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Abstract: The present work includes the synthesis of a new series of quinazolin-4(3H)-one compounds
(4a–f, 5a–d) as antimicrobial agents. The starting compound, 2-hydrazinylquinazolin-4(3H)-one (2),
was synthesized and treated with different carbonyl compounds to afford the hydrazone derivatives
4a–f. In addition, the hydrazone derivatives 4a–d were treated with a DMF/POCl3 mixture to give
the formyl-pyrazole derivatives 5a–d. All the target compounds were evaluated as antimicrobial
agents against four bacterial and four fungal strains. The majority of the tested compounds showed
potent antimicrobial activity compared with the reference antibiotics. The most potent antimicrobial
activity was shown by 5a with MIC values in the range (1–16) µg/mL. In addition, the most potent
compounds against E. coli were evaluated for their inhibitory activity against E. coli DNA gyrase,
whereas the target compounds 4a, 5a, 5c, and 5d showed the most potent inhibition to the target
enzyme with IC50 values ranging from 3.19 to 4.17 µM. Furthermore, molecular docking studies were
performed for the most active compounds against the target E. coli DNA gyrase to determine their
binding affinity within the enzyme’s active site. Moreover, ADME evaluations of these compounds
predicted their high oral bioavailability and good GI absorption.

Keywords: quinazolin-4(3H)-ones; hydrazones; 4-formylpyrazoles; antimicrobial evaluation; DNA
gyrase inhibitors; molecular docking; ADME studies

1. Introduction

In the last few decades, the risk of infectious diseases has emerged as a growing
threat to global health [1], where severe infections of several resistant bacterial strains have
become very common, which have shown a diverse resistance pattern to many commonly
used antibiotics [2,3]. Thus, the risk of antimicrobial resistance has led to the pressing
need to discover new antimicrobial molecules having structural features different from
those of the present antibiotics to defeat the resistance mechanisms [4]. Most clinically
significant antibiotics such as β-lactams, quinolones, carbapenems, and aminoglycosides
have a specific mode of action as microbial enzyme inhibitors; they target specifically
the enzymes that are responsible of vital functions such as the biosynthesis of the cell
wall, proteins, nucleic acids, and metabolites [5,6]. However after decades of using these
antibiotics, their binding to the target enzymes has been obstructed by different resistance
mechanisms [7]. Among these enzymes, DNA gyrase, which is present in all microbial cells,
plays a pivotal role in bacterial cell cycle progression by introducing negative supercoils
into DNA during replication [8,9]. As a result, DNA gyrase inhibition leads to cell death
and prevents resistance development [10].

On the other hand, quinazolin-4(3H)-one compounds have attracted great interest
due to their significant pharmacological activities, including anticancer [11–13], antimi-
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crobial [14–16], anti-inflammatory [17,18], analgesic [19,20], antimalarial [21,22], and an-
tiviral [23] activities. Moreover, several quinazolinone derivatives have been reported as
potential antimicrobial agents and DNA gyrase inhibitors I–III (Figure 1) [24–26].
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In addition, hydrazones and pyrazole derivatives have received renewed interest
due to their various important biological activities [27–30], and some recent studies have
explored novel compounds carrying hydrazone and pyrazole moieties as promising candi-
dates to be potent DNA gyrase inhibitors IV–VII (Figure 1) [31–34].

Molecular hybridization is an important concept in drug design; it is based on the
combination of different pharmacophores to produce innovative hybrid compounds with
improved bioactive efficacy and is considered as one of the recent strategies used for
developing new antimicrobial agents to overcome resistance mechanisms [35].

In view of the above topics, the present work includes the design and synthesis of
novel hybrid compounds having a quinazolin-4(3H)-one nucleus combined with hydrazone
or 4-formylpyrazole moieties (4a–4f, 5a–5d) to obtain potent antimicrobial agents targeting
the DNA gyrase enzyme. The in vitro antimicrobial activities of the target compounds were
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evaluated against four bacterial and four fungal strains. Molecular docking investigations
were also performed for the target compounds against E. coli DNA gyrase to determine the
binding affinity of the compounds and their binding style within the enzyme’s active site.

2. Materials and Methods
2.1. Chemistry
2.1.1. General Information

All melting points were uncorrected and were taken in open capillary tubes using an
Electro thermal IA9100 digital melting point apparatus. Elemental microanalyses were
carried out at the Micro Analytical Unit at Cairo University. The ESI-mass spectra were
measured using an Advion Compact Mass Spectrometer (CMS) NY (New York), USA.
Infrared spectra were recorded at the National Research Centre, by using the KBr disc
technique on a Jasco FT/IR-360 plus Infrared spectrometer in the range (400–4000 cm−1),
made in Japan. 1H NMR and 13C NMR spectra were recorded on a JEOL (Tokyo, Japan)
High Performance Digital FT-NMR S (500/125 MHz) in the presence of TMS as the internal
standard. The follow-up of the reactions and checking the purity of the compounds
were performed by TLC on silica-gel-precoated aluminum sheets (Type 60, F 254, Merck,
Darmstadt, Germany) using chloroform/methanol (3:1, v/v), and the spots were detected
by exposure to a UV lamp at δ 254 nanometers for a few seconds and by iodine vapor. The
chemical names given for the synthesized compounds were according to the IUPAC system.
The starting compound 2-thioxo-2,3-dihydroquinazolin-4(1H)-one was prepared by the
reported method [36].

2.1.2. Synthesis of 2-hydrazinylquinazolin-4(3H)-one (2)

A mixture of compound 1 (8.91 g, 0.05 mol) and hydrazine hydrate 100% (4 mL) in
absolute ethanol (50 mL) was refluxed for 12 h. The excess solvent was evaporated till
dryness under a vacuum. Then, the obtained solid was treated with cold water, collected
by filtration, and recrystallized from ethanol to give compound 2.

