
Citation: Castillo-Henríquez, L.;

Murillo-Castillo, B.; Chaves-Siles, L.;

Mora-Román, J.J.; Ramírez-Arguedas,

N.; Hernández-Mora, É.;

Vega-Baudrit, J. Quality by Design: A

Suitable Methodology in Industrial

Pharmacy for Costa Rican

Universities. Sci. Pharm. 2022, 90, 34.

https://doi.org/10.3390/

scipharm90020034

Academic Editor: William A.

Donaldson

Received: 6 March 2022

Accepted: 26 April 2022

Published: 19 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Scientia 

Pharmaceutica

Review

Quality by Design: A Suitable Methodology in Industrial
Pharmacy for Costa Rican Universities
Luis Castillo-Henríquez 1,2,3 , Brayan Murillo-Castillo 2,3, Lexi Chaves-Siles 3, Juan José Mora-Román 2 ,
Nils Ramírez-Arguedas 2, Édgar Hernández-Mora 3 and José Vega-Baudrit 1,4,*

1 National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT),
San José 1174-1200, Costa Rica; luis.castillohenriquez@ucr.ac.cr

2 Faculty of Pharmacy, University of Costa Rica (UCR), San José 11501-2060, Costa Rica;
brayan.murillo@ucr.ac.cr (B.M.-C.); juanjose.moraroman@ucr.ac.cr (J.J.M.-R.); nils.ramirez@ucr.ac.cr (N.R.-A.)

3 Faculty of Pharmacy, Universidad Internacional de Las Américas (UIA), San José 1447-1002, Costa Rica;
lechaves@uia.ac.cr (L.C.-S.); ehernandez@uia.ac.cr (É.H.-M.)

4 Chemistry School, National University of Costa Rica (UNA), Heredia 86-3000, Costa Rica
* Correspondence: jvegab@gmail.com

Abstract: This review aims to present the Quality by Design (QbD) model as a suitable methodology
to perform research in the academic Costa Rican institutions that teach Pharmacy. Pubmed, Science
Direct, and Google Scholar databases were screened for original research papers and review papers
published not more than ten years ago. Institutional repositories from the different universities were
reviewed as well. The QbD model stands out as a great methodology for carrying out research projects
regarding Pharmaceutical Sciences, but especially for Industrial Pharmacy, where it has contributed
in terms of formulation development, manufacturing, and quality control. Academic research
based on this model enables the training and development of practical, scientific, and leadership
skills in Industrial Pharmacy students. The generated knowledge can be shared in classrooms,
which represents an ideal environment to communicate research results and to foster collaborative
work between researchers, professors, and students. Moreover, research performed through a QbD
approach increases the confidence shown by the industrial sector and health regulatory authorities in
the quality of the research, products, and knowledge that are developed and created in an Academy.
As a result, the implementation of the model has allowed the creation, transfer, and materialization
of knowledge from the Costa Rican Academy to different local pharmaceutical industries.

Keywords: academy; formulation development; industrial pharmacy; manufacturing process;
pharmaceutical technology; quality by design; quality control; research methodology

1. Introduction

Historically, public universities in Costa Rica have taken the lead in research activities;
however, only one of them teaches Pharmacy, which is the University of Costa Rica (UCR).
On the other hand, the private educational system has played a role in the knowledge
economy; i.e., it is a university corporate system that focuses on instrumentalism and
marketability. As a result, the private university model in Costa Rica is characterized by
academic institutions with little research and personnel dedicated to it [1–4]. Specifically,
these private institutions that offer Pharmacy majors lack a research system properly
focused on Pharmacy and Pharmaceutical Sciences.

Every university, either public or private, with a Pharmacy major as part of its aca-
demic offer has policies created by the International Federation of Pharmacy (FIP) that
can be used as tools for the evaluation, review, and improvement of its educational and
scientific standards [5]. Currently, the FIP has focused its efforts on supporting research
for Drug Discovery, Drug Development, Pharmaceutical Technology, Natural Products,
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Pharmacokinetics and Pharmacodynamics, Pharmacology, Personalized Medicine, Biotech-
nology, Analytical Science and Quality Control, Regulatory Affairs, Drug Metabolism,
Pharmacoeconomics, and Pharmacovigilance, among others [6].

