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Abstract: Microneedles are gaining popularity as a new paradigm in the area of transdermal drug
delivery for biomedical and healthcare applications. Efficient drug delivery with minimal invasion is
the prime advantage of microneedles. The concept of the microneedle array provides an extensive
surface area for efficient drug delivery. Various types of inorganics (silicon, ceramic, metal, etc.)
and polymeric materials are used for the fabrication of microneedles. The polymeric microneedles
have various advantages over other microneedles fabricated using inorganic material, such as bio-
compatibility, biodegradation, and non-toxicity. The wide variety of polymers used in microneedle
fabrication can provide a broad scope for drug delivery and other biomedical applications. Multiple
metallic and polymeric microneedles can be functionalized by polymer coatings for various biomedi-
cal applications. The fabrication of polymeric microneedles is shifting from conventional to advanced
3D and 4D printing technology. The multifaceted biomedical applications of polymeric microneedles
include drug delivery, vaccine delivery, biosensing, and diagnostic applications. Here, we provide
the overview of the current and advanced information on polymers used for fabrication, the selection
criteria for polymers, biomedical applications, and the regulatory perspective of polymer-based and
polymer-coated microneedles, along with a patent scenario.

Keywords: microneedles; polymer; drug delivery; biomedical applications

1. Introduction

Microneedle-based drug delivery is the most widely used technique for obtaining
systemic efficacy of medications through the transdermal (TD) route. The oral route is far
more straightforward: it is easier to obtain patient compliance, and it requires no special
expertise and is less expensive than alternative delivery systems. However, it has some
drawbacks, including: low drug bioavailability at the target site, hepatic biotransformation,
diverse types of enzymatic reactions at the gastric pH, and inappropriate absorption due to
the present clinical state [1].

It has been discovered that the TD route of drug administration can directly access
the first layer of skin, while avoiding the difficulties associated with other drug delivery
systems. To address the problems with conventional approaches, microneedle-based
drug delivery via the TD route is recently becoming popular. Several projections on the
microneedle can penetrate into the epidermis. MNs can be easily fabricated with materials
such as metal, polymer, hydrogel, silicon, ceramic, etc. Microneedles (MNs) penetrate the
stratum corneum and reach the upper dermis without contacting nerve fibers or blood
vessels, which results in painless administration [2–4].
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Microneedles have a length typically ranging from 150 to 1500 µm [5–7]. Designing
of MNs mainly depends on the fabrication method, the material quality, the stability of
material, and the shape/geometry of them [8].

Protein and peptide drug delivery through MNs have great advantages, such as
improved bioavailability, improved patient compliance, and stability. MNs are classified
into several types, such as solid, hollow, coated, dissolving, and hydrogel-forming. The
main objective of this MN technology is to puncture the stratum corneum in order to allow
the entry of larger molecules through skin and, hence, increase permeability [9].

The literature shows that numerous fabrication techniques, materials, and approaches
are employed for MN manufacturing (Figure 1). Its size, shape, radius of the tip, needle
height, base width, overall design, and geometry are crucial for improving its mechanical
performance and strength [10].
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2. Types of Microneedles
2.1. Solid Microneedles

Solid MNs are basically fabricated by micromachining techniques, such as photolithog-
raphy and the etching method. The delivery of drugs occurs through the “poke-and-patch”
mechanisms through the development of microchannels. Drug release can occur through
passive diffusion. Solid MNs are typically made of non-biodegradable or degradable
materials. They can be fabricated using microelectromechanical systems (MEMS) [12].

Solid MNs can be used for the administration of proteins, peptides, growth hormone,
insulin, and vaccines. They can also be used to deliver drugs in semisolid dosage forms.
Solid MNs make the skin more permeable without damaging the stratum corneum. Com-
pared to hollow MNs, solid MNs are easier to formulate, have sharper tips, and have
greater mechanical strength. Solid MNs are characterized by their physical, chemical, and
mechanical properties. They can also be used to detect biomarkers in biosensing. This is
because the needles can be coated with a material that can sense a particular molecule,
such as glucose or lactate. The physical properties include the dimensions, various forms,
and surface morphology. The dimensions include a length of 50–800 µm and diameter
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of 10–200 µm. The surface morphology of solid MNs can be studied using atomic force
microscopy [13].

2.2. Hollow Microneedle

The stability and functionality of hollow MNs (HMNs) depend on the catheter aper-
ture, height, and needle tip. Drugs can be administered using the “poke-and-flow” mecha-
nism. HMNs allow the administration of larger doses of medication. They are typically
made up of silicon, metal, glass, and ceramic materials. The main advantage of hollow
microneedles is that they are painless. The size of a hollow needle is in the micron range.
The flow of drugs through HMNs can be influenced by multiple factors, including tip
dimension, length, pressure, inner diameter, insertion, and retraction of depth. One draw-
back of this technology is the occasional blockage of the MN and the crucial manufacturing
process [14]. HMNs are small in length, typically around 1 mm. The diameter and length
can vary from a few microns to several hundred microns. Fabrication methods such as
photolithography, laser ablation, and micromolding techniques can be used to manufacture
hollow MNs. Because of their small size, it can be challenging to fabricate hollow MNs,
as it is difficult to maintain the integrity of the hollow bore. A hollow MN is used for
body fluid sampling, while a syringe and a micropump are used to control the flow of
medicine. Using HMNs, regulated drug administration is achievable; it makes a simple
drug concentration–time profile. The basic design for an HMN includes a microfluidic chip,
a micropump, and a heater [15].

2.3. Coated Microneedles

The “coat-and-poke” mechanism is used to deliver drugs in this method. Titanium
and stainless steel are used to make it. The drug coating is applied to the MNs before they
are inserted under the skin in a one-step process. The skin can absorb the drug coating
from the MNs. The MNs are then dissolved and removed. The tip and shaft of MNs can
only be coated with a certain amount of medication. The drug dosage is affected by the
size of the needle and the thickness of the coating solution. The coating can improve the
functionality and target specificity of the MN. It also improves the mechanical properties
of the MN, making it more durable and resistant to breakage. Coating materials such as
ceramics, metals, polymers, and hydrogels are used to achieve target-oriented medication
delivery. Metal coatings increase MN stability and release-rate kinetics. Polymer coatings
offer a barrier of protection and promote tissue regeneration. Coatings can be applied by
a variety of mechanisms, such as electroplating and physical vapor deposition for metal
coatings. Dip coating and spray coating are generally used in the polymer-coating method.
Stainless sheet is used in the fabrication of MNs [9].

Other methods used in MN coating include gas-jet drying and electrohydrodynamic
atomization (EHDA) technology [16]. Coated MNs can be used to administer drugs,
including proteins and peptides, in a minimally invasive manner. Self-administration
is possible with coated MNs, which does not require hospital visits, specifically trained
staff, or their associated cost. One barrier that must be addressed is the development
of biocompatible coated MNs that do not have any side effects. The second difficulty is
that the coating process can sometimes be difficult to scale up due to its expensive and
time-consuming manufacturing procedure. With continuous research and development,
coated MNs have the potential to transform the healthcare system and improve quality of
life for millions of people around the world [17].

2.4. Dissolving Microneedles

Dissolving MNs (DMNs) are extremely small, with lengths of a few millimeters. This
technique involves encapsulating drugs within MNs. Once inserted, the MNs dissolve
and cannot be removed from the skin after insertion. DMNs are typically composed of
dextrin, polyglycolic acid, chondroitin sulphate, and polyvinylpyrrolidone. Its safest drug
delivery method has no negative consequences after diffusion into the skin. The efficiency
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of dissolving MNs is influenced by their mechanical strength, flexibility, and dissolution
time. The effectiveness of a dissolving MN depends on its ability to load drugs, its drug
release profile, and its pharmacokinetic characteristics [18].

The two most important aspects to take into account when choosing a dissolving
MN are the appropriate polymer, and its release kinetics. The most popular methods are
solvent casting, droplet-born air blowing, laser machining, hot embossing, microinjection
molding, and ultrasonic welding. The performance of MNs is affected by their hygroscopic
nature. If a DMN dissolves too quickly, the body cannot absorb the drug. If it dissolves too
slowly, skin irritation and discomfort may occur. Scientists are working to develop MNs
that dissolve at the optimum rate of delivery. Another challenge in developing DMNs is its
degradation. Biodegradable materials are susceptible to degradation by pathogens, which
can compromise the stability of the MN. DMNs are frequently used because of their benefits
for patient compliance, decreased dose frequency, and enhanced tissue bioavailability [10].

Figure 2 illustrate the types and drug delivery mechanisms of MNs.
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2.5. Hydrogel Microneedles

Hydrogel-forming MNs is a novel and promising technique that overcomes the chal-
lenges of traditional drug delivery. Hydrogels and swellable polymer are crosslinked to
create hydrogel MNs. When this sort of MN comes into contact with skin, the hydrogel
causes them to expand, and water ingestion occurs. Drugs can be delivered in a minimally
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invasive way. With the help of hydrogel MNs, TD administration of proteins and vaccines is
possible. Many prefer this convenient alternative method because of its painless medicine
delivery. Controlled and prolonged drug release delivery is achievable with hydrogel
MN. This type of MN has a greater ability to load drugs and an increased drug release
kinetics [20].

Hydrogel-forming MNs are fabricated by various methods, such as micro-modeling, a
potential method; polymer casting; laser drilling, etc. A controlled manner drug adminis-
tration is possible with this type of MN. The typical dimensions are a height of the needle
around 500–600 µm, and base width around 350 µm. The shape of the needle is conical
in nature and it includes around 121 needles (11 × 11). They are made up of a complete
aqueous blend. The surface morphology of the MN is often examined using scanning
electron microscopy to characterize hydrogel MNs. The swelling index of the MN can
be assessed based on the change in volume and weight when it comes into contact with
liquid. Compression and blending techniques can be used to assess the hydrogel MNs.
The drug release profile can be estimated with the aid of UV and HPLC equipment. The
characteristics of hydrogel MNs demonstrate their safe and efficient application in the
delivery of drugs [21].