Yield 72%, white powder, m.p. 361–362 ◦C (Lit. m.p. 355 ◦C [37]); IR (KBr, υmax/cm−1):
3431, 3308, 3187 (NH), 3036 (CH-aromatic), 1674 (C=O), 1601 (C=N). 1H NMR (500 MHz,
DMSO-d6, δ ppm): 7.13 (d, 1H, J = 7.6 Hz, Ar-H), 7.42 (d, 1H, J = 8.6 Hz, Ar-H), 7.63–
7.81 (m, 2H, Ar-H), 8.09 (s, 2H, NH2, D2O exchangeable), 8.12, 10.24 (2 s, 2H, 2NH, D2O
exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm): 122.95, 126.83, 127.02, 127.38,
134.52, 146.44, 154.83 (Ar-C, C=N), 163.91(C=O). Anal. Calcd. for C8H8N4O (176.18): C,
54.54; H, 4.58; N, 31.80%; Found: C, 54.78; H, 4.86; N, 31.55%. ESI-MS: m/z = 175.13 [M-H+].

2.1.3. Synthesis of 2-(2-ethylidene-hydrazinyl)quinazolin-4(3H)-one Derivatives 4a–f

A mixture of the 2-hydrazinyl derivative 2 (0.88 g, 5 mmol) and the appropriate
carbonyl compound 3a–f (5 mmol) in glacial acetic acid (20 mL) was refluxed for 6 h. The
mixture was poured onto an ice water mixture, and the obtained solid was collected by
filtration and recrystallized from acetone to give the corresponding target compound 4a–f.

2-(2-(1-(Furan-2-yl)ethylidene)hydrazinyl)quinazolin-4(3H)-one (4a)

Yield 74%, light beige powder, m.p. 220–221 ◦C. IR (KBr, υmax/cm−1): 3420, 3114
(NH), 3041 (CH-aromatic), 2919, 2851 (CH-aliphatic), 1683 (C=O), 1618, 1579 (C=N). 1H
NMR (500 MHz, DMSO-d6, δ ppm): 2.24 (s, 3H, N=C–CH3), 6.56 (d, 1H, J = 8.6 Hz, Ar-H),
7.09–7.21 (m, 2H, Ar-H), 7.42 (d, 1H, J = 8.6 Hz, Ar-H), 7.59–7.70 (m, 2H, Ar-H), 7.84 (d,
1H, J = 7.6 Hz, Ar-H), 10.35, 11.18 (2 s, 2H, 2NH, D2O exchangeable). 13C NMR (125 MHz,
DMSO-d6, δ ppm): 16.90 (CH3), 110.21, 110.66, 122.89, 126.93, 127.49, 127.74, 134.42, 139.98,
140.45, 146.73, 155.02, 156.79 (Ar-C, 2C=N), 162.18 (C=O). Anal. Calcd. for C14H12N4O2
(268.28): C, 62.68; H, 4.51; N, 20.88%; Found: C, 62.94; H, 4.25; N, 21.09%. ESI–MS:
m/z = 267.31 [M-H+].
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2-(2-(1-(Thiophen-2-yl)ethylidene)hydrazinyl)quinazolin-4(3H)-one (4b)

Yield 71%, brown powder, m.p. 278 ◦C. IR (KBr, υmax/cm−1): 3452, 3164 (NH),
3044 (CH-aromatic), 2919, 2858 (CH-aliphatic), 1680 (C=O), 1630, 1582 (C=N). 1H NMR
(500 MHz, DMSO-d6, δ ppm): 2.36 (s, 3H, N=C–CH3), 7.06 (d, 1H, J = 7.2 Hz, Ar-H), 7.14
(d, 1H, J = 7.5 Hz, Ar-H), 7.42–7.51 (m, 2H, Ar-H), 7.67–7.72 (m, 2H, Ar-H), 7.85 (d, 1H,
J = 7.7 Hz, Ar-H), 10.29, 11.09 (2 s, 2H, 2NH, D2O exchangeable). 13C NMR (125 MHz,
DMSO-d6, δ ppm): 15.12 (CH3), 121.11, 122.68, 124.55, 125.03, 127.08, 127.40, 134.38, 140.03,
141.01, 146.87, 155.18, 156.71 (Ar-C, 2C=N), 161.90 (C=O). Anal. Calcd. for C14H12N4OS
(284.34): C, 59.14; H, 4.25; N, 19.70; S, 11.28%; Found: C, 59.42; H, 4.58; N, 19.98; S, 10.97%.
ESI–MS: m/z = 283.27 [M-H+].

2-(2-(1-(Pyridin-2-yl)ethylidene)hydrazinyl)quinazolin-4(3H)-one (4c)

Yield 78%, pale yellow powder, m.p. 213–214 ◦C. IR (KBr, υmax/cm−1): 3432, 3158
(NH), 3063 (CH-aromatic), 2919, 2852 (CH-aliphatic), 1689 (C=O), 1622, 1589 (C=N). 1H
NMR (500 MHz, DMSO-d6, δ ppm): 2.40 (s, 3H, N=C–CH3), 7.12 (d, 1H, J = 7.6 Hz,
Ar-H), 7.27–7.32 (m, 2H, Ar-H), 7.48–7.59 (m, 2H, Ar-H), 7.76–7.87 (m, 2H, Ar-H), 8.53
(d, 1H, J = 6.5 Hz, Ar-H), 10.46, 11.11 (2 s, 2H, 2NH, D2O exchangeable).13C NMR (125
MHz, DMSO-d6, δ ppm): 13.16 (CH3), 122.76, 123.97, 124.92, 126.91, 127.35, 127.85, 135.77,
136.55, 145.12, 148.79, 149.97, 153.73, 155.95 (Ar-C, 2C=N), 161.59 (C=O). Anal. Calcd. for
C15H13N5O (279.30): C, 64.51; H, 4.69; N, 25.07%; Found: C, 64.79; H, 4.85; N, 24.88%.
ESI–MS: m/z = 278.27 [M-H+].