A methodology that allows research in some of the mentioned areas, especially the
ones related to Industrial Pharmacy, is Quality by Design (QbD). The model is based on an
adequate understanding of the sources of variability and the processes involved. All the
knowledge about the impact caused by materials and process parameters on the quality
profile of the finished product is of great importance [7,8]. The concept of QbD was initially
introduced by a quality expert, Joseph Juran, who, in his book Juran on Quality by Design,
described it through a dynamic triad, consisting of Quality Planning, Quality Control,
and Quality Improvement [9]. Since then, there have been advances in the model, and its
benefits in Academies have been demonstrated by high-quality works carried out by Yu
et al. [10], Sangshetti et al. [11], and Grangeia et al. [12].

Costa Rican universities that teach the Pharmacy major must follow a strategy that sys-
tematically guides the development of scientific research in the industrial field. Therefore,
this comprehensive review aims to present the QbD model as an opportunity and suitable
methodology for research in Industrial Pharmacy in academic Costa Rican institutions.
Pubmed, Science Direct, and Google Scholar databases were screened for original research
papers and review papers not older than ten years. Publications were screened by title and
abstract. In addition, institutional repositories from different universities were reviewed,
and valid guidelines from the International Conference on Harmonization (ICH) and
the United States Food and Drug Administration (FDA) related to QbD were considered
suitable references due to their relevance to the topic.

To the best of our knowledge, there are no other papers that describe a research system
for Industrial Pharmacy in Costa Rican universities or that present a suitable methodology
for the promotion of feasible and high-quality research in the field.

2. University’s Research Model in Costa Rica

Bentley et al. stated that universities along with industry and government research
entities are the main actors in national research, development, and innovation systems [13].
Nonetheless, the public academic environment possesses the greatest research freedom
within society. According to the philosopher Immanuel Kant, generated knowledge has
a social impact with a bidirectional behavior, that is, from the world to science, and from
science to the world [14].

Research projects from an Academy can influence the theory of a certain phenomenon.
The term “Academy” is used to describe a community composed of students and academics,
committed to higher education and research as a fundamental activity in the creation of
knowledge [15]. A large majority of high-impact publications are the product of the thesis
work of master’s students and doctoral candidates affiliated with a specific research group
from public universities to become trained scientists [16–18].

In this sense, the creation of knowledge must be ethical, always emphasizing the
quality of research over quantity and avoiding any practice that encourages the opposite.
Unfortunately, the latter has not always been put into practice, and it directly affects first-
year Pharmacy students who do not yet know how to validate a scientific reference from
the literature [19]. According to the famous library scientist Jeffrey Beall, this student
population tends to consult papers from predatory journals for their assignments and
evaluations [20].

In addition, Costa Rican private universities where Pharmacy majors are taught have
not paid special attention to research activities for the discipline as such; thus, they cannot
be considered an Academy yet. This private system, however, is being replaced by a
university model with more complex thinking, which seeks to participate in the national
social agenda, as well as taking a leading role in the generation of knowledge as the central
axis of the research process. Authors such as Egri et al. [21] and Salau et al. [22] have
recognized this new model as a means by which research priorities can be organized



Sci. Pharm. 2022, 90, 34 3 of 15

around strategic areas to bring “non-academia” universities closer to becoming Academies
in various countries.

The new vision adopted by the Costa Rican private educational system, besides fo-
cusing on the search and design of research methodologies, allows the dissemination
of scientific knowledge. The participation of their personnel and students in national
and international events (e.g., conferences and symposia) and the production of scien-
tific manuscripts are of great relevance when evaluating the quality of a certain institu-
tion [23,24]. According to Pineda et al., these activities give great support to the research
program established by the majors and, at the same time, provide prestige to it, its re-
searchers, and the universities [25].

Likewise, some Costa Rican universities have created open-access journals, which facil-
itate the publication of research without the financial issue that submitting the manuscripts
to a large majority of international journals would represent. This open-access model is
also a transparent and affordable means of knowledge that also allows the development of
collaborative inter-institutional networks, expanding the ideals of the universities [26–28].