3. Polymeric Microneedle Technology

The applications of polymeric MNs are diverse and include drug delivery, skin analy-
sis, and TD sensing. The use of polymers in MN fabrication offers a promising approach
for drug delivery and other applications, providing a safe, efficient, and customizable way
to deliver drugs, vaccines, and other substances through the skin. The increasing interest
of the scientific community is evident from the increasing number of publications on the
topic in Pubmed®, as depicted in Figure 3, showing results up to 18 May 2023.
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The major challenges with the development of MNs includes preclinical testing and
clinical trials to establish safety and efficacy, a stable manufacturing process to achieve
constant standards required for the desired application, regulatory approvals of the devel-
oped products, ease of use, and patient compliance. Polymers are commonly used for the



Sci. Pharm. 2023, 91, 27 6 of 41

fabrication of MNs as polymers of a diverse nature are available for their development.
Polymers are considered as the choice of raw material for MN preparation as they do not
show immune reactions and their functionality can be modulated needed by physicochem-
ical modifications [22]. Polymers can be used to develop drug delivery systems that are
capable of targeting specific tissues or cells, increasing drug efficacy while reducing drug
toxicity [23]. The design of the polymeric system enables the release of drugs in response to
external factors such as pH or temperature, ensuring accurate and controlled drug delivery
at the intended moment [24]. These polymer characteristics can be beneficial to the develop-
ment of biosensing devices which allow theranostic use. When choosing a polymeric matrix
for MN formulation, factors such as biocompatibility (BC), biodegradability (BD), solubility,
the facilitation of small and large molecules, extended drug release characteristics, and
mechanical properties should be taken into consideration [25,26], as illustrated in Figure 4.
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MNs are categorized as either dissolving or swellable depending on both the fabri-
cation method and the polymer’s type. This may be based on the polymer dissolution
kinetics, and drug’s response to external stimuli such as pH, temperature, and humidity, as
well as the controlled release profile [27].

Several moulding techniques, such as master preparation, mould fabrication, and
plasticization of thermoplastic polymers, are typically used to produce polymeric MNs.
For the production of MNs, both natural and synthetic polymers are used [28].

Polymers including poly(lactic-co-glycolic acid) (PLGA), polyvinyl alcohol (PVA), and
polyethylene glycol are frequently used in the production of MNs. Polymeric MNs provide
several benefits over more traditional medication delivery methods, including intravenous
or oral administration. Polymeric MNs can skip first-pass metabolism in the gastrointestinal
tract, improve bioavailability, and lower systemic toxicity [29–31]. Moreover, they provide
a simple and practical means of drug delivery, making them especially beneficial for patient
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populations including children and the elderly. In preclinical and clinical trials, polymeric
MNs have demonstrated promising outcomes for the delivery of insulin, vaccinations,
and other medications, in order to improve their design, effectiveness, and safety for
widespread clinical usage [32]. The typical benefits and drawbacks of using polymers in
MN technology are illustrated in Figure 5.
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3.1. Classification of Polymer Used for Microneedle Fabrication

Polymers used for MN fabrication can be classified as natural and synthetic poly-
mers [27]. Natural polymers used for this purpose include dextran, gelatin, amylopectin,
hyaluronic acid, chitosan, chitin, and alginate. Synthetic polymers used for this purpose in-
clude hydroxypropylmethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polylactic
acid, and polystyrene [28].

The natural polymers are eco-friendly materials which can be used in their natural form
or with further physical or chemical modification per the requirement of the task. Synthetic
polymers can be prepared by chemical or biochemical processes. These synthetic processes
permit tailor-made functionalization. The synthetic processes allow the modulation of
desired properties of the polymers such as mechanical strength, degradation characteristics,
solubility, drug release behaviour, etc. [33]. The classification of polymers used in the
fabrication of the MN is depicted in Figure 6.
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3.1.1. Dextran

Dextran is a polysaccharide formed by glucose units associated through α-1,6 and α-1,3
bonds. It is widely used in drug delivery as a carrier due to its BC, BD, low immunogenicity,
and potential to form hydrogels, nanoparticles, and an injectable polymer matrix [34].

Dextran methacrylate-based MN cargos containing the drugs Adriamycin and Oral
MEK inhibitor GSK1120212 concurrently for a constant TD release were reported by
Huang S. et al. for subcutaneous drug release. The hydrogel MNs were synthesized by a
two-step process involving the reaction of photocrosslinkable dextran methacrylate with a
crosslinking agent and the subsequent loading of the drugs. The prepared hydrogel MNs
were found to be safe and effective for the continuous TD administration of the drugs, to
allow synergistic drug delivery at a depth of at least 600 µm in the skin, to attain synergic
delivery of both drugs [34]. Dextran methacrylate hydrogel MNs were also used recently
for the delivery of Tofacitinib and α-melanocyte-stimulating hormone for the treatment
of a skin condition called vitiligo. It was revealed that it improved the skin and hair
pigmentation [35].

Non-degradable hydrogel photon-activated MNs to suppress protein aggregation for
TD drug delivery were reported. To create the MNs, a dextran derivative was utilized,
and a photolithography technique was employed to fabricate four-pointed star MNs. The
hydrogel network was formed by combining sulfobetaine (SPB) monomer with dextran-
glycidyl methacrylate/acrylic acid. Integrating poly-SPB into the MN system ensures that
proteins are safeguarded during delivery and the system possesses the required strength
for dermal penetration. The microneedling system offers a better drug loading capacity
and effective drug release rate. Furthermore, the protein loading capacity of the hydrogel
microneedling system was evaluated for the first time, and the results show that lysozyme
and insulin could be incorporated into the dry microneedling system at practically a
comparable capacity. The potential of these microneedling systems for protein delivery
opens up the possibility of administering therapeutic proteinaceous materials to treat
disorders where conventional drugs fail. The results show that MNs could be an effective
option for administering therapeutic drugs [36].
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3.1.2. Hyaluronic Acid

Hyaluronic acid is a natural constituent of the skin which is biocompatible, allows
the tuning of viscoelastic characteristics, and is hygroscopic in nature. It is formed by
repeating pieces of D-glucuronic acid with N-acetylglucosamine, which are connected by
a β-(1–3) bonds. It is a vital biological material involved in multiple functions including
angiogenesis, cell growth, immunity, and antioxidants in the body [37].

Acrylate-modified hyaluronic acid (MeHA) has been reported by Chen S.X. et al. The
ultraviolet photocrosslinking MeHA improves the mechanical strength, showing a failure
force of about 18N in a compression test. It allows skin insertion up to a depth of 300 µm
in animal studies. Nanoparticle-loaded MNs exhibit swelling and about 80% drug release
within 10 min in a phosphate buffer at pH 7.4, and simulated body fluid at pH 6.5 and
7.4 [38]. Further, the use of ultrasonic stimulation and electrical stimulation was found to
facilitate drug penetration through the skin from hyaluronic acid MN patches. Acoustic
pressure in ultrasonic stimulation and electrostatic force in electric stimulation increase
the drug diffusion across the skin. The correlation of concentration of hyaluronic acid
with parameters viz. solid height and tip angle was established. Increasing concentration
from 1 to 4 wt% increased solid height while reducing the tip angle, indicating that the
concentration of the polymer is a vital parameter in the design of MNs [39].

Y.H. Feng et al. reported the mechanism of delivery of insulin through MNs prepared
using polyvinyl alcohol and hyaluronic acid. The study discusses the diffusion properties
of insulin and gives an idea about the role of polymers in controlling protein release. The
study provides a scientific basis for the development of an insulin-loaded dissolvable
microneedling system. The results indicate that hyaluronic acid solution is a better material
for the development of an insulin microneedling system compared to other polymers under
study. The interaction between insulin and hyaluronic acid is stronger than that between
insulin and polyvinyl alcohol. The study shows that these polymers do not affect the nature
and expression of insulin in biological systems [40].

3.1.3. Chitin and Chitosan

Chitin and chitosan are widely used in the development of TD patches. Chitosan
alkaline polysaccharide is derived from chitin. It possesses highly desired characteristics
such as BD, safety, BC, antimicrobial properties, and hemostasis. A smart temperature-
responsive MN array patch was reported by Chi J. et al. The system is effective in wound-
healing promotion and has antibacterial properties against S. aureus and E. coli, which may
be further useful in wound healing. It was reported that a chitosan-based microneedling
system works through a variety of mechanisms such as controlling inflammation, collagen
deposition, forming newer blood vessels, and promoting granulation cell formation for
wound healing [41].

Bletilla striata polysaccharide/chitosan composite bilayer dissolvable MNs containing
asiaticoside that achieved scar-free wound healing in rats were reported by Jinying Lv et al.
The MNs have a better antimicrobial property and also control fibroblast proliferation. It
was demonstrated that Bletilla striata had a substantial anti-inflammatory and curative
effect in the early stage. Asiaticoside shows a strong inhibition of scar fibroblasts in the later
phases. The synergistic treatments of Bletilla striata and asiaticoside healed the wounds
swiftly, and are beneficial for practical clinical use. Additionally, overexpression of TGF-
β1 and type-I collagen in scarred skin were reduced by the MN treatment, which could
prevent scar formation. The study provides a new strategy for effective scarless wound
dressings [42].

3.1.4. Alginate

Alginate has already demonstrated its usefulness in drug delivery owing to its BD and
BC. Modified alginates provide extensive applications in MN fabrication. MN fabricated
using alginate also showed better mechanical strength [3,43]. Tiraton et al. demonstrated
the fabrication of a sodium alginate–gelatin MN for the TD delivery of clindamycin. Clin-
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damycin has limited permeation through the stratum corneum which can be overcome
with MN technology. The resulting MNs were found to be nontoxic in the study performed
using normal human dermal fibroblast (NHDF) cells and also showed the significant in-
hibition of Cutibacterium acnes [44]. Yu et al. also reported the fabrication of polymeric
MNs using alginate and hyaluronate for the TD delivery of insulin. The resulting MN
showed adequate mechanical strength for insertion and better biodegradation to release
the insulin [45]. A similar kind of study is also demonstrated by Zhang et al. by fabricating
calcium-crosslinked maltose–alginate MN for insulin delivery. The in vivo study showed
the better insertion and degradation-mediated release of insulin in diabetic rats [46].

