of thousands of lives every year, exacerbating old and new chronic diseases
in survivors.

Due to their biology, influenza viruses constantly use antigenic drift and antigenic shift
to change their genetic material, which changes the antigenic properties of viral particles.
Each year, this leads to a revision of the formulas of inactivated and live-attenuated vaccines.
In addition, animals, especially birds, act as natural reservoirs, which leads to the emergence
and global the spread of the virus.

Today, a strategically important area of research is the development of vaccines with a
long operational period of action. Such vaccines can be created on the basis of conserved
influenza virus antigens. Traditional approaches using proteins as antigens have good
potential for solving this problem but have not yet achieved significant results. No less
promising is the development of oligonucleotide vaccines that use conservative regions of
the influenza virus genome as antigens. It can be assumed that if influenza vaccines with
an operational validity period of 10 years or more appear, then the race between the virus
and the person will be won by the latter.
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