2-(2-(1-(4-Methoxyphenyl)ethylidene)hydrazinyl)quinazolin-4(3H)-one (4d)

Yield 69%, greenish yellow powder, m.p. 287–288 ◦C. IR (KBr, υmax/cm−1): 3425, 3191
(NH), 3056 (CH-aromatic), 2919, 2849 (CH-aliphatic), 1694 (C=O), 1638, 1591 (C=N). 1H
NMR (500 MHz, DMSO-d6, δ ppm): 2.33 (s, 3H, N=C–CH3), 3.77 (s, 3H, OCH3), 7.14 (d, 1H,
J = 7.6 Hz, Ar-H), 7.30 (d, 2H, J = 8.2 Hz, Ar-H), 7.44 (d, 1H, J = 8.6 Hz, Ar-H), 7.59–7.62 (m,
1H, Ar-H), 7.83 (d, 1H, J = 7.6 Hz, Ar-H), 8.11 (d, 2H, J = 8.2 Hz, Ar-H), 10.34, 11.22 (2 s,
2H, 2NH, D2O exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm): 16.21 (CH3), 55.78
(OCH3), 114.54, 122.89, 126.87, 127.22, 127.56, 127.99, 129.23, 134.54, 146.90, 147.76, 155.01,
160.44 (Ar-C, 2C=N), 161.97 (C=O). Anal. Calcd. for C17H16N4O2 (308.34): C, 66.22; H, 5.23;
N, 18.17%; Found: C, 66.43; H, 5.41; N, 17.92%. ESI–MS: m/z = 307.39 [M-H+].

2-(2-(4-Methylcyclohexylidene)hydrazinyl)quinazolin-4(3H)-one (4e)

Yield 76%, orange powder, m.p. 133 ◦C. IR (KBr, υmax/cm−1): 3422, 3192 (2NH), 3036
(CH-aromatic), 2923, 2861 (CH-aliphatic), 1676 (C=O), 1638, 1598 (C=N). 1H NMR (500
MHz, DMSO-d6, δ ppm): 0.88 (d, 3H, J = 6.7 Hz, CH-CH3), 1.21–1.25 (m, 1H, CH-CH3),
1.40–2.05 (m, 8H, 4CH2), 7.12 (d, 1H, J = 7.6 Hz, Ar-H), 7.42 (d, 1H, J = 8.6 Hz, Ar-H), 7.62
(d, 1H, J = 8.95 Hz, Ar-H), 7.82 (d, 1H, J = 8.5 Hz, Ar-H), 10.45, 11.21 (2 s, 2H, 2NH, D2O
exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm): 21.75 (CH3), 26.78, 31.21, 32.10,
35.55 (4CH2, CH), 122.84, 126.87, 127.03, 127.39, 134.53, 146.60 (Ar-C) 154.45, 161.28, 162.77
(2 C=N, C=O). Anal. Calcd. for C15H18N4O (270.34): C, 66.64; H, 6.71; N 20.73%; Found: C,
66.47; H, 6.44; N, 20.49%. ESI−MS: m/z = 269.48 [M-H+].

2-(2-(2-Oxoindolin-3-ylidene)hydrazinyl)quinazolin-4(3H)-one (4f)

Yield 79%, yellow powder, m.p. 304 ◦C. IR (KBr, υmax/cm−1): 3432, 3201 (NH), 3062
(CH-aromatic), 1699, 1671 (C=O), 1633, 1596 (C=N). 1H NMR (500 MHz, DMSO-d6, δ
ppm): 7.09 (d, 1H, J = 7.6 Hz, Ar-H), 7.29–7.36 (m, 1H, Ar-H), 7.40–7.48 (m, 2H, Ar-H),
7.54–7.81 (m, 3H, Ar-H), 7.91(d, 1H, J = 7.6 Hz, Ar-H), 10.50, 10.91, 11.22 (3 s, 3H, 3NH,
D2O exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm): 118.02, 119.35, 122.95, 124.72,
126.83, 127.12, 127.36, 128.61, 130.35, 134.52, 136.64, 140.95, 146.36, 154.73 (Ar-C, 2C=N),
161.97, 169.03 (2 C=O) Anal. Calcd. for C16H11N5O2 (305.30): C, 62.95; H, 3.63; N, 22.94%;
Found: C, 62.61; H, 3.39; N, 22.66%. ESI−MS: m/z = 304.24 [M-H+].
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2.1.4. Synthesis of 1-(4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carbaldehyde
Derivatives (5a–d)

To a cold solution of phosphorus oxychloride (1.2 mL) in N,N-dimethyl formamide
DMF (10 mL) at (0–5) ◦C, the hydrazone derivatives 4a–d (1 mmol) were added portionwise
with stirring. After addition, the cold solution was stirred for 1 h, then heated with stirring
at 60–65 ◦C for 3h. The reaction solution was poured onto an ice–water mixture, and the
acidic medium was neutralized by adding a small amount of dilute ammonia solution
(10%) The formed solid was collected by filtration and recrystallized from ethanol to give
the 4-formyl pyrazole derivatives 5a–d.

3-(Furan-2-yl)-1-(4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carbaldehyde (5a)

Yield 68%, buff powder, m.p. 191–192 ◦C. IR (KBr, υmax/cm−1): 3434 (NH), 3089
(CH-aromatic), 1680 (C=O), 1628 (C=N). 1H NMR (500 MHz, DMSO-d6, δ ppm): 6.67 (s, 1H,
Ar-H), 7.12 (d, 1H, J = 7.6 Hz, Ar-H), 7.46–7.64 (m, 3H, Ar-H), 7.79–7.83 (m, 2H, Ar-H), 8.12
(s, 1H, CH-pyrazole), 9.68 (s, 1H, H–C=O), 10.11 (s, 1H, NH, D2O exchangeable). 13C NMR
(125 MHz, DMSO-d6, δ ppm): 112.47, 113.65, 115.35, 122.77, 126.88, 127.20, 127.40, 135.52,
135.81, 136.82, 144.14, 145.31, 145.98, 153.04 (Ar-C, C=N) 162.69, 185.42 (2C=O). Anal. Calcd.
for C16H10N4O3 (306.28): C, 62.74; H, 3.29; N, 18.29%; Found: C, 62.53; H, 3.14; N, 17.98%.
ESI−MS: m/z = 305.22 [M-H+].