3.1.5. Gelatin

Gelatin is a protein derived from collagen that is commonly used in food, pharma-
ceuticals, and cosmetics. It is a biodegradable and biocompatible material that has been
explored for use in drug delivery systems, including MNs [47]. It is GRAS-listed substance
commonly found in pharmaceutical formulations and food products with no significant
adverse effects.

Gelatin can be used as a drug carrier or excipient to enhance drug delivery efficiency,
reduce the toxicity of the drug, and provide a controlled release of the drug. It is explored
for use in the delivery of a variety of drugs, proteins, peptides, vaccines, and cancer
therapeutics [48].

Demir et al. demonstrated that MNs made from crosslinking gelatin methacrylate and
polyethyleneglycol diacrylate and incorporating molybdenum sulfide (MoS2) nanosheets
as a photothermal constituent have the potential to deliver high molecular drugs. It is
swelling-type polymer. TD administration of insulin loaded into MoS2-MN TD patches
decreases blood sugar in an animal study and is reported to provide equivalent results in
subcutaneous injectable insulin preparation. The developed MN works using near-infrared
light. It may be necessary to make a compact device for clinical use. However, technology
transfer and scale-up issues need to be overcome for the developed MN to be used clinically
in the future [49].

The MNs fabricated with a conjugate of gelatinmethacryloyl (GelMa) and
β-cyclodextrin (β-CD) were reported by X. Zhou et al. They improved the stability and sol-
ubility of curcumin by forming a drug-inclusion complex. The resulting complex could be
incorporated into a microneedling system which possesses adequate mechanical strength
for dermal penetration and a tailor-made drug release. The in vivo studies showed that
the developed curcumin microneedling array shows superior efficacy and provides better
penetration than a control non-TD patch. The results demonstrated the BC and degrada-
tion characteristics of the polymeric MN array and suggested that hydrogel-based MN
arrays are a potential alternative for the delivery of poorly water-soluble drugs [50]. In
a recent study, GelMA MNs containing amoxicillin (AMX) were successfully developed
by a 3D-printing technique. The 3D-printed AMX-loaded GelMA MNs displayed good
mechanical and swelling properties, and demonstrated efficient drug release and antibac-
terial activity against both S. aureus as well as E. coli. It was concluded that 3D-printed
drug-loaded GelMA MNs have a great potential for use as an advanced device for TD
therapeutic delivery and could be useful for managing bacterial infections. The developed
microneedling system can contain a higher amount of the drug and therefore can be used
for a longer duration. The authors claim that the details reported the use of a novel method
in the study, making this study a valuable contribution to the field [49].

3.1.6. Gantrez

Gantraz is a copolymer of methyl vinyl ether and maleic anhydride. One of the
main benefits of using Gantrez in TD drug delivery is the bioavailability of certain drugs.
Gantrez® S-97 forms a super-swellable MN system. The use of Gantrez can also help
improve the stability and shelf-life of MN-based drug delivery systems [51].
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Two MN formulations of Gantrez were reported by Donnelly et al. The first one
consists of hydrolyzed gel of poly (methylvinylether-co-maleic acid) while another one was
prepared by crosslinking with poly (ethylene glycol). The crosslinked system was used for
MN preparation and it was reported that iontophoresis could enhance the permeation of
large molecules such as insulin through the skin, but was not promising for small molecules
such as ibuprofen [52]. It swells in the presence of water and possesses sufficient mechanical
strength to work out microprotrusions to break the stratum corneum barrier for the drug
delivery with MNs. The polymer (Gantrez)-to-crosslinker (polyhydric alcohol) ratio is
important for the formation of a microprotrusion array [53].

Another study aimed to investigate the effectiveness of a poorly permeable acyclovir-
loaded dissolving polymeric microneedling array system for the treatment of herpes labialis
(cold sores), prepared with Gantrez®S-97. Results showed that the microneedling array
system improved the local delivery of acyclovir, with in vitro permeation studies showing
a 45-times-higher percentage of total acyclovir loading compared to the Liposore® cream
formulation. It delivered acyclovir to epidermal layers at a five-times-higher concentration
than required for HSV infection treatment, showing the potency of the medication. In vivo
studies showed the successful intradermal delivery of acyclovir with the microneedling
arrays over a period of 48 h, with a superior dermal drug concentration compared to the
topical cream formulation [54].

3.1.7. Hydroxypropyl Methylcellulose (HPMC)

HPMC is a promising material for MN-based drug delivery due to its excellent BC,
ease of formulation, and ability to form stable MNs that can efficiently penetrate the skin
and release drugs for targeted delivery. First, HPMC has good mechanical strength and can
form stable, long-lasting MNs that can penetrate the skin without breaking or deforming.
Second, HPMC has a high swelling capacity, which can facilitate drug release and improve
skin permeation. Third, HPMC can be easily dissolved in water, making it easy to prepare
MN formulations. Finally, HPMC can be easily modified to tailor its properties, such as
solubility, swelling behaviour, and mechanical strength, to suit the specific requirements of
different drug delivery applications [55].

A recent study explored use of self-dissolving HPMC and HPMC-PVP MNs to improve
the bioavailability of acyclovir, a commonly prescribed antiviral medication for the herpes
virus. The research aimed to use a dissolvable microneedling system for the topical and
systemic transport of acyclovir. A topical freeze-dried drug wafer was placed on MN-
treated skin. It showed sufficient mechanical strength, and the wafer demonstrated an
adequate porous nature required for faster hydration. The self-dissolving MN-assisted
topical wafer gives about 10 times greater skin concentration than the ID99 with reduced
lag time. The study showed that this delivery system could be effective against the herpes
virus infection for topical as well as systemic action. It has the potential to reduce dosing
frequency and improve drug bioavailability [56].

3.1.8. Polycigycidyl Methacrylate

Polyglycidyl methacrylate (PGMA) is a polymer that has been investigated for its
potential in drug delivery applications. PGMA is known to have hydrophilic properties,
which makes it useful for solubilizing and delivering hydrophobic drugs. Additionally, the
epoxide functional groups available in PGMA offer polymer-drug conjugation, enabling
a controlled drug release [57]. It can be chemically modified. It is biocompatible and has
low toxicity, making it an attractive candidate for biomedical applications. PGMA-based
drug delivery systems have the potential to enhance drug solubility, stability, and targeted
delivery, leading to improved therapeutic efficacy and reduced side effects [58].

Porous MNs (PMNs) for minimally invasive TD drug delivery were reported by D.
Terutsuki et al. The stratum corneum allows the passage of only low-molecular-weight
drugs through the skin. While MNs have been used to enhance TD permeation, they are
usually limited to small molecules. The authors investigated a truncated cone-shaped PMN
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made of PGMA for TD drug delivery. It was reported that a non-penetrable frustoconical
PMN expanded the skin, reduced the TD resistance, and improved the penetration of
larger molecules when combined with electro-osmotic flow (EOF) via charge-immobilized
frustoconical PMN. This can provide a patient-acceptable method for TD drug delivery
for molecules such as dextran (~10 kDa), but it was reported that the ovalbumin (45 kDa)
molecule could not penetrate the skin with the developed PMN [28].

3.1.9. Polyvinyl Alcohol (PVA)

PVA is a promising material for use in drug delivery systems, particularly in the fabri-
cation of MNs. It easily forms aqueous solutions. PVA MNs have been found to be superior
to other dissolving polymers used for microneedling systems in terms of penetrating into
skin layers [59]. PVA MNs have shown a potential for delivering a range of drugs, includ-
ing vaccines, proteins, and small molecules. PVA MNs have been found to be effective in
delivering drugs through the skin, with a high degree of reproducibility and consistency.
Additionally, PVA MNs have been shown to be safe and well-tolerated by patients [60]. Re-
cently, dissolving PVA MNs loaded with P. aeruginosa phages to combat antibiotic-resistant
bacteria in biofilm-related skin infections were reported. The study found that the PVA
MNs loaded with phages reduces P. aeruginosa PAO1 biofilms significantly more than the
treatment with free phages. It is useful for the treatment of dermal infections. The research
validates the use of a phage-loaded microneedling system for biofilm treatment. It may be
used in the treatment of other resistant topical biofilm reduction, and it is especially helpful
in wound healing [61].

3.1.10. Polystyrene-Block-Poly-(Acrylic Acid) (PSPAA)

PSPAA is obtained by hydrolysis of polystyrene-block-poly-(tert-butyl acrylate) poly-
mer in solvent methylene chloride using catalyst trifluoracetic acid. PSPAA was used in
the swellable tip while the core was made up of non-swellable polystyrene. Interestingly, it
swells to about eight times its original volume. Further, swelling and deswelling do not
affect the dimensions of MNs. The concentration of polymer can be varied to control the
swellable tips’ height, and it forms highly porous structures [62]. Ferric oxide nanoparti-
cles loaded in PSPAA-based MNs were reported by R.Z. Seeni for MN optical coherence
tomography. It was revealed that polymer swells in 20 s in agarose gel, while, on fresh
skin tissues, this takes about 30 to 35 s. The addition of ferric oxide nanoparticles does
not have a significant effect on the mechanical strength and swelling behaviour of PSPAA
polystyrene polymer, and enhances its imaging characteristics [63].

3.1.11. Polylactic Acid (PLA)

Polylactic acid is A biodegradable and biocompatible, FDA-approved polymer used
for the preparation of MNs. PLA MNs coated with A drug could maintain mechanical
strength in physiologically humid environments. Hence, coated PLA MNs are preferred
for drug delivery over dissolvable MNs, although both can puncture the porcine skin [64].
It is reported that the anisotropic nature of PLA can lead to detachment from the substrate
during the etching process due to weaker bonding forces. Localized heating with laser
could solve the issue but caution is required to avoid hole formation and breakage induced
by the laser. The optimization of PLA MNs is elaboratively discussed by the L. Wu et al.
study. Controlling the temperature of the process is crucial for the 3D-printing process of
PLA MNs. For the PLA filament, the glass transition and melting points were 60 ◦C and
170 ◦C, consequently. Above 220 ◦C, it becomes decomposed [65].