Nonetheless, despite the consolidated system from the UCR and the great progress
experienced by private universities, the establishment of scientific work in both cases is
based on the institutional development plan. This promotes the well-defined figure by
Berg et al. [2] of the “slow professor”, i.e., an individual with few research tasks, either
due to little affinity with the research topics or due to poor suitability to participate in
them [29]. Similarly, it is important to highlight that not every university is capable of
conducting research, or at least, not at the same level. Moreover, not all teaching personnel
can be included in the category of academics. In many cases, their research possibilities are
reduced due to a lack of resources, economic and political pressures, or unavailability due
to overload in teaching [30,31].

Based on the presented overview, the adoption of methodological guidelines or re-
search models for Industrial Pharmacy in Costa Rican universities that teach Pharmacy
may improve professor and student integration into research activities. This will not only
provide great academic training tools for both, but it will also represent an integral indicator
of credibility, compliance, efficiency, and competitiveness of the major and the research
system [32–34]. The relevance of such parameters also lies in their use as an internal
mechanism of evaluation in budgetary control and the prioritization of research [35].

3. Quality by Design Approach for Industrial Pharmacy in Costa Rican Academy
3.1. Model’s Basic Characteristics

The ICH guideline Q8 (R2) defines the QbD model as a systematic approach to Phar-
maceutical Development, which begins with predefined objectives and places special
emphasis on understanding the product, the process, and its controls [36]. Moreover, the
FDA considers that quality in a Drug Quality System cannot be evaluated or determined in
a product but must be introduced and promoted from its design [37].

Despite the aforementioned, the quality of the products has been historically deter-
mined through “Quality by Test”, i.e., to evaluate the quality of the finished product
without prior controls [38]. Nevertheless, the demand to produce medicines of the highest
quality and to improve competitiveness within the pharmaceutical, industrial, and health
fields forced many institutions to take on new measures to guarantee the quality of their
products. Therefore, the adoption of the QbD is of great relevance, as the predictions made
by the model are useful in the design of experimental investigations, time management,
and the use of resources throughout the process [39].

The QbD model’s lifecycle (Figure 1) [40] is directly related to the different constituent
elements, such as the Target Product Profile (TPP), Quality Target Product Profile (QTPP),
Critical Quality Attributes (CQAs), Critical Material Attributes (CMAs), Critical Process
Parameters (CPPs), and Design Space [41,42]. In addition, Quality Risk Management
(QRM), Design of Experiments (DoE), and Process Analytical Technologies (PATs) are used
as tools to guarantee the quality of the products being developed [43]. These tools also
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make the QbD model an approach that meets the current demand for research processes,
as it is considered cost effective in project development [44–46].
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According to the ICH Q9 guideline on Quality Risk Management [47], CQAs, CMAs,
and CPPs can be identified through adequate risk management, as it detects those problems
in the development of the product and their associated risks [48,49]. In general, nine tools
are recommended for risk management. However, among the most widely used tools are
Ishikawa’s fishbone diagram (Figure 2) [44] and the Failure Mode and Effects Analysis
(FMEA) [48,50,51]. These two tools are thoroughly explained to the Pharmacy students in
Drug Analysis courses.
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In addition, DoE allows researchers to use their knowledge regarding the product
and/or process instead of merely applying the commonly known “trial and error” [52,53].
This tool is used to organize, conduct, and interpret the results of experiments efficiently,
guaranteeing the collection of the greatest possible amount of useful information through
the execution of a small number of tests. The main objective of an experimental study
is to find the relationship between independent variables (i.e., factors) and dependent
variables (i.e., responses) that affects a certain process and its final product (Figure 3) [54].
An adequate DoE can help identify optimal conditions, CMAs, CPPs, and their impact on
CQAs [55].
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Figure 3. Example of a Design of Experiments carried out in the Academy to assess the performance
of solid formulations in the dissolution test. Adapted with permission from Castillo, L. et al. Journal
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3.2. Implementation in Academic Research

QbD can be used in any section of the Pharmaceutical Development process, from the
drug substance development stages to clinical trials (Figure 4) [39].
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Table 1 presents a scientific summarization of the QbD methodology in different
areas of the pharmaceutical discipline, such as excipients development [56], analytical
methods [57–59], dissolution tests [60,61], stability studies [61], bioequivalence develop-
ment/validation [62], clinical trials [63], and others [64,65]. These examples have allowed
advances in the Academy, Pharmaceutical Development, and the regulatory environment,
moving from empirical processes to research based on science and risk control [66,67].
Therefore, the application of the model allows tangible results (e.g., pharmaceutical prod-
ucts and analytical methods) of the highest and most reproducible quality to be obtained,
which can be easily predicted or anticipated [68].