1-(4-Oxo-3,4-dihydroquinazolin-2-yl)-3-(thiophen-2-yl)-1H-pyrazole-4-carbaldehyde (5b)

Yield 67%, pale grey powder, m.p. 224 ◦C. IR (KBr, υmax/cm−1): 3441 (NH), 3098
(CH-aromatic), 1687 (C=O), 1617 (C=N). 1H NMR (500 MHz, DMSO-d6, δ ppm): 7.15 (d,
1H, J = 7.6 Hz, Ar-H), 7.42 (d, 1H, J = 8.6 Hz, Ar-H), 7.64–7.70 (m, 3H, Ar-H), 7.82 (d, 1H,
J = 7.6 Hz, Ar-H), 8.10 (d, 1H, J = 7.7 Hz, Ar-H), 8.24 (s, 1H, CH-pyrazole) 9.44 (s, 1H,
H–C=O), 10.07 (s, 1H, NH, D2O exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm):
115.87, 122.90, 126.94, 127.19, 127.52, 127.99, 128.58, 129.55, 130.72, 133.15, 135.58, 139.12,
143.75, 153.49 (Ar-C, C=N) 162.49, 185.48 (2C=O). Anal. Calcd. for C16H10N4O2S (322.34):
C, 59.62; H, 3.13; N, 17.38; S, 9.95%; Found: C, 59.87; H, 3.31; N, 17.16; S, 10.18%. ESI−MS:
m/z = 321.37 [M-H+].

1-(4-Oxo-3,4-dihydroquinazolin-2-yl)-3-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde (5c)

Yield 64%, dark brown powder, m.p. 178 ◦C. IR (KBr, υmax/cm−1): 3404 (2NH), 3084
(CH-aromatic), 1697 (C=O), 1627 (C=N). 1H NMR (500 MHz, DMSO-d6, δ ppm): 7.12 (d, 1H,
J = 7.6 Hz, Ar-H), 7.30–7.51 (m, 3H, Ar-H), 7.63–7.69 (m, 2H, Ar-H), 7.83 (d, 1H, J = 7.7 Hz,
Ar-H), 8.21 (s, 1H, CH-pyrazole), 8.48 (d, 1H, J = 6.5 Hz, Ar-H) 9.53 (s, 1H, H–C=O), 10.15
(s, 1H, NH, D2O exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm): 115.59, 122.85,
123.08, 125.21, 126.97, 127.09, 127.69, 135.10, 135.58, 136.77, 138.01, 146.54, 149.78, 153.50,
156.12 (Ar-C, C=N) 162.51, 185.39 (2C=O). Anal. Calcd. for C17H11N5O2 (317.31): C, 64.35;
H, 3.49; N, 22.07%; Found: C, 64.58; H, 3.68; N, 22.29%. ESI−MS: m/z = 316.27 [M-H+].

3-(4-Methoxyphenyl)-1-(4-oxo-3,4-dihydroquinazolin-2-yl)-1H-pyrazole-4-carbaldehyde (5d)

Yield 67%, brown, m.p. 163–164 ◦C. IR (KBr, υmax/cm−1): 3408 (NH), 3087 (CH-
aromatic), 2918 (CH-aliphatic), 1696 (C=O), 1619 (C=N). 1H NMR (500 MHz, DMSO-d6,
δ ppm): 3.82 (s, 3H, OCH3), 7.13–7.25 (m, 3H, Ar-H), 7.42 (d, 1H, J = 8.6 Hz, Ar-H), 7.61–
8.06 (m, 4H, Ar-H), 8.17 (s, 1H, CH-pyrazole), 9.69 (s, 1H, H–C=O), 10.06 (s, 1H, NH, D2O
exchangeable). 13C NMR (125 MHz, DMSO-d6, δ ppm): 56.09 (OCH3), 112.08, 114.87, 122.91,
124.98, 126.94, 127.44, 127.65, 128.08, 129.42, 134.49, 137.33, 146.87, 153.12, 160.29 (Ar-C,
C=N), 162.07, 185.31 (2C=O). Anal. Calcd. for C19H14N4O3 (346.35): C, 65.89; H, 4.07; N,
16.18%; Found: C, 65.68; H, 4.30; N, 16.47%. ESI−MS: m/z = 345.38 [M-H+].

2.2. Antimicrobial Screening

All the synthesized quinazolin-4(3H)-one compounds (2, 4a–f, 5a–d) were screened
for their in vitro antibacterial activity against four bacterial strains (Bacillus subtilis 6633,
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Staphylococcus aureus 25923, Salmonella typhimurium 14028, and Escherichia coli 8739) com-
pared with Amoxicillin trihydrate as the reference drug. Furthermore, all the compounds
were evaluated as antifungal agents against four fungal strains (Candida tropicals 750, Can-
dida albicans 10231, Macrophomina phaseolina A62743, and Aspergillus niger EM77 KF774181)
compared with the reference drug Clotrimazole. The diameter of inhibition zone (DIZ)
assay was performed by the agar disk diffusion method [38]. The Minimum Inhibitory
Concentration (MIC) of the compounds was then evaluated against bacterial strains and
fungal strains using the broth dilution method [39]. (More details are provided in the
Supplementary Materials S33).

2.3. DNA Gyrase Supercoiling Inhibition Assay

The assay for determining the DNA gyrase supercoiling inhibition for the target
compounds (4a, 4b, 4c, 5a, 5b, 5c, and 5d) with Novobiocin as a reference inhibitor was per-
formed according to the protocol obtained from the supplier by using the E. coli DNA gyrase
kit provided by TopoGEN, Inc. (Port Orange, FL, USA) [40–42]. The new compounds and
the standard inhibitor were dissolved in DMSO and serially diluted at concentrations of 100,
10, 1, and 0.1 µM, then assayed in reaction mixtures in three different replicate runs. The
average IC50 values (µM) of the triplicate experiments were calculated for the target com-
pounds and Novobiocin. (More details are provided in the Supplementary Materials S34).

2.4. Molecular Modeling Studies

To investigate the molecular interactions between the most potent quinazolinone
derivatives 4a–c and 5a–d and the active site of E. coli DNA gyrase B kinase, a molecular
docking study was performed by using the molecular operating environment ((MOE)
software Version 2014.0901, Chemical Computing Group Inc., Montereal, Canada [43].
Then, the geometry optimization and energy minimization were applied to obtain the Conf
Search module in MOE, followed by saving the MOE file for the upcoming docking process.
The co-crystallized structure of E. coli DNA gyrase B kinase with its ligand novobiocin was
downloaded (PDB code: 1AJ6) [44]. At first, the validation of the docking process was
established by docking of the native ligand, followed by docking of the derivatives 4a–c and
5a–d within the ATP-binding site after elimination of co-crystallized ligand. (More details
are provided in the Supplementary Materials S35; The 3D binding poses are provided in
the Supplementary Materials, Figure S32).