Polylactic acid was used for the development of uncoated MNs for the dermal delivery
of Hepatitis B Surface Antigen (HbSAg). The antigen was dissolved in carboxy methyl
cellulose and loaded on the polylactic acid MNs. It was revealed that these MNs produce
immunogenicity comparable to that of an injectable preparation of the antigen, releasing
about 74% of the antigen within the first 30 min. Further, the HbsAg-loaded polylactic acid
MNs did not show any significant acute toxicity in the animal study [66].
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3.1.12. Polymethyl Methacrylate (PMMA)

PMMA is a biocompatible, cheaper alternative with sufficient mechanical strength
for the development of the polymeric MNs. It does not easily scratch the dermal layers
and has higher light transmittance. It was explored for glucose measurement directly from
the interstitial fluids within a few minutes using Raman spectroscopy-based biosensors. It
maintains structural stability, is found to be safe, and does not swell during dermal applica-
tion [67]. A recent comparative study of different polymeric needles revealed that PMMA
MNs are superior in the decline of tissue fibrosis and the expression of proinflammatory
factors viz. smooth muscle actin (α-SMA)+myobroblasts, Ki-67 protein, and transforming
growth factor-β1 mRNA, when compared with polycarbonates, polylactic-co-glycolic acid,
polypropylene, polyurethane, liquid crystal polymers, and stainless steel [68]. Passivation
techniques improve the performance of the MN-based biosensors. PMMA coating is re-
ported to improve the manufacturing process and performance of the painless biosensor
MNs [69].

Gemcitabine-coated PMMA MN arrays were reported by Z. Kanaki et al. The drug
was coated by a laser-induced forward transfer process. Gemcitabine-coated PMMA MN
arrays offer an advantage in metronomic chemotherapy, allowing a sustained drug release
in animal studies, although exploration in clinical studies is further required [70].

3.1.13. Polystyrene

Polystyrene is biocompatible material offering ease of MN fabrication. Painless MN
can be developed using polystyrene and it does not generate biohazardous waste. It is a non-
swellable material with sufficient mechanical strength required for MN preparation [51].
It was demonstrated that polystyrene MNs can withstand up to 4.7 N/needle, exhibiting
its usefulness for clinical purposes. It smoothly penetrates mice skin without deformation.
It was demonstrated that the addition of surfactants such as Tween 20 is useful during
the loading of polystyrene microspheres in the MNs [69]. The optimal concentration of
polystyrene is 50% for MN preparation, below which it causes brittleness in the needle
structure. A carbon-polystyrene composite system was developed for the determination of
TD pH [71].

3.1.14. Polycaprolactone

Polycaprolactone is a biodegradable, hydrophobic material with a lower melting point. It
allows solvent-free MN synthesis at a temperature of around 65 ◦C by a thermal melting pro-
cess. Capsaicin-loaded polycaprolactone MNs could provide drug release up to 15 days [72].
A pH-triggered electrolyte-based coating on the polycaprolactone microneedling patches was
reported in the literature. It consists of dimethylmaleicanhydride-modified polylysine and a
gene-containing layer of p53 expression plasmid/polyethyleneimine. In vivo studies of mice
show polyelectrolyte-coated polycaprolactone MN patches exhibit tumor inhibition efficacy
of 90.1% compared to the 46.4% efficacy with a nonpolyelectrolyte coating [73].

4. Fabrication Techniques of Microneedles

In the past several years, researchers have employed multiple techniques to create
a diverse range of MNs. When engineering MNs, the functionalities are addressed first,
which include the type of drug, its concentration, desirable BD, as well as the targets and
attributes of the material utilized for MNs. The fundamental purpose in the production
of MNs is to achieve needle geometrical consistency and predictability at a micron-scale
resolution to permit efficient needle piercing in the skin. The literature review reveals that
there are various methods which are used for the fabrication of MNs, which are discussed
below. The number of fabrication techniques are evolving with reference to the payload
and type of application. Here, the basic ten methods of fabrication are discussed; for the
rest of the methods, readers can refer to recently published review articles [14].
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The fabrication of MNs is influenced by various factors, including the material prop-
erties, the desired needle geometry, the fabrication method, and the intended application.
The key practical parameters and practical considerations are given in Table 1.

Table 1. Factors affecting fabrication of MNs.

Factor Affecting MN
Fabrication Practical Parameters Practical Considerations References

Material properties Mechanical properties (stiffness,
strength, and toughness).

High stiffness and strength may cause materials
to be more difficult to be molded or etched,
while materials that are too brittle may be prone
to breakage.

[74]

Chemical properties (reactivity,
solubility, and stability).

Highly reactive or unstable materials may
require specialized handling or storage
conditions.

[75]

Biocompatibility (non-toxic,
non-immunogenic, and
non-inflammatory).

Material should be biocompatible for clinical or
medical use. [76]

Compatibility with drug
formulations (physical, chemical,
and biological interactions).

The material should not adsorb or absorb the
drug to avoid any loss of drug efficacy. [77]

Device design Needle length and diameter.

The length and diameter of the MNs should be
optimized for the intended application, taking
into account factors such as skin thickness and
drug delivery requirements.

[78]

Needle shape and geometry.
The shape and geometry of the MNs can affect
their mechanical properties and ability to
penetrate the skin.

[79]

Delivery target.

Design considerations shall take into account the
target site (depth of penetration topical or deeper
penetration), and whether it is a local or systemic
action/sensing.

Quality control Inspection and testing.

Inspected and tested to ensure they meet quality
standards and specifications (device dimensions,
insertion force, insertion depth, failure force,
skin irritation, skin permeation, payload release,
lubrication, flexibility, shelf life, etc.)

[9]

Precision and accuracy of
alignment.

Alignment and registration of MNs are
important for ensuring consistent performance
and drug delivery.

Cost Materials and manufacturing costs.
Ease of fabrication.

Materials should be economic. The material
should be easy to fabricate using the chosen
manufacturing technique.

[80]

Regulatory requirements FDA and other regulatory
requirements.

MNs may be subject to regulatory requirements,
such as safety and efficacy testing, before they
can be approved for use.

[81]

4.1. Micromolding

It is a fabrication technique that involves creating structures or parts at a microscopic
scale using a molded MN of submicron length, and it has applications in drug delivery,
vaccination, and other medical purposes. The micromolding technique for MNs involves
creating a mold with the desired needle shape and size. The mold is typically made using
photolithography, a process that uses light to transfer a pattern onto a photosensitive
material. The mold is then filled with a polymer material, such as polycarbonate or
polydimethylsiloxane (PDMS), which is then cured to form the MNs. Once the MNs have
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been formed, they can be loaded with a drug or vaccine and then applied to the skin using
a patch or applicator device. They are less painful and invasive, and they can be designed
to dissolve or release their payload over time [82]. Various fabrication methods of MNs are
comparatively presented in Table 2.

Table 2. Comparison of microneedle fabrication methods.

Method of MN
Fabrication

Precision of
Fabrication Scalability

Ability to
Control Shape

and Size

Ability to Fabricate
Complex Structures

and Patterns
Resolution Cost

Micromolding 3 3 3 3 3 Low

Micromilling 3 3 3 3 3 High

Atomized Spraying
to Fill Molds 3 3 7 7 3 Low

3D Printing 3 3 3 3 3 Low

Laser Ablation 3 7 3 3 3 High

Photolithography 3 7 3 3 3 High

Printing Techniques 3 3 3 7 3 Low

Etching 3 3 3 3 3 High

Electrospinning 3 3 7 7 3 High

Co-Extrusion 3 3 3 7 3 Low

Note: 3 indicates ‘Yes’ and 7 indicates ‘No’.

4.2. Micromilling

Micro-milling is a precision fabrication technique used to create small parts with high
accuracy and precision. It is a type of milling process that uses micro cutting tools to remove
material from a workpiece. It is commonly used in the fabrication of microelectromechanical
systems (MEMS), microfluidic devices, and other small-scale components for use in medical
devices and electronics. This process typically involves a workpiece, which can be made
from materials such as polymers, metal, or ceramic, and a cutting tool, which is typically a
small end mill with the required diameter. The workpiece is typically held in place by a
fixture or vise, and the cutting tool is moved along the surface of the workpiece in a precise
pattern to remove material [83]. Micro-milling machines use computer numerical control
(CNC) to control the movement of the cutting tool. This allows for precise control of the
shape and size of the part being created.

Micro-milling machines are designed to be highly precise, with tight tolerances and
positioning accuracy. They are typically equipped with advanced software and control
systems to ensure that the cutting tool follows the programmed path accurately. It has sev-
eral advantages over other manufacturing techniques, including high precision, excellent
surface finish, the ability to create complex geometries, and flexibility in the selection of
materials. It can be used with a wide range of materials, including polymers, metals, and
ceramics [84].

4.3. Atomized Spraying to Fill Molds

Atomized spraying is a process of filling molds with liquid material by atomizing
the liquid into tiny droplets. The mist is directed into the mold cavity, where it cools
and solidifies to form the final product. Atomized spraying has several advantages over
other methods of filling molds, including the ability to create more uniform and consistent
products, improved surface finish, and reduced waste of material. The size of the droplets
can be controlled by adjusting the pressure and flow rate of the liquid. It can also be used
to create complex shapes and structures that would be difficult or impossible to achieve
with other techniques. It is a powerful fabrication technique that can be used to create
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high-quality, complex products with a high degree of accuracy and precision. It is widely
used in a variety of industries and can help to improve efficiency, reduce waste, and lower
manufacturing costs [85].

4.4. 3D and 4D Printing

3D printing is a manufacturing technique that involves creating three-dimensional
objects by layering material on top of each other. In recent years, 3D-printing technology
has advanced significantly, allowing for the production of increasingly complex and precise
structures. In addition, 3D printing has been used to create MNs, which are small needles
that can be used for drug delivery, vaccination, and other medical applications; 3D printing
allows for the creation of MNs with precise geometries, which can be customized for
specific applications and patients. The 3D-printing process for MNs typically involves
designing the MNs using specialized software, and then printing them using a 3D printer.
The printer deposits layers of material, such as biocompatible polymers or metals, to create
the MN structure [86].

The advantage of 3D printing for MNs is the ability to create complex structures
that would be difficult or impossible to achieve with other manufacturing techniques; 3D
printing can be used to create MNs with multiple branches or with varying needle lengths.
Another advantage of 3D printing for MNs is the ability to create MNs on demand. This
means that healthcare providers can quickly and easily produce MNs as needed, rather than
relying on pre-manufactured needles. The development of MNs customized for specific
applications and patients is possible. It offers a high degree of customization and precision,
and it has the potential to revolutionize drug delivery and other medical applications [87].