Moreover, Orozco et al. previously described the Costa Rican innovation system
as weak, mainly due to a poorly effective linkage of the universities with the industrial
sector [69]. However, a direct benefit of the increase in students and the research groups’
practical and scientific skills due to the implementation of the QbD approach is the con-
fidence shown by customers, the industrial sector, and health authorities on the quality
of the research, products, and knowledge that are developed and created in the Academy.
The empowerment demonstrated by the students during the execution of their gradua-
tion projects, and the increase in learning engagement owing to the application of this
methodology have also developed leadership and team-work skills, necessary to conduct
research [10,11,70].

Table 1. Quality by Design applications in Pharmacy and Pharmaceutical Sciences developed by
the Academy.

Application Purpose Ref.

Microcrystalline cellulose for direct compression Excipient development [56]
Cyclosporine ophthalmic emulsion

Bioequivalence method validation
[71]

Validation of a bioanalytical method for quantification of fluoxetine in
human plasma [62]

Telmisartan potassium tablets [72]
Development of microsponges using double emulsion solvent

diffusion technique Formulation development/optimization [73]

Development of long-acting injectable PLGA/PLA-based microspheres [74]
Determination of critical quality attributes for monoclonal antibodies Biotechnological drug analysis [75]
Development of a reversed-phase liquid chromatography method for

protein quantification [57]

Formulation of a bilayer combined tablet manufactured via high-shear
wet granulation Formulation/process optimization [76]

Ultraperformance liquid chromatography method for quantification
of teriflunomide Dissolution and stability testing [61]

Development of Bunyavirus vaccine Process development for
biologics manufacturing [77]

Development of resveratrol-loaded ethosomal hydrogel Dermal delivery system [78]
Determination of partially pre-gelatinized starch effect on rapid orally

disintegrating tablets Identification of CQA [79]

Development of green HPLC method for artesunate and
amodiaquine impurities Quality control [58]

Liquid chromatography method to evaluate cannabinoid content in
cannabis olive oil extracts Quality control of natural products [59]

Cell culture in bioreactor for the production of foot-and-mouth
veterinary vaccine Biopharmaceutical process development [80]

Development of electrospinning coatings for metal microneedles Process optimization [81]

As a result, the QbD model has allowed the creation, transfer, and materialization
of knowledge from Costa Rican universities to different local pharmaceutical industries,
as discussed in the following sections. Different QbD approaches carried out regarding
formulation, the manufacturing process design, and the quality control of drugs and natural
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products are addressed. An emphasis is placed on the different QbD elements and tools
employed throughout the research.

3.2.1. Formulation Development

The QbD model satisfactorily deals with the challenges posed by the design and
development of pharmaceutical formulations, being also able to accelerate them [82]. The
thorough comprehension of CMAs, the assessment of physicochemical compatibility, the
application of QRM, the performance of DoE, and the use of PAT to assess and predict
stability are responsible for the great success experienced [83].

Castillo et al. employed QbD for the development of different pharmaceutical formu-
lations. In 2017, a collaboration between UCR and the National Laboratory of Nanotechnol-
ogy (LANOTEC) worked on developing an immediate-release formulation of rupatadine
fumarate 10 mg tablets by direct compression. The research involved identifying the TPP in
terms of the target population, administration route, posology, potency, composition, and
desired performance regarding drug release and physicochemical stability compared to a
commercialized reference product, Rupax® [44]. Later on, knowledge and technological
transference to a local pharmaceutical industry resulted in the commercialization of the
drug product.

Moreover, an adequate QRM during formulation can provide products of the highest
quality and safety, thus becoming an excellent resource for the identification and control of
possible quality problems during research [84]. This tool allows for better decision making
when quality-related issues arise, making their justification easier and generating greater
confidence in the research group [85]. In the rupatadine research, QRM was employed to
identify the CMAs and CPPs, and it led to the definition of the CQAs, a safe process, and
formulations with no physicochemical incompatibilities. Additionally, spectroscopic and
thermal analysis techniques were used to assess the physicochemical compatibility and the
suitability of the manufacturing process [44].