2.5. In Silico ADME Prediction Study

The physicochemical and pharmacokinetic properties of the highly potent quinazoli-
none compounds 4a, 5a, 5c, and 5d were predicted by using the free web tool,
SwissADME [45–47].

3. Results and Discussion
3.1. Chemistry

The present work included the synthesis of a series of new quinazolin-4(3H)one
derivatives (4a–f, 5a–d) as illustrated by Schemes 1 and 2. The structure of all synthe-
sized compounds were confirmed by 1H-NMR, 13C-NMR, IR, and mass spectral data
(Supplementary Materials, Figures S1–S31), in addition to the correct ratios of their elemen-
tal microanalyses. The 2-hydrazinylquinazolin-4(3H)-one (2) was reported as a key interme-
diate compound in the synthesis of different quinazolinone-based compounds [48,49]. For
the synthesis of the target quinazolinone-hydrazone derivatives, the starting 2-hydrazinyl
derivative 2 was synthesized in a good yield by the reaction of 2-thioxo-2,3-dihydroquinazo-
lin-4(1H)-one (1) with hydrazine hydrate in refluxed ethanol. Upon treatment of the
2-hydrazinyl derivative 2 with different carbonyl compounds (3a–f), namely 1-(furan-2-
yl)ethan-1-one, 1-(thiophen-2-yl)ethan-1-one, 1-(pyridin-2-yl)ethan-1-one, 1-(4-methoxyph-
enyl)ethan-1-one, 4-methylcyclohexan-1-one, and indoline-2,3-dione in glacial acetic under
reflux, the hydrazone derivatives 4a–f was afforded (Scheme 1). The IR spectrum of the
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2-hydrazinyl derivative 2 showed a strong absorption band at 1674 cm−1 related to the
C=O group along with three absorption bands at the region 3431–3187 cm−1 due to the
NH stretching vibration of the NH-quinazolinone and the –NHNH2 moiety. Further-
more, the 1H-NMR spectrum of 2 represented three D2O exchangeable signals in the
range of δ 8.09–10.24 ppm corresponding to the protons of the two NH and the NH2
groups, besides the signals of the four quinazolinone aromatic protons at their expected
regions. Moreover, the 13C-NMR data of the 2-hydrazinyl derivative 2 showed a signal at
δ 163.91 ppm related to the C=O group alongside the expected signals of the C=N group
and the four aromatic carbons. Moreover, the formation of the hydrazones (4a–f) was
confirmed by their 1H-NMR spectra, which revealed vanishing of the D2O exchangeable
signal of the hydrazide NH2 group at δ 8.09 ppm of the parent 2-hydrazinyl derivative
2. In addition, the 1H-NMR spectra of the arylethylidene derivatives (4a–d) represented
the singlet signal corresponding to the CH3 protons of the N=C–CH3 moiety in the range
of δ 2.24–2.40 ppm along with the signals of the new aromatic protons related to the new
aryl group. Another support to the structures of (4a–d) was gained by their 13C-NMR data,
which showed signals corresponding to the CH3 carbon in the range of δ 13.16–16.90 ppm
besides the signals of the new aromatic carbons, while the 1H-NMR spectrum of the
4-methylcyclohexylidene derivative 4e showed the doublet signal at δ 0.88 ppm, the mul-
tiplet signal at δ 1.21–1.25 ppm, and the multiplet signal at δ 1.40–2.05 ppm assignable
to the protons of CH3, CH, and 4CH2 of the new 4-methylcyclohexylidene moiety, re-
spectively. Furthermore, the 13C-NMR of 4e assisted in showing the presence of the
4-methylcyclohexylidene carbons by five signals in the range of δ 21.75–35.55 ppm. More-
over, the IR spectrum of the 2-oxoindolin-3-ylidene derivative 4f exhibited two absorption
bands at 1699 and 1671 cm−1, corresponding to the two C=O groups of the indolinone
and quinazolinone moieties. Furthermore, the 1H-NMR spectrum of 4f revealed the sig-
nals corresponding to the aromatic protons of the new indolinone moiety alongside three
D2O exchangeable signals assignable to quinazolinone-NH, hydrazone-NH, and the new
indolinone-NH in the range of δ 10.50–11.22 ppm. Additionally, the 13C-NMR spectrum
of 4f showed a new signal at δ 169.03 ppm, ascribed to indolinone-C=O, as well as new
signals related to the aromatic carbons of the indolinone moiety.

Further treatment of the 2-(2-arylethylidene)hydrazinyl)quinazolin-4(3H)-ones 4a–f
with the DMF/POCl3 mixture (Vilsmeier–Haack reagent) afforded the 3-aryl-1-(4-oxo-3,4-
dihydroquinazolin-2-yl)-1H-pyrazole-4-carbaldehydes 5a–d in good yields (Scheme 2),
whereas the conversion of the hydrazones 4a–d to the corresponding formyl-pyrazole
derivatives 5a–d was achieved via the reported mechanism of the Vilsmeier–Haack re-
action [50]. The IR spectra of the formyl-pyrazole derivatives 5a–d showed one strong
absorption band in the region 1697–1680 cm−1, corresponding to the two C=O groups of
the quinazolinone and the formyl-pyrazole moieties. The 1H-NMR spectra of 5a–d showed
only one D2O exchangeable signal in the range of δ 10.07–10.15 ppm corresponding to
quinazolinone-NH with vanishing of the ethylidene-CH3 signal, which confirmed the
formation of the formyl-pyrazole moiety. Moreover, the 1H-NMR spectra of 5a–d revealed,
besides the signals of the parent aromatic protons, two new singlet signals at ranges δ

8.12–8.24 ppm and δ 9.44–9.69 ppm, ascribed to CH-pyrazole and the H–C=O protons,
respectively. Furthermore, the 13C-NMR spectra 5a–d showed the signals related to all the
carbons in the expected regions alongside the signal of the H–C=O carbon in the range
of δ 185.31–185.48 ppm. In addition, the molecular structures of the new compounds
(4a–f, 5a–d) were confirmed by their mass spectra, which represent their correct molecular
ion peaks.
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3.2. Antimicrobial Activity

All the synthesized quinazolin-4(3H)one derivatives (2, 4a–f, 5a–d) were examined
as antimicrobial agents against a number of bacterial and fungal strains. The tested
microorganisms include two Gram-positive bacteria (B. subtilis 6633, S. aureus 25923),
two Gram-negative bacteria (S. typhimurium 14028, E coli 8739), two yeast strains (C. trop-
icals 750, C. albicans 10231), and two fungal strains (M. phaseolina A62743, A. niger EM77-
KF774181) compared with Amoxicillin trihydrate and Clotrimazole as reference drugs
against the bacterial and fungal strains, respectively. The average diameters of the inhibi-
tion zones in mm were determined for the target compounds and the reference antibiotics
and are listed in Table 1. Then, the MIC values in (µg/mL) were determined and are listed
in Table 2 and represented by Figures 2 and 3.