A new emerging technique for the advanced manufacturing of MN is 4D printing.
Four-dimensional printing or additive manufacturing has a broad use across a number
of domains, including the fabrication of complex merchandise out of an assortment of
materials and processes with the capacity to modify the resilience of materials throughout
the course of manufacturing. The building blocks employed in 4D printing are additionally
referred to as responsive materials because they acquire diverse dimensions, traits, and
amenities over time in accordance with stressors such as heat, water, light, and pH [88,89].
Table 3 illustrates various 3D- and 4D-printing additive fabrication methods for MNs.

Table 3. Various 3D- and 4D-printing additive fabrication methods for microneedles.

Additive Fabrication
Methods Materials Used Type of

Microneedles Layer Resolution Potential Source Application References

Direct-ink writing (DIW) Shape memory
polymer (SMP) Solid, hollow 20–50 µm Laser beam Tissue engineering [90]

Fused filament fabrication
(FFF)

Shape memory
hydrogel (SMH) Coated, hydrogel 40–70 µm Laser beam Prototyping in product

development [91]

Stereolithography
(SLA) Liquid polymer Solid, hollow,

coated 50–100 µm UV light Anticancer drug
delivery [92]

Digital light processing
(DLP)

Shape memory
composite (SMC)

Biodegradable,
coated, hydrogel 25–150 µm UV light Transdermal

drug delivery [93]

Selective laser sintering
(SLS)

Liquid crystal
elastomer

Solid,
biodegradable,
hydrogel

80–90 µm Laser beam Disease delivery with
medical device [94]

Inject method Shape memory alloy Biodegradable,
solid 70–100 µm - Topical application [95]

4.5. Laser Ablation

Laser ablation is an MN fabrication technique that involves using a laser to selectively
ablate material from a substrate, creating MN structures. The process involves focusing a
laser beam onto the surface of a substrate, typically a polymer or metal film, and moving
the beam to create the desired MN pattern. The laser ablation process allows for the high
precision and customization of MN geometry, and can be used to create arrays of MNs
with varying shapes and sizes. The technique is also capable of creating MNs with highly
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sharp tips, which can aid in skin penetration. However, laser ablation may be limited by
the type of material used; for example, CO2 lasers are typically used to ablate polymers,
while excimer lasers are typically used to ablate metals. Other factors which can limit its
use are the cost and complexity of the laser system required [96].

4.6. Photolithography

It is an MN fabrication technique that involves using a photoresist material to create
an MN pattern on a substrate. The process involves coating a substrate, typically a silicon
wafer or glass slide, with a layer of photoresist material. The photoresist is then exposed to
UV light through a mask that contains the desired MN pattern. The exposed areas of the
photoresist material are then chemically removed, leaving behind an MN pattern on the
substrate. The substrate can then be coated with a material such as metal or polymer to
create the final MNs. Photolithography allows for the high precision and reproducibility of
MN structures, but can be complex and require specialized equipment. Soft lithography,
nanoimprinting, and nano-molding are advanced variations of the techniques developed
for better quality control of MNs [97].

4.7. Printing Techniques

Techniques such as inkjet printing and screen printing can be used for MN fabrication.
In inkjet printing, MN patterns are printed onto a substrate using inkjet printing technology,
typically with a polymer or hydrogel ink. The ink is deposited onto the substrate in droplets,
which then solidify to form the MN structures. Inkjet printing allows for the high resolution
and customization of MN patterns, and can be used to print MNs with multiple layers or
materials. Screen printing involves using a mesh screen to transfer an MN pattern onto
a substrate. The MN pattern is transferred onto the screen, which is then pressed onto
the substrate to transfer the pattern. Screen printing can be used to create MNs with a
wide range of sizes and shapes, and can be used to print multiple MN layers. Both inkjet
printing and screen printing can be used for high-throughput MN fabrication, and can be
compatible with a variety of materials [98].

4.8. Etching

Etching has two basic types: dry and wet etching. The first one uses inert or reactive
gases, while the second uses a chemical etchant for the process. This method involves using
a combination of chemical and mechanical processes to create needles with a diameter of
less than 100 µm. The etching process begins by creating a template onto which the MNs are
designed. This can be carried out through a variety of methods, including photolithography,
wax or plastic molding, and laser cutting. Once the template is in place, a chemical etchant,
such as hydrofluoric acid or potassium hydroxide, is used to cut the MNs into the template.
This process is typically performed using a spray-etching technique, which is a highly
precise and controllable method [13].

The etching process produces needles of varying lengths and shapes depending on the
desired application. Commonly used shapes include hollow or solid cylinders, triangular
tips, and conical tips. The etchant also treats the surface of the needles, creating a surface
that is suitable for various applications [99]. Once the etching process is complete, the
needles are typically cleaned and sterilized before being packaged and shipped to the
customer. The needles can be used for a variety of applications, such as drug delivery, skin
testing, and TD drug delivery. The etching method is a cost-effective and efficient way to
create MNs. This process can be used to create needles of various shapes and sizes, and the
needles can be used for a variety of applications [100].

4.9. Electrospinning

Electrospinning is an emerging method for the fabrication of MNs, which involves
using electricity to spin polymer solutions into nanofibers. This method is used to create
thin, uniform, and continuous nanofibers which have the potential to be used for various
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medical applications. The process of electrospinning begins with the preparation of a
polymer solution, which is then placed in a syringe and connected to a high voltage source.
As the voltage is increased, a thin stream of the solution is drawn from the syringe and
extruded into an electrical field, which causes the solution to form nanofibers. These
nanofibers are then collected on a grounded collector, which is usually made of metal, glass,
or polymeric materials. The diameter of the nanofibers produced through electrospinning
is usually between 100 nm to 10 µm, and the length of the nanofibers can range from a few
millimeters to several meters [101]. The nanofibers created through electrospinning can
be of single or multiple polymers, allowing for a wide range of properties to be designed.
One of the major advantages of electrospinning is that it can be used to fabricate MNs with
a wide range of sizes and shapes. The size and shape of the nanofibers can be tailored to
meet the desired application, such as drug delivery or tissue engineering. Furthermore,
the process is relatively inexpensive and easy to control, which allows for a wide range
of applications to be developed. The electrospun nanofibers can be used to create MNs
of various shapes and sizes, including MNs with hollow cores which can be filled with
drugs or other materials. The MNs created through electrospinning can also be coated with
various materials, such as biocompatible polymers, to further enhance their properties.
The process is relatively inexpensive and easy to control, and the nanofibers produced can
be tailored to meet the desired application, making it a versatile technique for creating
MNs [102].

4.10. Co-Extrusion

The co-extrusion process begins with the selection of two or more materials, each
with its own distinct properties. This technique is used to create MNs with a wide range
of properties, including shape, size, and chemical composition. These materials are then
combined in a single extruder, where they are simultaneously extruded into a single
product. The co-extruded product is then cut into individual MNs of varying shapes and
sizes. The advantages of this method are improved biocompatibility, mechanical strength,
and drug release profiles. In addition, the integration of multiple materials in the same
MN can help to enhance the drug delivery process. It can form hollow MNs, which are
used for the delivery of drugs and other materials, as well as solid MNs, which can be
used for the delivery of DNA, proteins, and other therapeutics. The co-extrusion process is
also highly efficient, as it can produce large quantities of MNs in a relatively short amount
of time. This makes it an ideal choice for the mass production of MNs. Co-extrusion is
a versatile and efficient method of fabricating MNs, and is used to create MNs with a
wide range of properties and shapes. This technique is an excellent choice for the mass
production of MNs, and is becoming increasingly popular for the delivery of drugs and
other materials [103].

5. Biomedical Applications of Polymeric Microneedles

MNs are safe and efficient alternatives to hypodermic needles with less invasiveness
and better drug delivery. MNs are a promising and emerging paradigm in the area of
biomedical science. The availability of biocompatible and biodegradable polymers provides
a special advantage for MN fabrication and its coating. There are various therapeutic,
diagnostic, and drug delivery applications of polymer-based MNs [104].

5.1. Therapeutic Applications

The polymeric MN has emerged as a promising drug delivery platform for achieving
the simplified and patient-friendly delivery of medicines, immunization, and some biologi-
cal uses. The utilization of polymers in MNs underlines extraordinary applications in TD
medication conveyance, the examination of skin tissues, the sampling of body fluids, and
biotherapeutics complexation, biosensing, etc. Drug delivery through polymeric MN can
be biocompatible, biodegradable, non-immunogenic, and having great mechanical strength.
Subsequently, this gives an extraordinary application in protein drug delivery through a
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TD path. Drug delivery the through stratum corneum is an effortless and insignificantly
obtrusive way through polymeric MNs [28]. Polymeric MNs used for therapies of various
diseases are illustrated below.

5.1.1. Rheumatoid Arthritis

Localized drug delivery using MNs provides therapeutic efficiency in the treatment
of rheumatoid arthritis (RA). Biodegradable polymeric MNs are highly preferred for this
purpose. Wu et al. reported the fabrication of programmable MNs for the treatment of
RA (Figure 7). The MNs were fabricated using polyvinylpyrrolidone (PVP). The poly-
dopamine/manganese dioxide (PDA@MnO2) and methotrexate were incorporated for
antioxidants and chemotherapy, respectively. The in vivo degradation of MNs in a synovial
microenvironment released the incorporated content. The prepared MNs were found to
be useful in removing reactive oxygenated species (ROS) and reducing inflammation in
RA [105].
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Yao et al. demonstrated the fabrication of dissolving MNs for neurotoxin delivery
for the treatment of RA. MNs were fabricated using polyvinyl pyrrolidone (PVP) and
chondritin sulfate (CS). The prepared MNs showed less toxicity and BC when tested on
chondrocyte cells. An ex vivo skin penetration study showed the efficiency in penetra-
tion depth of MNs and associated delivery of neurotoxin. An in vivo animal study on
rats demonstrated the efficacy of fabricated dissolving MNs in RA therapy, which was
confirmed with decreased toe swelling and suppressed levels of IL-1β and TNF-α [106].