Following that, in 2021, another investigation involving students at UCR applied a
QbD approach for pharmaceutical formulation development. Hanley et al. developed an
oral suspension with anti-ulcer and gastroprotective effects. Remarkably, they reported
the thickening agents’ concentration as a CMA and the pretreatment of the drug using a
wetting agent as a CPP. Once the previous aspects were identified, a DoE was designed
and executed to determine the effect of these on the suspension’s viscosity, which was
defined as a CQA [86]. In general, DoE is conceived as an excellent tool that allows
forsystematic manipulation of factors according to a design prior to the establishment
of specifications [87,88]. The independent variables are usually formulation factors or
manufacturing/test conditions, while the dependent variables are product properties or
parameters that indicate the performance of the process [89]. Using this tool, Hanley’s
research results revealed that only one of the prototype formulations was suitable for
development. In this case, the technology was transferred to another local pharmaceutical
industry, which is currently in the process of registering the product and commercializing
it in the country [86].

At a private university, Universidad Internacional de Las Américas (UIA), Ramírez,
et al. developed a sustained-release tablet formulation of a non-steroidal and anti-inflammatory
drug (NSAID) to treat chronic pain. In this approach, the research group sought to fulfill
the CQAs established by the United States Pharmacopoeia (USP) and the British Phar-
macopoeia (BP) for the product. The performed QRM was based on Ishikawa’s diagram,
FMEA, and the creation of an adequate strategy for risk control and mitigation [90]. Fur-
thermore, other research projects are currently applying this methodology at UIA, such
as in the development of a self-emulsifying drug delivery system (SEDDS) to improve
itraconazole oral bioavailability and chlorpheniramine/guaifenesin chewing tablets for
cold treatment in children.

More recently, collaborative work between the Faculty of Pharmacy of UCR, LAN-
OTEC, the Laboratory of Biopharmacy and Pharmacokinetics (LABIOFAR) of UCR, and the
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Laboratory of Polymers of the National University (POLIUNA) allowed the development
of a topical chitosan-based thermo-responsive scaffold loaded with dexketoprofen trometa-
mol (DKT). In this case, the TPP was defined as a function of the intended application for
chronic and non-healing wounds caused by different diseases (e.g., diabetes), as well as for
local pain and inflammation management. The scaffold was required to provide controlled
release of DKT for 24 h use, having a small release rate at or below the normothermia and
taking advantage of the local hyperthermia presented in wounds. The latter induces a
sol–gel transition in the polymer’s structure, which increases the drug’s release rate. This
QbD approach contributed to the avoidance of excessive DKT loading in the polymer ma-
trix as most conventional drug systems do to achieve a concentration gradient for Fickian
diffusion as the main release mechanism [91].

3.2.2. Manufacturing Process Design

In many cases, the definition of scalable and consistent methods of drug preparation
or manufacturing is hard to achieve. Nevertheless, a QbD approach can bring solutions to
many of the related issues by making use of three key steps: (a) QRM, (b) DoE, and (c) the
execution and analysis of studies to determine their impact on the process quality, as well as
on the Design Space [92]. In addition, the ICH Q8 (R2) [36], Q9 [47], Q11 Development and
Manufacture of Drug Substances [93], Q13 Continuous Manufacturing of Drug Substances
and Drug Products [94], and the FDA Guidance for Industry on PAT [95] represent a
magnificent framework for the manufacturing of pharmaceutical products [12,96]. In
fact, the use of PAT and Continuous Manufacturing has been increasing in QbD-based
developments. Both have enabled real-time measurements for process monitoring, higher
operational flexibility, reducing batch rejection, faster manufacture, and fewer resources
and efforts for regulatory compliance [97]. The reduction in R&D costs and time has also
been associated with the implementation of QbD [98].

At UCR, Cantillo et al. designed a film coating process of tablets at a pilot scale for
a local pharmaceutical industry. In this case, the group employed a full factorial design
to evaluate the impact of the CMAs (friability, density, and tablet dimensions) and CPPs
(drum’s rotational speed, core bed temperature, and feed rate of the coating solution) on
the weight increase and appearance of defects. In conclusion, they reported the drum’s
rotational speed, the core bed temperature, and the feed rate of the coating solution as the
main effects, and created a control strategy for these process parameters [99].