Table 1. In vitro antimicrobial activities of the synthesized quinazolin-4(3H)-one derivatives repre-
sented as the mean diameter of the inhibition zone in mm.

Antibacterial Activity Antifungal Activity

Compd. S.
aureus

B.
subtilis

E.
coli

S.
typhimurium

C.
albicans

C.
tropicals

M.
phaseolina

A.
niger

2 25 22 20 14 20 20 19 19
4a 30 29 30 27 32 25 27 25
4b 26 24 26 26 20 18 16 26
4c 29 28 28 29 30 32 29 30
4d 17 18 20 16 15 14 15 18
4e 24 22 21 22 20 22 22 20
4f 15 17 16 - - 14 - 17
5a 35 34 35 38 39 35 30 29
5b 26 24 26 26 16 21 20 19
5c 30 30 33 31 27 28 24 22
5d 31 29 34 26 28 29 25 27

Amoxicillin 29 28 28 27 - - - -
Clotrimazole - - - - 26 25 24 26

Table 2. In vitro antimicrobial activities of the synthesized quinazolin-4(3H)-one derivatives as
minimum inhibitory concentrations (MIC) in µg/mL.

Antibacterial Activity Antifungal Activity

Compd. S.
aureus

B.
subtilis

E.
coli

S.
typhimurium

C.
albicans

C.
tropicals

M.
phaseolina

A.
niger

2 16 32 64 128 32 32 64 32
4a 4 4 4 8 2 8 8 16
4b 8 8 8 8 32 64 128 16
4c 4 8 8 4 2 4 8 4
4d 64 64 64 64 128 128 128 128
4e 16 32 32 16 32 16 16 32
4f 128 64 128 - - 128 - 64
5a 2 2 1 1 1 2 4 4
5b 4 8 8 8 32 32 32 32
5c 4 4 2 4 8 8 16 16
5d 4 4 2 8 8 8 16 8

Amoxicillin 4 4 8 8 - - - -
Clotrimazole - - - - 8 8 16 8
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The obtained results of the inhibition zones of the new quinazolin-4(3H)-one deriva-
tives (Table 1) revealed that some of the new compounds such as 4a, 4c, 5a, 5c, and 5d
exhibited large inhibition zones ranging from 22 to 39 mm against bacterial and fungal
strains, which indicates the higher sensitivity of the tested strains to the target compounds.

According to the MIC values, it is obvious that the majority of the target compounds
showed significant activity against the tested microbial strains. 2-hydrazinylquinazolin-
4(3H)-one (2) revealed antimicrobial activity varying from moderate to weak with MIC
values in range of (16–128) µg/mL, while the target hydrazone derivatives (4a–f) showed a
wide variety in their potency against both bacterial and fungal strains, whereas the most
potent antibacterial activity was exhibited by the 2-(1-(furan-2-yl)ethylidene derivative
4a, which exceeded the potency of Amoxicillin against E. coli with a MIC value 4 µg/mL
(MICAmoxxicillin = 8 µg/mL) and showed equipotent activity to that of Amoxicillin against
S. aureus, B. subtilis, and S. typhimurium with MIC values of 4, 4, and 8 µg/mL, respec-
tively. Furthermore, 4a showed potent antifungal activity with MIC values in the range of
(2–16) µg/mL, which is more potent than Clotrimazole against C. albicans and M. phaseolina
with MIC values of 2 and 8 µg/mL compared with the MIC values of 8 and 16 µg/mL
of Clotrimazole, respectively. Moreover, the 2-(1-(pyridin-2-yl)ethylidene derivative 4c
showed more potent antibacterial activity than Amoxicillin against S. typhimurium with a
MIC value of 4 µg/mL and showed equipotent activity to that of Amoxicillin against E. coli
and S. typhimurium with a MIC value of 8 µg/mL. Additionally, the antifungal activity of
4c was the most potent between the target hydrazones with MIC values in the range of
(2–8) µg/mL, which exceeded the antifungal activity of Clotrimazole against the four tested
strains. The activity of the 2-(1-(thiophen-2-yl)ethylidene derivative 4b came after 4a and 4c
against bacterial strains; it showed similar sensitivity towards the four tested strains with a
MIC value of 8 µg/mL. However, it revealed lower antifungal activity with MIC values
in the range of (16–128) µg/mL. Furthermore, the 2-(4-methylcyclohexylidene derivative
4e showed moderate activity against the tested microorganisms with MIC values varying
from 16 to 32 µg/mL. An apparent decrease of the antimicrobial activity was shown by the
2-(1-(4-methoxyphenyl)ethylidene derivative 4d and 2-oxoindolin-3-ylidene derivative 4f;
they revealed weak or no activity against the tested bacterial and fungal strains.