Methotrexate is preferably used in the treatment of RA, but oral and subcutaneous drug
delivery is limiting, with poor bioavailability and painful administration, respectively. MN-
based drug delivery can overcome the aforementioned problems. Tekko et al. developed
hydrogel-forming MN arrays loaded with a methotrexate reservoir. The MN array was
fabricated using PVP and polyvinyl alcohol (PVA), and citric acid was used as crosslinking
agent. The ex vivo study showed an efficient steady state flux of 506.8 ± 136.9 µg·cm2/h.
The in vivo study in rats showed a plasma concentration of 7.6 ± 2.0 nM after 1 h and
peak plasma concentration of 35.1 ± 5.1 nM after 24 h. The prepared polymeric-MN-based
drug delivery system is promising for the treatment of RA and juvenile idiopathic arthritis
(JIA) [107].

Du et al. fabricated the melittin-loaded hyaluronic-acid-based MNs for RA therapy
(Figure 8). The crosslinking of MN by UV radiation resulted in a sustained release of
melittin. The prepared MNs showed significant inhibition of RA, observed under an
in vivo study in rodents and murines. An analysis of various parameters such as arthritis
score, paw swelling, and histopathology revealed the significant inhibition of RA by the
fabricated polymeric MNs.
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The suppression in the levels of inflammatory mediators such as TNF-α, IL-17, and
cytokines also demonstrated the efficiency of prepared MNs in RA therapy [108].

The organic solvent-based drug delivery system for lipophilic drugs may pose safety
concerns. To overcome this limitation, Dangol and coworkers developed innovative
capsicin-polymeric-system-based MNs for the treatment of RA. The in vivo study in a
mouse model revealed the efficiency of fabricated MNs in RA therapy [109].

5.1.2. Skin Diseases

TD drug delivery through MNs facilitates the treatment of skin diseases with enhanced
efficiency. The skin diseases such as psoriasis, melasma, and melanoma can be efficiently
treated using MNs. Polymers provide the scope in the fabrication of dissolving and
biodegradable microneedles with the advantages of efficient drug delivery.

Melasma

Melasma is the symmetric hyper-pigmentation condition which occurs due to vari-
ous reasons such as UV exposure or hormonal imbalance. A histopathology of melasma
demonstrates the enlarged melanocytes and increased dermal pigmentation. The tradi-
tional therapy for melasma includes the use of hydroquinone or corticosteroid creams
but this has limits, with poor TD permeation. Microneedling has emerged as one of the
useful techniques for melasma therapy due to better TD penetration and efficient drug
delivery [110]. Machekposhti et al. reported the fabrication of polymeric MNs for melasma
therapy. Polymeric MNs were fabricated using PVP and methacrylic acid with the loading
of tranexamic acid. Fabricated MNs were found to be biocompatible and nontoxic in acute
toxicity testing. The complete release of MNs in skin was observed within 7 h. The efficiency
of drug delivery was observed by a simulated determination of the diffusion coefficient
in interstitial fluid. The fabricated polymeric MNs were found to be the promising for the
treatment of melasma by melanin inhibition [111].

He and coworkers also demonstrated the application of polymer-based MNs in the
therapy of melasma (hyperpigmented skin). Researchers fabricated a polymer MN roller
(PMR) to deliver the hydroquinone cream (HQC). The direct application of HQC was
compared with the PMR-pretreated application of HQC; the results of an in vivo study in a
UV-mediated melasma-induced rat model revealed that the PMR-pretreated HQC has better
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therapeutic efficiency in the treatment of melasma. Histopathological observations and the
level of malondialdehyde in the liver and skin demonstrate the therapeutic efficiency of
fabricated MNs in the treatment of melasma [112].

Psoriasis

Psoriasis is an immunity and gene-mediated skin disease. The growth of skin cells in
psoriasis is 10 times more than normal. The symptoms of psoriasis include lesions, burning,
itching, and swelling. Drug delivery in psoriasis is also limited, with deficient penetration
and permeability. Many research studies reported successful drug delivery in psoriasis us-
ing polymer-based MNs [113–115]. Tekko et al. demonstrated the fabrication of polymeric
MNs for the delivery of nanocrystals in psoriasis. Nanocrystals of methotrexate sodium
were prepared and incorporated in the shaft of polymeric MNs made up of PVP and PVA.
An in vivo study in rats revealed that the retention of the drug in skin was comparatively
improved when the drug is administered through polymeric MNs. The drug retained after
24 h of administration through polymeric MN was 322-fold (312.70 ± 161.95 µg/g) that of
oral administration (0.942 ± 0.59 µg/g). The results of the study showed that the prepared
polymeric-MN-based delivery of methotrexate nanocrystals could be a promising approach
in psoriasis therapy [116].

Ramalheiro et al. fabricated polymer-based dissolving MNs to deliver cubosomes such
as liquid crystalline nanoparticles of rapamycin for the treatment of psoriasis (Figure 9).
The polymeric MNs were fabricated from PVP and PVA, in which rapamycin nanoparticles
were loaded. The efficient piercing and deposition of nanoparticles in skin demonstrated
the successful application of the fabricated polymeric MN patch. The in vitro analysis
showed the efficient antiproliferation of natural killer cells. The study demonstrated the
application of the polymeric MN system in psoriasis therapy [117].
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5.1.3. Cancer

Cancer is one of the leading causes of death across the globe. Targeted and localized
drug delivery with better biodistribution is the intent behind the delivery of anticancer
agents. MN-based drug delivery in cancer is becoming one of the prime areas of research.
Melanoma is one of the common types of skin cancer. MNs can provide the scope for the
efficient delivery of anticancer agents in melanoma therapy.
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Demartis et al. demonstrated the fabrication of dissolving MNs for the delivery of
Rose-Bengal-loaded transferosomes for melanoma therapy. The polymeric (dissolving)
MNs were fabricated from PVA and PlasdoneTM. The dermatokinetic study demonstrated
that the fabricated tranferosome-loaded MN system showed efficient drug delivery in
melanoma management [118].

Polymer-coated MNs also demonstrated advanced medical applications. Matadh et al.
reported the successful delivery of 5-Fluorouracil (5-FU) through a polymeric MN system.
Polymeric MNs were fabricated by the mold casting method using PVP K-30. The coating
of the MNs was carried out using Eudragit E-100. The polymer coating prolonged the drug
release by 3 h. Then, 5-FU was loaded in the core of the MNs and further coated with
polymer to prolong the drug release. This polymeric-MN-based controlled delivery of 5-FU
in the sub-stratum corneum is useful in the treatment of melanoma [119].

Along with melanoma, MN-based drug delivery was found useful in the treatment of
breast cancer. Alafnan et al. developed the polymeric-MN-based drug delivery system of
Gemcetabine for breast cancer therapy. Polymeric MNs were fabricated using polyethylene
glycol diacrylate (PEGDA) by 3D technology. The permeation study using the Franz
diffusion cell demonstrated an efficient drug release. The prepared polymeric MN system
could be a promising approach in the chemotherapy of breast cancer [120].

Bhatnagar and coworkers also developed polymeric MNs for THE co-delivery of
doxorubicin and docetaxel for breast cancer therapy (Figure 10). Polymeric MNs were
fabricated using PVP and PVA. Both the drugs were loaded very well in the MN patch.
An in vitro permeation study on the excised murin skin showed the dissolution within 1
h. An in vivo study in a 4T1 breast-cancer-cell-xenografted athymic Balb/c mouse model
demonstrated that the MN based drug delivery is efficient, safe, and non-toxic compared
to intra-tumoral injection. DNA fragmentation and tumour volume analysis indicated the
efficient delivery of anticancer drugs through the polymeric MN patch to counteract the
breast cancer [121].
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Figure 10. Polymeric MNs for co-delivery of doxorubicin and docetaxel for breast cancer therapy
Adapted with permission from Ref. [121]. Copyright 2019 Elsevier.

Fabricated MN-based patches of Dox@MicroN showed efficient cytotoxic effects
against cervical cancer cells [122].

Moreira et al. demonstrated the study of polymer-coated polymeric MNs for pho-
tothermal therapy and chemotherapy in cancer (Figure 11). MNs were fabricated from
PVP and coated with PVA and chitosan by micromoulding and electrospraying. Polymeric
MN showed the efficient delivery of doxorubicin and AuMSS nanorods (Dox@MicroN).
Chitosan showed the pH-responsive release of Dox@MicroN which further demonstrated
the IR-responsive photothermal effect. Tumor-mimicking agarose gel was used to study
the efficient drug delivery through MNs.
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Figure 11. Efficient drug delivery through MNs using tumor-mimicking agarose gel:
(A) Dox@MicroN penetration through agarose gel; (B) 3D Dox@MicroN MNs; and (C) release
from Dox@MicroN after 10, 20, and 30 min (C1, C2, and C3, respectively). Adapted with permission
from Ref. [122]. Copyright 2020 Elsevier.

5.1.4. Diabetes and Obesity

The delivery of anti-obesity and antidiabetic agents through MNs is an efficient and
promising approach. Polymeric MNs provide the advantage of BC and BD so drugs can be
delivered through dissolving MNs.

Obesity is the result of an increase in the level of white adipose tissue. The conversion
of white adipose tissue to brown fat decreases obesity. There are challenges in treating
obesity with the conventional delivery of anti-obesity drugs. To overcome this limitation,
Than et al. fabricated TD patches with detachable polymeric MNs. MNs were fabricated
using poly(dimethylsiloxane) (PDMS) micromolds. PLGA and HA are the polymers used
for the fabrication of polymeric MNs. MNs were loaded with anti-obesity agents such
CL316243 and Cyanine5. These polymeric dissolving MNs were analyzed for in vivo TD
drug delivery using an obesity-induced mouse model. The polymeric-MN-based system
showed the efficient delivery of an anti-obesity agent, which carries out the conversion of
white fat to brown fat [123] (Figure 12).

Rabiei et al. demonstrated the fabrication of polymeric MNs consist of PVP and
PVA for the treatment of type 2 diabetes and obesity. The polymeric MNs were loaded
with PLGA-based Liraglutide nanoparticles. The formulated polymeric-MN-based drug
delivery system showed better skin penetration of Liraglutide and it was confirmed through
a study performed using rat skin. The fabricated MN system was found to be effective
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in the treatment of type 2 diabetes and obesity and it eliminates the need of conventional
hypodermic-needle-based injection of Liraglutide [124].
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and Sons.