3.2.3. Quality Control

QbD can also be expanded to analytical methods for the quality control of pharmaceu-
tical formulations, also known as Analytical Quality by Design (AQbD), which is different
from the classical approach for Analytical Method Development (Figure 5) [100]. AQbD
demands that the goal to be achieved is initially defined, i.e., the analytical target profile,
as well as properly selecting the analytical method from the different alternatives that are
systematically evaluated. This allows a well-understood method to be obtained that not
only exhibits the best performance but also has the possibility to be improved, if necessary.
As the next step, a control strategy is designed and established to manage risks and guaran-
tee robustness. Then, the validation of the method is developed, and finally, continuous
monitoring is mandatory throughout the lifecycle [101].

Furthermore, AQbD facilitates regulatory flexibility in analytical methods. Given the
fact that health regulatory agencies only allow minor modifications, the ease of changing
parameters within a method operable design region (MODR) in the AQbD approach
provides a multidimensional space based on the factors and settings that provide a suitable
method performance [67].
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Recently, at UCR, Murillo et al. developed and validated a bioanalytical HPLC method
with a diode array for the simultaneous quantification in human plasma of carbamazepine
and its active 10,11-epoxide metabolite. The risk assessment focused on the separation
and recovery of the analytes from properly preserved human plasma, using a solid-phase
component extraction strategy. For this critical parameter, three types of extraction car-
tridges were evaluated to optimize the process, which allowed more than 95% recovery
of the analytes to be obtained. However, validating a bioanalytical method presents some
issues posed by the biological matrix. Thus, applying the AQbD approach allowed them to
optimize and save reagents and consumables in the execution of the validation process,
as well as fulfilling validation criteria in terms of linearity, specificity, precision, and ac-
curacy, among others, to ensure reproducible and reliable results. This was achieved by
implementing the use of a 50 mm column with a particle size of 3.5 µm, obtaining good
integration and a resolution higher than 2.0 for the chromatographic peaks [102].

QbD has also gained importance in natural product development and quality control
due to the current high demand [103]. On top of that, the use of DoE in an AQbD approach
for these products implies a higher contribution due to the intrinsic variability that occurs
when working with natural raw materials. However, it is important to note that, according
to QbD, risk management has priority over DoE [50,51,104].

For instance, Castillo et al. evaluated a sample’s mass and temperature impact on
the moisture content in Camellia sinensis, Cassia fistula, Chamaemelum nobile, Lippia alba,
and Tilia platyphyllos using a gravimetric method developed through a 32 full factorial
design. A response optimizer was used to define the test conditions that allow results
to be obtained according to a target value from a certified method (Figure 6) [105]. The
designed model was able to explain the response variability for all samples based on the
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R2 (adj), which led to the definition of the range of mass and temperature for the analyses
based on each materials’ properties, as well as considering the capacity, precision, moisture
range, heating technology, and operational temperature range of the dryer and the available
moisture balances.
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Figure 6. Example of a 32 full factorial design carried out in the Academy to evaluate the moisture
content (%) in natural raw materials as a function of the balance’s temperature (◦C) and sample’s mass
(g): (a) Camelia sinensis, (b) Cassia fistula, (c) Chamaemelum nobile, (d) Lippia alba, and (e) Tilia platyphyllos.
Reprinted with permission from Castillo, L. et al. Borneo Journal of Pharmacy, 3(1). Copyright (2020)
Institute for Research and Community Services Universitas Muhammadiyah Palangkaraya [105].

4. Conclusions

The change in the educational paradigm and the organizational structure of Costa
Rican universities has allowed some Pharmacy Schools from these institutions to stand
out in terms of scientific research and to seek the consolidation of groups of experts in the
industrial field of the discipline. The implementation of research methodologies such as
QbD explains the progress achieved in recent years. The QbD model has been exceptional in
carrying out research projects in Costa Rican universities regarding Pharmaceutical Sciences
since 2017, especially for the formulation, manufacturing process design, and quality control
of drugs and natural products. The model has also allowed the creation, transfer, and
materialization of knowledge from academic institutions to different local pharmaceutical
industries, resulting in a closer linkage between the two sectors. Furthermore, academic
research based on this model enables the training and development of practical, scientific,
and leadership skills in Pharmacy students. The generated knowledge can be shared in
the classroom, which represents an ideal environment for the professors to communicate
their results and foster collaborative work between researchers, professors, and students.
The participation of all of these sectors allows a high level of commitment to research work,
which benefits the scientific advancement of universities and society.
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