In addition, the conversion of the hydrazone derivatives 4a–d to the formyl-pyrazole
derivatives 5a–d led to an obvious increase in the antimicrobial activity, especially against
the bacterial strains, whereas the 3-(furan-2-yl)-1H-pyrazole-4-carbaldehyde derivative
5a exhibited the most potent antimicrobial activity among the tested compounds and the
reference drugs with MIC values in the range of (1–4) µg/mL. Moreover, the 3-(thiophen-2-
yl)-1H-pyrazole-4-carbaldehyde 5b showed similar antibacterial activity to that of Amoxi-
cillin against three of the tested bacterial strains and showed moderate antifungal activity
against the four fungal strains with the same MIC value = 32 µg/mL. In addition, the
3-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde derivative 5c displayed more potent activity
than that of Amoxicilli against E. coli and S. typhimurium with MIC values of 2 and 4 µg/mL,
respectively, while it showed some decrease in the activity against the four tested fungal
strains, compared with its parent hydrazone derivative 4c, with MIC values in the range of
(8–16) µg/mL. Finally, the 3-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde 5d showed
much higher potency against both the tested bacterial and fungal strains compared with
4d. It revealed more potent activity than Amoxicillin against E. coli and equal potency to
the reference drugs against the other tested microorganisms.

3.3. In Vitro DNA Gyrase Inhibitory Activity

The target compounds of the most potent antibacterial activity (4a, 4b, 4c, 5a, 5b, 5c,
and 5d) were subjected to further screening for their inhibition profiles against E coli DNA
gyrase compared with Novobiocin as a reference DNA gyrase inhibitor. The results of the
IC50 values of the tested compounds in Table 3 showed that the most potent inhibitory
activity was exhibited by the 3-(furan-2-yl)-1H-pyrazole-4-carbaldehyde derivative 5a with
an IC50 value of 3.19 µM and the 3-(4-methoxyphenyl)-1H-pyrazole-4-carbaldehyde 5d with
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an IC50 value of 3.51 µM, which exceeded the inhibition potency of Novobiocin with an IC50
value of 4.12 µM. Furthermore, the 3-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde derivative
5c and the 2-(1-(furan-2-yl)ethylidene derivative 4a showed potent inhibition with IC50
values of 4.09 and 4,17 µM, respectively, which were nearly equal to that of the reference
inhibitor, while the other target compounds 4b, 4c, and 5b revealed lower inhibition potency
against the target enzyme with IC50 values in the range of (10.82–16.91) µM.

Table 3. In vitro enzymatic inhibitory activity against E coli DNA gyrase.

Compound No. DNA Gyrase Supercoiling Inhibition
IC50 (µM)

4a 4.17 ± 0.07
4b 16.91 ± 0.36
4c 15.08 ± 0.34
5a 3.19 ± 0.06
5b 10.82 ± 0.24
5c 4.09 ± 0.13
5d 3.51 ± 0.10

Novobiocin 4.12 ± 0.11

3.4. Molecular Docking Study on E. coli DNA Gyrase B Kinase

The docking simulation of the most active novel quinazolin-4(3H)one derivatives
(4a–c, 5a–d) was established in an attempt to explain their variable gained potencies with
E. coli DNA gyrase B kinase. The process of molecular docking was firstly validated
through self-docking of the co-crystallized ligand Novobiocin within the active site of
E. coli DNA gyrase B (PDB code: 1AJ6), giving an energy score of −10.25 kcal/mol with
small RMSD values of 0.87 Å between the native ligand and its docked pose. The docking
results are inserted in Table 4 and revealed that the derivatives 4a–c and 5a–d occupied
the same binding site through two types of interactions: one was arene–cation interactions
between the quinazolinone moiety and Ile78, and the other was between the oxygen of
the quinazolinone and Gly77, whereas the highest binding affinity was revealed by the
target compounds 4a, 5a, 5c, and 5d, which exhibited the most potent inhibition of E. coli
DNA gyrase, with the energy score ranging from−9.89 to−10.97 kcal/mol, while the other
compounds 4b, 4c, and 5b showed lower binding affinity with the energy score ranging
from −8.66 to −8.80 kcal/mol.

By inspection of Figure 4, which describes the binding manner of the highly potent
compounds 4a, 5a, 5c, and 5d, it was observed that the hydrazineyl derivative 4a exhibited
three additional H-bonds with the sidechain of Asp73 (distance: 2.74, 3.08, and 3.16 Å,
respectively). Moreover, the furanyl moiety displayed arene–cation interaction with key
amino acid Asn46, which was not shown with the corresponding thienyl and pyridinyl
moieties in the derivatives 4b and 4c. Furthermore, these moieties forced the hydrazineyl
group away from binding with the essential amino acid Asp73. The formation of the
formylpyrazole scaffold in the derivatives 5a, 5c, and 5d gave the chance for good fitting
through H-bonding or arene–cation interaction with Asn46.

According to the superimposition between the promising new compounds 4a, 5a, 5c,
and 5d (Figure 5), the existence of the quinazolinone scaffold facilitated binding within
the active site of E. coli DNA gyrase B through hydrophilic and hydrophobic interactions.
Furthermore, incorporation with furanyl-hydrazone and formylpyrazole cores increased
the chance for more fitting, and that could be a lead for the discovery of new E. coli DNA
gyrase B inhibitors.
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Table 4. Molecular docking results of the most active quinazolin-4(3H)one derivatives with E. coli
DNA gyrase.

Compd. Docking Score
(Kcal/mol)

Amino Acid Residues
(Bond Length A◦) Atoms of Compound Type of Bond

Novobiocin −10.25
Asn46(3.27); H(OH)(oxan-4-yl); H-don
Asp73(1.91); H(OCONH2); H-don

Arg76 C6H2(coumarin) Arene–cation

4a −10.48

Asn46; furan; Arene–cation
Asp73(3.08,3.16); NH(quinazolinone) H-don

Asp73(2.74); NH(hydrazinyl) H-don
Gly77(2.63); O(quinazolinone) H-acc

Ile78 Quinazolinone Arene–cation

4b −8.70
Gly77(2.66); O(quinazolinone) H-acc

Ile78 Quinazolinone Arene–cation

4c −8.66
Gly77(2.83); O(quinazolinone) H-acc

Ile78 Quinazolinone Arene–cation

5a −10.97
Asn46(2.53); O(CHO) H-acc
Gly77(2.68); O(quinazolinone) H-acc

Ile78 Quinazolinone Arene–cation

5b −8.80
Gly77(2.51); O(quinazolinone) H-acc

Ile78 Quinazolinone Arene–cation

5c −9.89
Asn46; Pyrazole Arene–cation
Ile78; Pyrazole Arene–cation
Ile78 Quinazolinone Arene–cation

5d −10.74

Asn46(2.44); O(CHO) H-acc
Asn46; 4-methoxyphenyl Arene–cation
Ile78; Pyrazole Arene–cation
Ile78 Quinazolinone Arene–cation
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Figure 5. The 3D superimposition between the most potent compounds, 4a (green), 5a (blue), 5c
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of E. coli DNA gyrase B (PDB code: 1AJ6).