Xie and co-workers also demonstrated the fabrication of polymeric MNs for the
delivery of an anti-obesity agent. The MNs were fabricated from PLA and PLGA using
PDMS molds. The prepared polymeric MNs were loaded with CL316243 (anti-obesity
agent). MNs were found to be efficiently delivering the anti-obesity drug with minimum
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invasion and painless skin penetration. The in vivo study in obese mice (induced with fatty
diet) revealed the efficient treatment of obesity [125].

Dangol et al. reported the fabrication of a caffeine-loaded polymeric MN patch for the
treatment of obesity. Caffeine has promising anti-obesity potential and can be efficiently
used to treat obesity through MN-based drug delivery. MNs were fabricated using HA
and loaded with caffeine. A pharmacodynamic study on obese mice (induced with fatty
diet) revealed the significant anti-obesity activity of the prepared polymeric MN patch.
Improved lipolysis and decreased level of triglycerides and LDL-C showed the promising
application of the prepared MN patch in the treatment of obesity [126].

5.2. Drug Delivery

Efficient drug delivery with minimum invasion and minimum pain was the prime
motive behind the development of MN technology. Polymeric MNs have the scope for the
successful delivery of various types of drugs due to the availability of multiple polymers
for fabrication. TD and intraocular drug delivery are prominent and preferred routes for
the execution of MN-mediated drug delivery.

5.2.1. Transdermal

TD delivery of various drugs through MN technology was found to be useful in the
treatment of various skin diseases, RA, melanoma, etc. MNs provide better TD penetration
and better in vivo availability of a drug, resulting in improved therapeutics. Multiple
researchers reported the application of polymeric MNs in TD drug delivery.

Chen et al. fabricated dissolvable polymeric MNs reinforced with graphene oxide
(GO) for efficient TD drug delivery. Polymeric MNs were fabricated using PVP, HA, and
CMC, and further reinforced with GO. The fabricated MNs showed better mechanical
strength due to the incorporation of GO. The depth of insertion was found to be improved
by six-fold due to GO. An in vitro skin penetration study demonstrated the efficiency
of polymeric MNs in drug (GO) delivery in response to NIR light for antibacterial and
antifungal activity [127].

Chen et al. reported the fabrication of polymeric MNs for efficient TD drug delivery.
MNs were mainly fabricated using PVA, HA, chitosan, and gelatin, and loaded with fluo-
rescein 5(6)-isothiocyanate (FITC). The MN patch was subjected to a skin perforation study
using porcine cadaver skin, and showed effective perforation and efficient subcutaneous
drug delivery. The in vitro and in vivo drug release studies revealed that the drug release
can be altered by altering the polymers on the basis of molecular weights, and this was
proven by performing the polymeric-MN-based delivery of FITC in mice.

Figure 13 clearly indicates the effect of the change in the polymer or molecular weight
of polymer (used for MN fabrication) on drug absorption. In the case of PVA, the increased
molecular weight decreases the drug absorption, and this was found to be insignificant with
gelatin, chitosan, and HA. Changing the polymers can change the drug release behavior
and provide the advantage of controlled drug delivery [128].

Garland et al. fabricated the polymeric MNs for electrically assisted drug delivery.
The authors reported the hybrid technology for delivery involving polymeric MNs and
iontophoresis. The polymeric MNs were fabricated using poly vinyl methyl ether (PVMA)
and malleic acid (MA). The dimensions of MNs play an important role in the efficient
TD delivery of drugs. The increase in height and density of MNs increases the extent of
TD drug delivery. The penetration study performed using neonatal porcine skin revealed
that the developed hybrid drug delivery system delivers both small and large molecules
efficiently. The delivery of large molecules such as protein becomes more efficient after
combining iontophoresis with microneedling [129].
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Figure 13. Effect of change in polymer (used for MN fabrication) on in vivo drug absorption: (a,a1) flu-
orescence analysis of mice after drug administration through MNs made up from different molecular
weight PVA and graphical representation of comparative drug release; and (b,b1) fluorescence analy-
sis of mice after drug administration through MNs made up from gelatin, chitosan, and HA, and
graphical representation of comparative drug release. Adapted with permission from Ref. [128].
Copyright 2018 Taylor and Francis.

5.2.2. Intraocular

MNs exhibit potential applications in the treatment of various eye diseases by provid-
ing efficient localized drug delivery. MNs can bitterly target the various tissues in the eyes
such as sclera, cornea, suprachoroidal space, etc. Various small and macromolecules are
efficiently delivered in eyes using MNs with minimum invasion. Polymeric MNs have the
BC and BD advantage in intraocular drug delivery [130].

Thakur et al. demonstrated the fabrication of polymeric MNs for the intraocular
delivery of macromolecules (fluorescein sodium and fluorescein isothiocyanate–dextrans).
MNs were fabricated using PVP of various molecular weights. Polymeric MNs showed
the optimum force of insertion and depth of penetration. The PVP with high molecular
weight can withstand higher forces. The PVP MNs showed better dissolution based on
molecular weight. The efficient delivery of macromolecules was observed in corneal and
scleral tissues [131].

Jakka and coworkers developed a polymer-coated polymeric MN system for intrav-
itreal drug delivery. MNs were fabricated using PVP-K30 as a core polymer. The drug
release study revealed that the time required for the release of 50% dextran was 15 min;
when PVP-K30 used, the time required was 20%. This drug release rate was extended to
90 min using 50% PVP-K30. Controlled intravitreal drug delivery can be achieved with
polymer-coated polymeric MNs.

The fabricated polymer-coated polymeric MN system was found to be useful in
delivering lidocaine hydrochloride for 9 h through the skin and voriconazole for 6 h
intravitreally [132] (Figure 14).
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Figure 14. Polymer-coated polymeric MNs for efficient delivery of idocaine hydrochloride in the
skin tissue and voriconazole intravitreally. Adapted with permission from Ref. [132]. Copyright
2022 Elsevier.

5.3. Diagnostic and Biosensing Applications

Polymeric MNs are used for biosensing and diagnostic applications. Various former
researchers have reported these applications of polymeric MNs. Barett et al. fabricated
the gold-coated polymeric MNs for sensing the blood glucose level. Optical and elec-
tron microscopy were used for characterization. The detection of glucose was based on
the principle of voltammetry. The ferrocene monocarboxylic acid acted as an oxidizing
mediator in the presence of glucose oxidase. The prepared polymeric gold-coated MN
device showed high sensitivity towards glucose with negligible selectivity towards other
oxidizable substances such as ascorbic acid, uric acid, fructose, and drugs (paracetamol,
aspirin, etc.). This fabricated MN device was demonstrated as a promising approach for
glucose detection. A simple change in enzyme can make these MNs useful in the detection
of cholesterol and lactate [133].

Polymeric micronnedles are also used to determine the plasma concentration of potent
drugs such as opioids to avoid toxicity. Joshi and coworkers reported the fabrication of
polymeric MNs to sense fentanyl in biofluid. A pyramidal array of polymeric MNs was
integrated with silver and platinum wires with a microcavity. The microneedle sesnsor was
functionalized with graphene ink and 4 (3-Butyl-1-imidazolio)-1-butanesulfonate) liquid.
The voltametric-method-based detection of fentanyl was performed to detect fentanyl up
to 27.8 µM. The detection was based on the oxidation of fentanyl in liquid. The fabricated
biosensing device showed the selective and interference-free detection of fentanyl with
high sensitivity [134]. Calio et al. demonstrated the fabrication of polymeric MNs for the
biosensing of glucose and lactic acid. The MNs were fabricated from poly(ethylene glycol)
diacrylate (PEGDA) by photolithography. The MNs were coated by gold solution and func-
tionalized with enzymes (glucose and lactate oxidase) and redox mediator (vinylferrocene).
The fabricated MN-based device showed the selective and sensitive detection of glucose
and lactic acid in the mM range. This device can be useful in diabetic patients and athletes
for monitoring the levels of glucose and lactic acid, respectively [135].

One of the emerging approaches used for the fabrication of MNs is 3D printing.
Keirouz et al. reported the 3D-printing-based fabrication of MNs followed by coating with
a conductive polymer for biosensing applications (Figure 15).
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microneedles. Adapted from Ref. [136].

Polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) were
used to produce a conductive-polymer-based surface. The polymer-based MNs acted as
conductive electrodes. These MNs were found to be non-cytotoxic when tested against
human fibroblasts. The fabricated polymeric MN arrays were found to be a promising
device for biosensing [136].

Interstitial fluid (ISF) has an important role in biosensing as it is one of the important
body fluids containing various biomarkers. The extraction/sampling is challenging with
conventional sampling techniques. Techniques such as microdialysis and suction blisters
need expert monitoring. The MN-based sampling of ISF is an emerging area of research
and useful tool with which to overcome the challenges of conventional techniques [137].
Figure 16 illustrates the MN-based sampling of ISF.

The MN-based sampling of ISF was found to be minimally invasive, economic, and
less time-consuming compared to other techniques [137].

MNs improve the biosensing ability due to efficient TD permeation. The MN-based
biosensing device can be useful to detect various analytes from interstitial fluid and demon-
strate its usefulness in disease diagnosis [138–140].
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5.4. Vaccination

As mentioned earlier, MNs are useful in delivering a wide variety of drug molecules.
Multiple vaccines are delivered through the polymer-based MN system.

Ali et al. reported the application of polymeric MNs for the delivery of the DNA
vaccine, useful against cervical cancer (Figure 17). The vaccine consists of cationic nanopar-
ticles encapsulating the peptide RALA and condensed DNA (E6/E7). Polymeric MNs
fabricated using PVP are loaded with these nanoparticles and subjected to a cutaneous
delivery of the vaccine. The mice vaccinated with the proposed vaccine using polymeric
MNs showed higher levels of E6/E7-specific IgGs with a high T-lymphocyte count and
TC-1 cell-mediated cytotoxicity, and showed high levels of IFN-γ compared to the mice
who received an intramuscular injection of vaccine-containing nanoparticles. The pre-
pared MN-based vaccine delivery system can be a promising approach in cervical cancer
therapy [141].

Sullivan et al. reported the fabrication of polymeric MNs for the delivery of the
influenza vaccine. The MNs were fabricated using PVP and encapsulated with the influenza
vaccine. The penetration and dissolution study using porcine cadaver skin revealed that
the MNs have an optimum insertion depth of 200 µm, and 89 ± 3% dissolution was
observed within 15 min. Similar promising results were observed with an in vivo study in
mice. The fabricated polymeric MNs demonstrated the successful delivery of the influenza
vaccine [142].
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Figure 17. Fabrication and therapeutic evaluation of DNA vaccine for cervical cancer. Adapted with
permission from Ref. [141]. Copyright 2017 Elsevier.

Along with DNA and influenza vaccine delivery through polymeric MNs, Bacillus
Calmette–Guérin (BCG) vaccine delivery was also successfully demonstrated using a
polymeric MN system. MNs were fabricated using sodium alginate (10% w/v) and trehalose
(20%). The delivery of BCG was compared with intradermal injection, and it was observed
that, with minimum invasion, the polymeric MNs showed efficient delivery, and this was
confirmed by estimating the count of granulocytes, lymphocytes, IgGs, etc. The levels of
granulocytes, lymphocytes, and IgGs were found to be increased and this was the indication
of efficient vaccination using the BCG-coated polymeric MNs [143].

Table 4 illustrates the biomedical applications of polymeric MNs along with the
polymer and methods used for fabrication.

Table 4. Polymeric MNs for biomedical applications.

Polymers Fabrication Method Application References

Amylopectin Photolithography Drug delivery of cosmetics and nutrients [144]

Chondroitin sulphate 2-Photon polymerization (2PP) Decompressing loaded sodium
chondroitin sulphate [145]

Carboxy methyl cellulose 2PP, droplet-born air blowing (DAB)
method

To enhance local skin health and rats’
immune function, hair regrowth [146]

Dextran Photon polymerization Treatment of skin cancer [16]

GA lactose Atomized spraying process Protein delivery [147]

Trehalose Micromolding To facilitate peptide delivery [148]

Maltose Atomized spraying process Drug carrier for anti-cancer agent [149]

Fructose Micromolding Biosensing [150]

Raffinose Atomized spraying process Delivery of doxorubicin [151]

Thermoplastic starch Electro-discharge process Insulin delivery in diabetics [152]

Poly-lactic-acid Fused deposition modelling (FDM),
micromolding Immunization, biosensing [153]
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Table 4. Cont.

Polymers Fabrication Method Application References

Poly-lactic-co-glycolic acid 2PP, micromolding Vaccine delivery [10]

Polycarbonate
PMVEs/MA copolymer

UV lithography, electroforming,
laser-based method for micromolding,
micromolding

Treatment of poisoning [154]

Poly-vinyl-alcohol Micromolding Delivery of Nicotinamide
Mononucleotide [155]

Poly-vinyl-pyrrolidine 2PP, atomized spraying process Intradermal drug delivery system, to
facilitate peptide delivery [156]

Polyglycolic acid Fused deposition modelling Vaccination [14]

Hyaluronic acid Micromolding Treatment of diabetes mellitus, diagnosis [157]

Sodium chondroitin Solvent casting In topical formulation and local analgesic
action [158]

Polyethylene glycol Inject printing GAP 26 gap junction blocker, biosensor [159]

Chitosan Electrospraying, micromolding Immunotherapy, provide stability to the
antigen used in MN vaccination [160]

Polycaprolactone Printed scaffolds Cancer therapy [151]

Hydroxy propyl methyl
cellulose Atomized spraying to fill molds Treatment of Alzheimer’s disease [18]

Cellulose --- Stabilizer and film forming [159]

Polysorbate 80 Inject printing Used in cardiac disease [161]

Polydimethylsiloxane Mold casting Cosmetic [162]

Polydiacetylenes Phase inversion Diagnostic [163]

Polycarbonate Gas pulling --- [164]

Sucrose --- Protein stabilizer [165]

Chitin Electrospraying, micromolding Diagostic tool for tuberculosis [166]

Pullulan Electro-discharge machining process Deliver protein and peptide-like
FITC-BSA [167]

6. Regulatory Considerations and Patent Scenario

The United States Food and Drug Administration (USFDA) has issued a guidance
document on ‘Regulatory Considerations for Microneedling Products.’ The USFDA consid-
ers microneedling products to be instruments with an array of needles, “microprotrusion”
tips, or pins of varying lengths that are incorporated into the body of an instrument. These
needles can be blunt or sharp and are designed to be rolled or stamped across or into the
skin. Microneedling products may be used for skin exfoliation, improving the appearance
of skin, treating scars, wrinkles, and other skin conditions, and may be used for single or
multiple users. Microneedling products may also be promoted with topical preparations
such as semisolid creams, ointments and gels, vitamin solutions, other drugs, or blood re-
lated products. The FDA has also provided the definitions of stratum corneum, exfoliation,
dermabrasion, and living layers of skin [168].

FDA has considered microneedling products under two categories: (a) medical devices
and (b) products which are not devices. As per section 201(h) of the Federal Food, Drug,
and Cosmetic Act (FDC Act), a medical device is “any instrument, machine, contrivance,
implant, in vitro reagent that’s intended to treat, cure, prevent, mitigate, diagnose disease
in man.” Microneedling products that are devices are subject to FDA regulations under
the Federal Food, Drug, and Cosmetic Act. Another category of microneedling products
are those used to enhance the appearance of the face affected by acne scars, wrinkles,
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and to enhance the appearance of abdominal scars in patients of 22 years or older. The
products are reviewed and approved by the FDA, considering the safety and effectiveness
of these devices for use as DeNovos (novel medical devices), which may require premarket
notification under 510k. These medical products may be referred to such products which
may not require the details from the clinical trials. Information about these products is
available on the FDA’s website [169]. Table 5 illustrates the clinical trial data associated
with polymeric MNs.

Table 5. Clinical trial data of MNs [170].

Identifier Starting Year Clinical Condition Description Clinical Trial
Phase References

NCT04253418 2019
Sebaceous hyperplasia;
skin abnormalities;
and skin lesion

Nano-pulse stimulation (NPS)
in sebaceous hyperplasia
optimization study

N/A [171]

NCT04249115 2019
Lesion skin; seborrheic
keratosis; skin lesion;
and benign skin tumor

Nano-pulse stimulation (NPS)
in seborrheic keratosis
optimization study

N/A [171]

NCT03739398 2018 Wrinkle

A study on the effectiveness
and safety evaluation of
combination therapy with 1927
nm thulium laser and fractional
MN radiofrequency equipment
for improvement of skin aging

N/A [172]

NCT02745392 2016 Acute migraine

Safety and efficacy of
ZP-zolmitriptan intracutaneous
MN system for acute treatment
of migraine (Zotrip)

Phase 2
Phase 3 [173]

NCT03203174 2015 Hyperhidrosis
The use of MN with topical
botulinum toxin for treatment
of palmer hyperhidrosis

Phase 1 [174]

NCT02438423 2015 Influenza
Inactivated influenza vaccine
delivered by MN patch or by
hypodermic needle

Phase 1 [175]

NCT01674621 2012 Post-menopausal
osteoporosis

Phase 2 study of BA058
(abaloparatide) TD delivery in
postmenopausal women with
osteoporosis

Phase 2 [176]

NCT01368796 2011 Influenza vaccines
Comparison of 4 influenza
vaccines in seniors
(PCIRNRT09)

Phase 4 [177]

NCT00837512 2008 Type 1 diabetes
mellitus

Insulin delivery using MN in
type 1 diabetes

Phase 2
Phase 3 [178]

Considering the FDA’s views on the authorization of microneedling products, the
World Trade Organization has noted “Microneedling device for aesthetic use” under “Medi-
cal equipment” (ICS 11.040) to promote its innovation for the protection of human health or
safety [179]. The Medicines & Healthcare Products Regulatory Agency (MHRA) conducted
a consultation on the UK medical device regulations where respondents were positive on
including microneedling products under the scope of medical devices [180]. The patenting
scenario of MNs is illustrated in Table 6.
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Table 6. Patents on polymeric MN technology [170].

US Patent Number Title References

US10737083B2 Bioactive components conjugated to dissolvable
substrates of MN arrays [181]

US10377062B2 MN arrays formed from polymer films [182]

US7429333B2 Method for fabricating MN array and method
for fabricating embossing mold of MN array [183]

US10195410B2 Fabrication process of phase-transition MN patch [184]

US9498524B2 Method of vaccine delivery via MN arrays [185]

US9302903B2 MN devices and production thereof [186]

US8708966B2 MN devices and methods of manufacture and
use thereof [187]

US8834423B2 Dissolvable MN arrays for TD delivery to
human skin [188]

US10682504B2 MN and method for manufacturing MN [189]

7. Conclusions and Future Perspective

Polymeric MNs are a promising new technology in biomedical science for TD drug
delivery. It is effective in the delivery of a wide variety of drugs, including vaccines,
hormone, and theranostic agents. The variety of polymers provides the scope for the
fabrication of MNs with diversified biomedical applications. Painless penetration through
the stratum corneum is the major advantage of drug delivery through MNs. The limitations
of the oral, parenteral, and other routes can be overcome using MN technology. BC and
BD are important criteria for the selection of polymers for MN fabrication. The availability
of various natural and synthetic polymers provides multiple options for the fabrication
of compatible MNs for the efficient delivery of specific drugs. The BD of polymeric MN
after insertion is important for the TD delivery of various drug molecules. MN technology
is demonstrating its broad-spectrum applications in the delivery of small as well as large
molecules. Multiple polymer-based MN technologies are patented and many are under
clinical trials. Novel approaches such as 3D-printing technology for the fabrication of
high-quality MNs is creating the scope of future work in this area. Researchers are working
on the improvement of mechanical strength, drug loading capacity, and biodegradability
of MNs. However, MNs could be explored with regard to the diagnosis and treatment of
orphan diseases, delivery of newer biologicals and theranostic agents, improving the safety
and effectiveness of treatment, as well as making it economic for the wider public use. This
technology has the potential to improve the lives of millions of people around the world.
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