3.5. In Silico ADME Study

The study of absorption, distribution, metabolism, and excretion (ADME) for the
designed targets is a key insight to obtain the optimal drug candidate. This prediction study
was afforded using the free online tool, SwissADME. The optimum orally available drug
obeys Lipinski’s rule (molecule with MW ≤ 500, number of hydrogen bond donors ≤ 5,
number of hydrogen bond acceptors ≤ 10, and MLogP ≤ 4.15) and Veber’s rule (TPSA
≤ 140 Å2, number of rotatable bonds ≤ 10). It was observed that all the assessed targets
4a, 5a, 5c, and 5d were compatible with the previous rules with no violations (Table 5).
Concerning the bioavailability radar chart (Figure 6), it was noted that all compounds were
located in the preferred range (pink area) corresponding to the five parameters lipophilicity
(LIPO), flexibility (FLEX), solubility (INSOLU), polarity (POLAR), and SIZE, but kept away
from the desirable area of saturation (INSATU), and that represented good prediction for
their oral bioavailability.

Table 5. Predicted physicochemical properties of the most active quinazolin-4(3H)one derivatives 4a,
5a, 5c, and 5d.

Compd. MW 1 nHBD 2 nHBA 3 nRB 4 MLogP 5 TPSA (Å2) 6 Violations 7

4a 268.27 2 4 3 1.58 83.28 0
5a 306.28 1 5 3 1.38 93.78 0
5c 317.30 1 5 3 1.58 93.53 0
5d 346.34 1 5 4 2.05 89.87 0

1 Molecular weight; 2 number of hydrogen bond donor; 3 number of hydrogen bond acceptors; 4 number of
rotatable bonds; 5 calculated lipophilicity (MLog Po/w); 6 topological polar surface area; 7 violations of the
Lipinski and Veber rules.
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The pharmacokinetic properties of the promising new quinazolin-4(3H)one derivatives
4a, 5a, 5c, and 5d were investigated and are depicted in Table 6 and Figure 7. All the
derivatives revealed high expected gastrointestinal absorption with no BBB penetration, as
they all inserted in the white region of the boiled-egg chart and away from the yellow one.
Therefore, they were not predicted to cause CNS side effects and can be applied only for
peripheral infections. It is known that p-glycoprotein (P-gp) is a drug efflux transporter
and responsible for the pumping of drugs out of the cell, which could be one of the reasons
for drug resistance. Through the SwissADME website, it was expected that all the screened
compounds were not substrates for P-gp (red points, Figure 7), signifying a low chance of
their efflux out of the cell with a maximum activity. Moreover, these derivatives exhibited
high bioavailability scores of 0.55 with no PAIN alert.

Table 6. Predicted pharmacokinetic properties of the most active new quinazolin-4(3H)ones.

Comp.
No.

GIT
Absorption

BBB
Permeability

P-gp
Substrate

Bioavailability
Score

PAINS
Alert

4a High NO NO 0.55 0
5a High NO NO 0.55 0
5c High NO NO 0.55 0
5d High NO NO 0.55 0
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4. Conclusions

The present study involved the design and synthesis of quinazolin-4(3H)-one deriva-
tives (4a–f, 5a–d) bearing hydrazone or formyl-pyrazole moieties as new antimicrobial
agents targeting DNA gyraze enzyme. All the target quinazolin-4(3H)-one derivatives
were evaluated for their in vitro antibacterial activities compared with Amoxicillin trihy-
drate against two Gram-positive bacteria and two Gram-negative bacteria. Furthermore,
the target compounds were evaluated for their in vitro antifungal activities compared
with Clotrimazole as the reference drug against two yeasts and two fungi. The new
quinazolin-4(3H)-one derivatives showed significant antimicrobial activity compared with
the reference drugs, especially the formyl-pyrazole derivatives. The 3-(Furan-2-yl)-1H-
pyrazole-4-carbaldehyde derivative 5a showed the most potent activity between the target
compounds and the reference drugs with MIC values in the range of (1–16) µg/mL. In
addition, the most active compounds (4a, 4b, 4c, 5a, 5b, 5c, and 5d) were evaluated for
their inhibition activity against E. coli DNA gyrase compared with Novobiocin as the
reference inhibitor. The results revealed that the most potent inhibition was achieved by 5a
with an IC50 value of 3.19 µM compared with Novobiocin with an IC50 value of 4.12 µM.
Furthermore, the formyl pyrazole derivatives 5c and 5d showed potent inhibition activity
of the target compounds with IC50 values of 4.09 and 3.51 µM, respectively. Moreover, the
2-(1-(furan-2-yl)ethylidene derivative 4a was the most potent hydrazone derivative against
DNA gyrase with an IC50 value of 4,17 µM, which sheds light on the role of the furanyl
moiety in enhancing the antimicrobial activity and the DNA gyrase inhibitory activity. In
addition, molecular docking studies were performed for the most active target quinazolin-
4(3H)-one derivatives to predict their binding mode in the target E. coli DNA gyrase B active
site. The results of the docking study were compatible with the DNA gyrase inhibitory
activities, where the most binding affinity was obtained by the most potent inhibitors (4a,
5a, 5c, and 5d) with the energy score range of (−9.89–−10.97) kcal/mol. Furthermore,
ADME studies of the most active compounds predicted their good oral bioavailability.
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The results gained from the present work revealed the significant antimicrobial activity
of the target quinazolin-4(3H)-one compounds, especially compounds 4a, 5a, 5c, and 5d, as
broad-spectrum antimicrobial agents targeting DNA gyrase enzyme.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/scipharm90030052/s1, Figures S1–S31: all the NMR spectra
and some of the I.R and MS spectra of the new compounds; Figure S32: the 3D binding poses of
compounds 4a, 5a, 5c, and 5d within the active site of E. coli DNA gyrase B; S33: in vitro antimicrobial
assay; S34: in vitro DNA gyrase inhibitory assay; S35: molecular docking studies.
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